1. Here are tweets that other people are making about Bianca and a table of the most popular tweets about them.
Bianca <- search_tweets("BiancaDelRio", n = 1000, include_rts = F)
Bianca %>% 
  select(text, retweet_count) %>%    
  top_n(25) %>%                       
  arrange(-retweet_count) %>%         
  datatable()

There were only 4 recent tweets made about my person. 2. Here are the hashtags that Bianca is using the most, in a table.

BDR%>% 
  select(hashtags) %>%                
  unnest() %>%                          
  mutate(hashtags = tolower(hashtags)) %>%    
  count(hashtags, sort=TRUE) %>%                
  datatable()                                   

Her most used hashtags referance her upcoming tour.

3.Here is a table of the number of tweets each day and the average number of tweets per day.

BDR <- get_timeline("TheBiancaDelRio", n = 5000)
BDR %>% 
  group_by(day = date(created_at)) %>%    
  summarize(tweets_per_day = n())         
BDR %>% 
  group_by(day = date(created_at)) %>%    
  summarize(tweets_per_day = n()) %>%
  summarize(mean(tweets_per_day)) 

Bianca tweets roughly 9 times a day. She tweeted the most on January 25th 2021 with 57 times.

  1. Here is a plotly graphic of the number of tweets per day.
BDR %>%
  mutate(day = date(created_at)) %>% 
  plot_ly(x = ~day) %>%                                        
  add_histogram()

According to this data, Bianca’s number of tweets per day has steadily decreased month to month.

  1. This is a table and a plotly histogram of the hour of the day that they tweet.
BDR %>% 
  mutate(time = with_tz(created_at, "America/Los_Angeles")) %>%    
  mutate(time = hour(time)) %>%                                 
  plot_ly(x = ~time) %>%                                        
  add_histogram()   %>%
  layout(title = "When Does @TheBiancaDelRio Tweet?", 
         xaxis = list(title = "Time of Day (0 = midnight)"),
         yaxis = list(title = "Number of Tweets"))
NA
NA

According tot his data, she posts the most around 8am.

  1. Here is a table and a plotly histogram of the week days that Bianca tweets.
BDR %>% 
  mutate(Day = wday(created_at,         
                    label = T)) %>%                                 
  plot_ly(x = ~Day) %>%
  add_histogram() %>%
   layout(title = "When Does @TheBiancaDelRio Tweet?", 
         xaxis = list(title = "Days of the Week"),
         yaxis = list(title = "Number of Tweets"))

According tot he data she posts the most on Friday.

  1. This is a plotly heatmap of the weekday and time of day that Bianca tweets.
BDR %>% 
  mutate(day = wday(created_at, label = T)) %>% 
  mutate(hour = hour(with_tz(created_at, "America/Los_Angeles"))) %>% 
  plot_ly(x = ~day, y = ~hour) %>% 
  add_histogram2d(nbinsx = 7, nbinsy = 24) %>%
  layout(title = "When Does @TheBiancaDelRio Tweet?", 
         xaxis = list(title = "Days of the Week"),
         yaxis = list(title = "Hours of the Day"))

Bianca’s heat map shows that she tweets the most Thursday through Saturday around 7-9 am.

