Introduction
This is the Malawi January Maize forecast report. The goal is to assist users in evaluating current forecasts in the context of past forecasts and to translate the forecast component into key assumptions about food security.
The report includes the following key components:
A verbal summary of assumptions based on the statistics in this forecast
Mean Area, Production, and Yield over the years 2007 to 2017:This provides context for interpreting the grain data
Historical Out of Sample Forecast Error Averaged Over a 10 Year+ Period. We show the Mean Absolute Percent Error (MAPE).
Yield Forecast, (based on January 2022 Precip, NDVI, Et0 ) expressed as percent of mean yield over the period 2007 - 2017.
Forecasts and Forecast Error in Analog Years We show specific forecasts and forecast error for years were climatologically similar to those in this report.
Assumption Statements [NOT YET UPDATED FOR THIS REPORT]
Average Forecast Error For This Point in the Season
At this point in the season historical forecast error, is on average, below 50% for 46 out of the 46 admin units used in the forecast.
Yield Forecast for January 2022
Forecast values expressed as percent of Mean Yields over the Years 2007 - 2017.
The figure shows predicted percent of mean (center) as well as lower (left) and higher (right) predicted percent of mean intervals.

Static and Dynamic Version of Main Forecast
Roll over the polygon borders to get the district name and % of mean forecast value.
Static Version
This map shows the main % of mean forecast value along with district labels for reference.

Discrete Map
This map shows the main % of mean forecast binned into discrete values. Averages are based on the most recent 10 year period of observed yields: 2007 - 2017

Analog Year Forecasts
Yield forecasts in analog years. <–DESCRIPTION OF ANALOG YEAR PROCESS–>.
***

Analog Year Forecasts Errors
Forecast errors in analog years. If observed data is not available in a given year we cannot calculate forecast errors. Values are expressed a percentage of observed yields in a given year (t):
