In a somehow crazy paper Washington Must Prepare for War With Both Russia and China (https://foreignpolicy.com/2022/02/18/us-russia-china-war-nato-quadrilateral-security-dialogue/) Matthew Kroenig (deputy director of the Atlantic Council’s Scowcroft Center for Strategy and Security.) claims that US is capable to fight on both fronts as ``The United States possesses 24 percent of global GDP compared to a combined 19 percent in China and Russia.’’
Lets check. The data are from the WorldBank
As we compare global shares, current USD seems OK.
## Download from (and transformed to long format)
##https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
gdp0 <- read.csv("GDP_total_p.csv", sep = ';', header=T, na.string="NA")
gdp <- gdp0 %>% filter ( code %in% include ) %>%
filter (year >= 1990) %>%
select (code, gdp, year) %>%
pivot_wider(names_from = code, values_from = gdp) %>%
mutate(
CHN = CHN/WLD * 100,
EU = EUU/WLD * 100,
IND = IND/WLD * 100,
RUS = RUS/WLD * 100,
USA = USA/WLD * 100
) %>%
select (year, CHN, EU, IND, RUS, USA) %>%
pivot_longer(cols= c('CHN', 'EU', 'IND', 'RUS', 'USA'),
names_to = 'entity', values_to = 'gdp')
p1 <- ggplot(gdp, aes(x=year, y=gdp, color=entity )) +
geom_point(size=.6, alpha=.3) +
geom_smooth(method="loess", se=F, span=.5) +
ylab(label="% global share") +
xlab("") +
scale_y_continuous(breaks = seq(0, 32, by=2)) +
ggtitle("GDP", subtitle="source: World Bank")
p1
## `geom_smooth()` using formula 'y ~ x'
seems Mr. Kroenig compared GDP in current/constant USD…
PPP seems to be even more OK because of prices variations among countries.
## Download from (and transformed to long format)
## https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.CD
gdp0 <- read.csv("GDP_PPP_total_p.csv", sep = ';', header=T, na.string="NA")
include <- c('CHN', 'EUU', 'IND', 'RUS', 'WLD', 'USA')
gdp <- gdp0 %>% filter ( code %in% include ) %>%
filter (year >= 1990) %>%
select (code, gdpppp, year) %>%
pivot_wider(names_from = code, values_from = gdpppp) %>%
mutate(
CHN = CHN/WLD * 100,
EU = EUU/WLD * 100,
IND = IND/WLD * 100,
RUS = RUS/WLD * 100,
USA = USA/WLD * 100
) %>%
select (year, CHN, EU, IND, RUS, USA) %>%
pivot_longer(cols= c('CHN', 'EU', 'IND', 'RUS', 'USA'),
names_to = 'entity', values_to = 'gdp')
p2 <- ggplot(gdp, aes(x=year, y=gdp, color=entity )) +
geom_point(size=.6, alpha=.3) +
geom_smooth(method="loess", se=F, span=.5) +
ylab(label="% global share") +
scale_y_continuous(breaks = seq(0, 24, by=2)) +
xlab("") +
ggtitle("GDP/PPP", subtitle="source: World Bank")
p2
## `geom_smooth()` using formula 'y ~ x'
In this version of GDP the US is not #1 any more…
Service sector maybe not so crucial at war. Let’s check Manufacturing, value added (current US$) (https://data.worldbank.org/indicator/NV.IND.MANF.CD)
## https://data.worldbank.org/indicator/NV.IND.MANF.KN
mva0 <- read.csv("Manuf_ValueAdded_currUSD_p.csv", sep = ';', header=T, na.string="NA")
mva <- mva0 %>% filter ( code %in% include ) %>%
filter (year >= 1990) %>%
select (code, mva, year) %>%
pivot_wider(names_from = code, values_from = mva) %>%
mutate(
CHN = CHN/WLD * 100,
EU = EUU/WLD * 100,
IND = IND/WLD * 100,
RUS = RUS/WLD * 100,
USA = USA/WLD * 100
) %>%
select (year, CHN, EU, IND, RUS, USA) %>%
pivot_longer(cols= c('CHN', 'EU', 'IND', 'RUS', 'USA'),
names_to = 'entity', values_to = 'mva')
p3 <- ggplot(mva, aes(x=year, y=mva, color=entity )) +
geom_point(size=.6, alpha=.3) +
geom_smooth(method="loess", se=F, span=.5) +
ylab(label="% global share") +
xlab("") +
scale_y_continuous(breaks = seq(0, 32, by=2)) +
ggtitle("Manufacturing Value Added/Constant USD", subtitle="source: World Bank")
p3
## `geom_smooth()` using formula 'y ~ x'
All in one chart
p12 <- ggarrange(p1, p2, p3, ncol = 3)
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 48 rows containing non-finite values (stat_smooth).
## Warning: Removed 48 rows containing missing values (geom_point).
##ggsave(file="global_GDP_MVC.png", width=8)
p12