LS0tDQp0aXRsZTogIlR3ZWV0cyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoxLiBIZXJlIGFyZSB0d2VldHMgdGhhdCBvdGhlciBwZW9wbGUgYXJlIG1ha2luZyBhYm91dCBCaWFuY2EgYW5kIGEgdGFibGUgb2YgdGhlIG1vc3QgcG9wdWxhciB0d2VldHMgYWJvdXQgdGhlbS4NCmBgYHtyfQ0KQmlhbmNhIDwtIHNlYXJjaF90d2VldHMoIkJpYW5jYURlbFJpbyIsIG4gPSAxMDAwLCBpbmNsdWRlX3J0cyA9IEYpDQpgYGANCmBgYHtyfQ0KQmlhbmNhICU+JSANCiAgc2VsZWN0KHRleHQsIHJldHdlZXRfY291bnQpICU+JSAgICANCiAgdG9wX24oMjUpICU+JSAgICAgICAgICAgICAgICAgICAgICAgDQogIGFycmFuZ2UoLXJldHdlZXRfY291bnQpICU+JSAgICAgICAgIA0KICBkYXRhdGFibGUoKQ0KYGBgDQpUaGVyZSB3ZXJlIG9ubHkgNCByZWNlbnQgdHdlZXRzIG1hZGUgYWJvdXQgbXkgcGVyc29uLg0KMi4gSGVyZSBhcmUgdGhlIGhhc2h0YWdzIHRoYXQgQmlhbmNhIGlzIHVzaW5nIHRoZSBtb3N0LCBpbiBhIHRhYmxlLiANCmBgYHtyfQ0KQkRSJT4lIA0KICBzZWxlY3QoaGFzaHRhZ3MpICU+JSAgICAgICAgICAgICAgICANCiAgdW5uZXN0KCkgJT4lICAgICAgICAgICAgICAgICAgICAgICAgICANCiAgbXV0YXRlKGhhc2h0YWdzID0gdG9sb3dlcihoYXNodGFncykpICU+JSAgICANCiAgY291bnQoaGFzaHRhZ3MsIHNvcnQ9VFJVRSkgJT4lICAgICAgICAgICAgICAgIA0KICBkYXRhdGFibGUoKSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgDQoNCg0KYGBgDQpIZXIgbW9zdCB1c2VkIGhhc2h0YWdzIHJlZmVyYW5jZSBoZXIgdXBjb21pbmcgdG91ci4NCg0KDQozLkhlcmUgaXMgYSB0YWJsZSBvZiB0aGUgbnVtYmVyIG9mIHR3ZWV0cyBlYWNoIGRheSBhbmQgdGhlIGF2ZXJhZ2UgbnVtYmVyIG9mIHR3ZWV0cyBwZXIgZGF5LiANCmBgYHtyfQ0KQkRSIDwtIGdldF90aW1lbGluZSgiVGhlQmlhbmNhRGVsUmlvIiwgbiA9IDUwMDApDQpgYGANCg0KYGBge3J9DQpCRFIgJT4lIA0KICBncm91cF9ieShkYXkgPSBkYXRlKGNyZWF0ZWRfYXQpKSAlPiUgICAgDQogIHN1bW1hcml6ZSh0d2VldHNfcGVyX2RheSA9IG4oKSkgICAgICAgICANCmBgYA0KDQpgYGB7cn0NCkJEUiAlPiUgDQogIGdyb3VwX2J5KGRheSA9IGRhdGUoY3JlYXRlZF9hdCkpICU+JSAgICANCiAgc3VtbWFyaXplKHR3ZWV0c19wZXJfZGF5ID0gbigpKSAlPiUNCiAgc3VtbWFyaXplKG1lYW4odHdlZXRzX3Blcl9kYXkpKSANCmBgYA0KQmlhbmNhIHR3ZWV0cyByb3VnaGx5IDkgdGltZXMgYSBkYXkuIFNoZSB0d2VldGVkIHRoZSBtb3N0IG9uIEphbnVhcnkgMjV0aCAyMDIxIHdpdGggNTcgdGltZXMuIA0KDQoNCg0KDQo0LiBIZXJlIGlzIGEgcGxvdGx5IGdyYXBoaWMgb2YgdGhlIG51bWJlciBvZiB0d2VldHMgcGVyIGRheS4gDQpgYGB7cn0NCkJEUiAlPiUNCiAgbXV0YXRlKGRheSA9IGRhdGUoY3JlYXRlZF9hdCkpICU+JSANCiAgcGxvdF9seSh4ID0gfmRheSkgJT4lICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIA0KICBhZGRfaGlzdG9ncmFtKCkNCmBgYA0KQWNjb3JkaW5nIHRvIHRoaXMgZGF0YSwgQmlhbmNhJ3MgbnVtYmVyIG9mIHR3ZWV0cyBwZXIgZGF5IGhhcyBzdGVhZGlseSBkZWNyZWFzZWQgbW9udGggdG8gbW9udGguDQoNCg0KNS4gVGhpcyBpcyBhIHRhYmxlIGFuZCBhIHBsb3RseSBoaXN0b2dyYW0gb2YgdGhlIGhvdXIgb2YgdGhlIGRheSB0aGF0IHRoZXkgdHdlZXQuDQoNCmBgYHtyfQ0KQkRSICU+JSANCiAgbXV0YXRlKHRpbWUgPSB3aXRoX3R6KGNyZWF0ZWRfYXQsICJBbWVyaWNhL0xvc19BbmdlbGVzIikpICU+JSAgICANCiAgbXV0YXRlKHRpbWUgPSBob3VyKHRpbWUpKSAlPiUgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCiAgcGxvdF9seSh4ID0gfnRpbWUpICU+JSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCiAgYWRkX2hpc3RvZ3JhbSgpICAgJT4lDQogIGxheW91dCh0aXRsZSA9ICJXaGVuIERvZXMgQFRoZUJpYW5jYURlbFJpbyBUd2VldD8iLCANCiAgICAgICAgIHhheGlzID0gbGlzdCh0aXRsZSA9ICJUaW1lIG9mIERheSAoMCA9IG1pZG5pZ2h0KSIpLA0KICAgICAgICAgeWF4aXMgPSBsaXN0KHRpdGxlID0gIk51bWJlciBvZiBUd2VldHMiKSkNCg0KDQpgYGANCkFjY29yZGluZyB0b3QgaGlzIGRhdGEsIHNoZSBwb3N0cyB0aGUgbW9zdCBhcm91bmQgOGFtLg0KDQo2LiBIZXJlIGlzIGEgdGFibGUgYW5kIGEgcGxvdGx5IGhpc3RvZ3JhbSBvZiB0aGUgd2VlayBkYXlzIHRoYXQgQmlhbmNhIHR3ZWV0cy4NCg0KYGBge3J9DQpCRFIgJT4lIA0KICBtdXRhdGUoRGF5ID0gd2RheShjcmVhdGVkX2F0LCAgICAgICAgIA0KICAgICAgICAgICAgICAgICAgICBsYWJlbCA9IFQpKSAlPiUgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCiAgcGxvdF9seSh4ID0gfkRheSkgJT4lDQogIGFkZF9oaXN0b2dyYW0oKSAlPiUNCiAgIGxheW91dCh0aXRsZSA9ICJXaGVuIERvZXMgQFRoZUJpYW5jYURlbFJpbyBUd2VldD8iLCANCiAgICAgICAgIHhheGlzID0gbGlzdCh0aXRsZSA9ICJEYXlzIG9mIHRoZSBXZWVrIiksDQogICAgICAgICB5YXhpcyA9IGxpc3QodGl0bGUgPSAiTnVtYmVyIG9mIFR3ZWV0cyIpKQ0KYGBgDQpBY2NvcmRpbmcgdG90IGhlIGRhdGEgc2hlIHBvc3RzIHRoZSBtb3N0IG9uIEZyaWRheS4NCg0KNy4gVGhpcyBpcyBhIHBsb3RseSBoZWF0bWFwIG9mIHRoZSB3ZWVrZGF5IGFuZCB0aW1lIG9mIGRheSB0aGF0IEJpYW5jYSB0d2VldHMuDQoNCmBgYHtyfQ0KQkRSICU+JSANCiAgbXV0YXRlKGRheSA9IHdkYXkoY3JlYXRlZF9hdCwgbGFiZWwgPSBUKSkgJT4lIA0KICBtdXRhdGUoaG91ciA9IGhvdXIod2l0aF90eihjcmVhdGVkX2F0LCAiQW1lcmljYS9Mb3NfQW5nZWxlcyIpKSkgJT4lIA0KICBwbG90X2x5KHggPSB+ZGF5LCB5ID0gfmhvdXIpICU+JSANCiAgYWRkX2hpc3RvZ3JhbTJkKG5iaW5zeCA9IDcsIG5iaW5zeSA9IDI0KSAlPiUNCiAgbGF5b3V0KHRpdGxlID0gIldoZW4gRG9lcyBAVGhlQmlhbmNhRGVsUmlvIFR3ZWV0PyIsIA0KICAgICAgICAgeGF4aXMgPSBsaXN0KHRpdGxlID0gIkRheXMgb2YgdGhlIFdlZWsiKSwNCiAgICAgICAgIHlheGlzID0gbGlzdCh0aXRsZSA9ICJIb3VycyBvZiB0aGUgRGF5IikpDQoNCmBgYA0KQmlhbmNhJ3MgaGVhdCBtYXAgc2hvd3MgdGhhdCBzaGUgdHdlZXRzIHRoZSBtb3N0IFRodXJzZGF5IHRocm91Z2ggU2F0dXJkYXkgYXJvdW5kIDctOSBhbS4gDQogDQo=