\[\frac{(observed_{(t)}-forecast_{(t)})}{observed_{(t)}}\] ***
Positive (+) values indicate an under prediction. Negative (-) values indicate an over prediction.

LS0tCnRpdGxlOiAiRm9yZWNhc3QgUmVwb3J0IHdpdGggQW5hbG9nIFllYXJzLU1hbGF3aSIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICB0b2M6IHllcwpmaWdfd2lkdGg6IDcKZmlnX2hlaWdodDogNgpmaWdfY2FwdGlvbjogdHJ1ZQotLS0KCmBgYHtyLGV2YWw9VFJVRSxlY2hvPUZBTFNFLHdhcm5pbmc9RkFMU0UsbWVzc2FnZT1GQUxTRSxyZXN1bHRzPSdoaWRlJ30KIy0tLS0tLS0tLS0tLS0tLS0tLS1CYXNlIFNldHVwLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0Kcm0obGlzdD1scygpKQoKIy0tLVNldCBQcm9qZWN0IERpcmVjdG9yaWVzCmRpckJhc2U8LScvVm9sdW1lcy9Hb29nbGVEcml2ZS9NeSBEcml2ZS8nCgpkaXJCYXNlMjwtJy9Wb2x1bWVzL0dvb2dsZURyaXZlL1NoYXJlZCBkcml2ZXMvQ0hDIFRlYW0gRHJpdmUgLycKCiMtUHJvamVjdCBEaXJlY3RvcmllcwpkaXJQcm9qPC1wYXN0ZTAoZGlyQmFzZTIsJ3Byb2plY3RfbWFjaGluZV9sZWFybmluZ19mb3JlY2FzdGluZy8nKSAjcHJvamVjdCBkaXJlY3RvcnkKCmRpclZpZXdlcjwtcGFzdGUwKGRpclByb2osJ3ZpZXdlci8nKQpkaXJWaWV3ZXJPdXRTdGF0aWM8LXBhc3RlMChkaXJWaWV3ZXIsJ3ZpZXdlcl9zdGF0aWNfc2hhcGVzLycpCmRpclZpZXdlckR5bmFtaWM8LXBhc3RlMChkaXJWaWV3ZXIsJ3ZpZXdlcl9keW5hbWljX3NoYXBlcy8nKQoKZGlyUmVwb3J0PC1wYXN0ZTAoZGlyUHJvaiwnZm9yZWNhc3RfcmVwb3J0aW5nLycpCmRpclJlcG9ydFJkYXRhPC1wYXN0ZTAoZGlyUmVwb3J0LCdmb3JlY2FzdF9yZXBvcnRpbmdfUmRhdGEvJykKCmxpYnJhcnkoc3RyaW5ncikKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KHJhc3RlcikKbGlicmFyeShyZ2RhbCkKbGlicmFyeShtZ2N2KQpsaWJyYXJ5KHRpZHlyKQpsaWJyYXJ5KGx1YnJpZGF0ZSkKbGlicmFyeShzZikKbGlicmFyeShybWFwc2hhcGVyKQpsaWJyYXJ5KHZpcmlkaXMpCmxpYnJhcnkoc2NhbGVzKQpsaWJyYXJ5KHBsb3RseSkKbGlicmFyeShmb3JjYXRzKQpsaWJyYXJ5KGtuaXRyKQpsaWJyYXJ5KGthYmxlRXh0cmEpCmxpYnJhcnkoc2hpbnkpCiM9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09CgojUGFyYW1ldGVycwpDVVJSRU5UX1lFQVI8LTIwMjIKTU9OVEg8LTEKREVLQUQ8LTMKTU9ERUw8LSdFVCcKQ09VTlRSWTwtJ01hbGF3aScKUFJPRFVDVDwtJ01haXplJwojQ1JPUF9BUkVBPC0yICAjUGVyY2VudApBTkFMT0dfWUVBUlM8LWMoMTk5OSwyMDAwLDIwMDEsMjAwOCwyMDA5LDIwMTEsMjAxMiwyMDE3KQoKbW9udGhfbmFtZTwtbW9udGgubmFtZVtNT05USF0gI21vbnRoIHRoZSBwcm9kdWN0IGlzIGJhc2VkIG9uCgojLS1Mb2FkIEV4aXN0aW5nIFBsb3RzCnNldHdkKGRpclJlcG9ydFJkYXRhKQpsb2FkKGZpbGU9cGFzdGUwKCcyMF9mb3JlY2FzdF9yZXBvcnRpbmdfbWFpbl9wbG90cycsbW9udGhfbmFtZSxDT1VOVFJZLCdfJyxQUk9EVUNULCcuUmRhdGEnKSkKbG9hZChmaWxlPXBhc3RlMCgnMDFfZm9yZWNhc3RfcmVwb3J0X2Fnc3RhdG1hcHNfJyxDT1VOVFJZLCdfJyxQUk9EVUNULCcuUmRhdGEnKSkKYGBgCiMgSW50cm9kdWN0aW9uClRoaXMgaXMgdGhlIGByIENPVU5UUllgIGByIG1vbnRoX25hbWVgIGByIFBST0RVQ1RgIGZvcmVjYXN0IHJlcG9ydC4gKipUaGUgZ29hbCBpcyB0byBhc3Npc3QgdXNlcnMgaW4gZXZhbHVhdGluZyBjdXJyZW50IGZvcmVjYXN0cyBpbiB0aGUgY29udGV4dCBvZiBwYXN0IGZvcmVjYXN0cyoqIGFuZCAqKnRvIHRyYW5zbGF0ZSB0aGUgZm9yZWNhc3QgY29tcG9uZW50IGludG8ga2V5IGFzc3VtcHRpb25zIGFib3V0IGZvb2Qgc2VjdXJpdHkuKioKClRoZSByZXBvcnQgaW5jbHVkZXMgdGhlIGZvbGxvd2luZyBrZXkgY29tcG9uZW50czoKCjEuICoqKkEgdmVyYmFsIHN1bW1hcnkgb2YgYXNzdW1wdGlvbnMgYmFzZWQgb24gdGhlIHN0YXRpc3RpY3MgaW4gdGhpcyBmb3JlY2FzdCoqKiAKCjIuICoqKk1lYW4gQXJlYSwgUHJvZHVjdGlvbiwgYW5kIFlpZWxkIG92ZXIgdGhlIHllYXJzIGByIGxpc192YXJzX3JlcG9ydCRtaW5fYWdgIHRvIGByIGxpc192YXJzX3JlcG9ydCRtYXhfYWdgOioqKlRoaXMgcHJvdmlkZXMgY29udGV4dCBmb3IgaW50ZXJwcmV0aW5nIHRoZSBncmFpbiBkYXRhCgozLiAqKipIaXN0b3JpY2FsIE91dCBvZiBTYW1wbGUgRm9yZWNhc3QgRXJyb3IgQXZlcmFnZWQgT3ZlciBhIDEwIFllYXIrIFBlcmlvZCoqKi4gV2Ugc2hvdyB0aGUgKioqTSoqKmVhbiAqKipBKioqYnNvbHV0ZSAqKipQKioqZXJjZW50ICoqKkUqKipycm9yICgqKipNQVBFKioqKS4KCjQuICoqKllpZWxkIEZvcmVjYXN0KioqLCAoYmFzZWQgb24gYHIgbGlzX3ZhcnNfcmVwb3J0JG1vbnRoX25hbWVgIGByIGxpc192YXJzX3JlcG9ydCRtYXhfZXZhcl95ZWFyYCBgciBsaXNfdmFyc19yZXBvcnQkdmFyX25hbWVgICkgZXhwcmVzc2VkIGFzICoqcGVyY2VudCBvZiBtZWFuIHlpZWxkKiogb3ZlciB0aGUgcGVyaW9kIGByIGxpc192YXJzX3JlcG9ydCRtaW5fYWdgIC0gYHIgbGlzX3ZhcnNfcmVwb3J0JG1heF9hZ2AuCgo1LiAqKipGb3JlY2FzdHMgYW5kIEZvcmVjYXN0IEVycm9yIGluIEFuYWxvZyBZZWFycyoqKiBXZSBzaG93IHNwZWNpZmljIGZvcmVjYXN0cyBhbmQgZm9yZWNhc3QgZXJyb3IgZm9yIHllYXJzIHdlcmUgY2xpbWF0b2xvZ2ljYWxseSBzaW1pbGFyIHRvIHRob3NlIGluIHRoaXMgcmVwb3J0LgoKIyBBc3N1bXB0aW9uIFN0YXRlbWVudHMgW05PVCBZRVQgVVBEQVRFRCBGT1IgVEhJUyBSRVBPUlRdCgojIyMjIEF2ZXJhZ2UgRm9yZWNhc3QgRXJyb3IgRm9yIFRoaXMgUG9pbnQgaW4gdGhlIFNlYXNvbgpBdCB0aGlzIHBvaW50IGluIHRoZSBzZWFzb24gKioqaGlzdG9yaWNhbCBmb3JlY2FzdCBlcnJvciwgaXMgb24gYXZlcmFnZSwgYmVsb3cgNTAlIGZvciA0NiBvdXQgb2YgdGhlIDQ2IGFkbWluIHVuaXRzKioqIHVzZWQgaW4gdGhlIGZvcmVjYXN0LgoKKioqCgoKCioqKgoKIyBTdW1tYXJ5IEZpZ3VyZXMKCiMjIyMgTWVhbiBhcmVhLCBwcm9kdWN0aW9uLCBhbmQgeWllbGRzIGZvciB0aGUgeWVhcnMgYHIgbGlzX3ZhcnNfcmVwb3J0JG1pbl9hZ2AgdG8gYHIgbGlzX3ZhcnNfcmVwb3J0JG1heF9hZ2AuCgoqKioKYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0V9CnAxYWxsCmBgYAoqKioKCgoKCgojIyMjIE91dCBvZiBTYW1wbGUgRm9yZWNhc3QgRXJyb3IgKE1BUEUpCk1lYW4gQWJzb2x1dGUgUGVyY2VudCBFcnJvciAoTUFQRSkgY2FsY3VsYXRlZCBiYXNlZCBvbiBoaXN0b3JpY2FsIG91dCBvZiBzYW1wbGUgc2Vhc29uYWwgZm9yZWNhc3RzLiAqKkxvd2VyIHNjb3JlcyBpbmRpY2F0ZSBncmVhdGVyIGFjY3VyYWN5KiouIEZvcmVjYXN0cyBhcmUgYmFzZWQgb24gbW9kZWwgdHlwZSBgTU9ERUxgXltFeHRyYS9FeHRlbmRlZCBUcmVlcy4gQSB0eXBlIG9mIFJhbmRvbSBGb3Jlc3QgTW9kZWxdCgoqKioKYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0V9CnAyCmBgYAoqKioKCgojIFlpZWxkIEZvcmVjYXN0IGZvciBgciBsaXNfdmFyc19yZXBvcnQkbW9udGhfbmFtZWAgYHIgbGlzX3ZhcnNfcmVwb3J0JG1heF9ldmFyX3llYXJgIApGb3JlY2FzdCB2YWx1ZXMgZXhwcmVzc2VkIGFzIHBlcmNlbnQgb2YgTWVhbiBZaWVsZHMgb3ZlciB0aGUgWWVhcnMgYHIgbGlzX3ZhcnNfcmVwb3J0JG1pbl9hZ2AgLSBgciBsaXNfdmFyc19yZXBvcnQkbWF4X2FnYC4gCgpUaGUgZmlndXJlIHNob3dzICoqKnByZWRpY3RlZCBwZXJjZW50IG9mIG1lYW4qKiogKGNlbnRlcikgYXMgd2VsbCBhcyBsb3dlciAobGVmdCkgYW5kIGhpZ2hlciAocmlnaHQpICoqKnByZWRpY3RlZCBwZXJjZW50IG9mIG1lYW4qKiogaW50ZXJ2YWxzLgoKKioqCmBgYHtyLGVjaG89RkFMU0Usd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFLGZpZy53aWR0aD04LGZpZy5oZWlnaHQ9OH0KI3AzPC1nZ3Bsb3RseShwPXAzLHRvb2x0aXA9YygnZGlzdHJpY3QnLCdwZXJfb2ZfbWVhbicpKQpwMQpgYGAKKioqCgojIyMjIFN0YXRpYyBhbmQgRHluYW1pYyBWZXJzaW9uIG9mIE1haW4gRm9yZWNhc3QKUm9sbCBvdmVyIHRoZSBwb2x5Z29uIGJvcmRlcnMgdG8gZ2V0IHRoZSBkaXN0cmljdCBuYW1lIGFuZCAlIG9mIG1lYW4gZm9yZWNhc3QgdmFsdWUuCgpgYGB7cixlY2hvPUZBTFNFLHdhcm5pbmc9RkFMU0UsbWVzc2FnZT1GQUxTRSxmaWcuYWxpZ249J2NlbnRlcicsZmlnLndpZHRoPTgsZmlnLmhlaWdodD04fQojcDFMcwpwMUw8LWdncGxvdGx5KHAxTCx0b29sdGlwPWMoJ2FkbWluMScsJ3ZhbHVlJykpICU+JSBsYXlvdXQobGVnZW5kID0gbGlzdChvcmllbnRhdGlvbiA9ICJoIiwgeCA9IDAuNCwgeSA9IC0wLjIpKQpwMUwKYGBgCiMjIyMgU3RhdGljIFZlcnNpb24KVGhpcyBtYXAgc2hvd3MgdGhlIG1haW4gJSBvZiBtZWFuIGZvcmVjYXN0IHZhbHVlIGFsb25nIHdpdGggZGlzdHJpY3QgbGFiZWxzIGZvciByZWZlcmVuY2UuCmBgYHtyLGVjaG89RkFMU0Usd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFLGZpZy5hbGlnbj0nY2VudGVyJyxmaWcud2lkdGg9OCxmaWcuaGVpZ2h0PTh9CnAxTHMKCmBgYAojIyMjIERpc2NyZXRlIE1hcApUaGlzIG1hcCBzaG93cyB0aGUgbWFpbiAlIG9mIG1lYW4gZm9yZWNhc3QgYmlubmVkIGludG8gZGlzY3JldGUgdmFsdWVzLiAqKkF2ZXJhZ2VzKiogYXJlIGJhc2VkIG9uIHRoZSBtb3N0IHJlY2VudCAxMCB5ZWFyIHBlcmlvZCBvZiBvYnNlcnZlZCB5aWVsZHM6IGByIGxpc192YXJzX3JlcG9ydCRtaW5fYWdgIC0gYHIgbGlzX3ZhcnNfcmVwb3J0JG1heF9hZ2AKYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLGZpZy53aWR0aD04LGZpZy5oZWlnaHQ9OH0KcDFMYwoKYGBgCgojIyMjIFRoaXMgdGFibGUgc2hvd3MgdGhlIGZvcmVjYXN0IHBlcmNlbnRhZ2Ugb2YgbWVhbiB2YWx1ZXMgaW4gdGhlIGFib3ZlIHRhYmxlIGFsb25nIHdpdGggdGhlIG1lYW4geWllbGQgdmFsdWVzIGZyb20gdGhlIGZpcnN0IGZpZ3VyZS4gCioqKgpgYGB7cixlY2hvPUZBTFNFLHdhcm5pbmc9RkFMU0UsbWVzc2FnZT1GQUxTRX0KdDE8LWtuaXRyOjprYWJsZShkdGFiLCBjYXB0aW9uID0gJ1RhYmxlIG9mIE1lYW4gWWllbGRzIGFuZCBQcmVkaWN0ZWQgUGVyY2VudCBvZiBNZWFuIFZhbHVlcycpCnQxPC1rYWJsZV9zdHlsaW5nKHQxLGJvb3RzdHJhcF9vcHRpb25zID0gYygic3RyaXBlZCIsICJob3ZlciIsImNvbmRlbnNlZCIpKQpzY3JvbGxfYm94KHQxLCBoZWlnaHQgPSAnMzAwcHgnLCB3aWR0aCA9ICcxMDAlJywKICBib3hfY3NzID0gImJvcmRlcjogMXB4IHNvbGlkICNkZGQ7IHBhZGRpbmc6IDFweDsgIiwgZXh0cmFfY3NzID0gTlVMTCwKICBmaXhlZF90aGVhZCA9IFRSVUUpCgoKYGBgCioqKgoKIyBBbmFsb2cgWWVhciBGb3JlY2FzdHMKWWllbGQgZm9yZWNhc3RzIGluIGFuYWxvZyB5ZWFycy4gPC0tREVTQ1JJUFRJT04gT0YgQU5BTE9HIFlFQVIgUFJPQ0VTUy0tPi4gIAoqKioKYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0UsZmlnLndpZHRoPTcuNSxmaWcuaGVpZ2h0PTcuNX0KcDMKYGBgCioqKgoKIyBBbmFsb2cgWWVhciBGb3JlY2FzdHMgRXJyb3JzCkZvcmVjYXN0IGVycm9ycyBpbiBhbmFsb2cgeWVhcnMuIElmIG9ic2VydmVkIGRhdGEgaXMgbm90IGF2YWlsYWJsZSBpbiBhIGdpdmVuIHllYXIgd2UgY2Fubm90IGNhbGN1bGF0ZSBmb3JlY2FzdCBlcnJvcnMuIFZhbHVlcyBhcmUgZXhwcmVzc2VkIGEgcGVyY2VudGFnZSAgb2Ygb2JzZXJ2ZWQgeWllbGRzIGluIGEgZ2l2ZW4geWVhciBfKHQpXzoKCioqKgokJFxmcmFjeyhvYnNlcnZlZF97KHQpfS1mb3JlY2FzdF97KHQpfSl9e29ic2VydmVkX3sodCl9fSQkCioqKgoKKioqUG9zaXRpdmUgKCspKioqIHZhbHVlcyBpbmRpY2F0ZSBhbiBfdW5kZXIgcHJlZGljdGlvbl8uICoqKk5lZ2F0aXZlICgtKSoqKiB2YWx1ZXMgaW5kaWNhdGUgYW4gX292ZXIgcHJlZGljdGlvbl8uCgoqKioKYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0UsZmlnLndpZHRoPTcuNSxmaWcuaGVpZ2h0PTcuNX0KcDQKYGBg