Naturalness Pilot Data: Climate Change Methods Project

Sarah Coffin

February 7, 2022

Goal: to provide a pilot data overview for the Climate Change Methods naturalness project. The variables of main focus are perceptions of naturalness and risk, as well as endorsement for climate change methods. Ten methods of climate change technology were included in pilot data collection, with each participant being randomly assigned a survey regarding 3 of the 10 total methods. Final data will be aggregated for a cross random effects analysis to account for relationships between key variables for all 10 methods.

#Climate Change Methods Descriptions

#Climate Change Methods Scale List

CC <- read.csv("ClimateChangeFull.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))

#Participants

#Number of responses (rows)
nrow(CC)
## [1] 105
#Age range
range(CC$Dem_Age, na.rm = T)
## [1] 20 85
#Average age
mean(CC$Dem_Age, na.rm = T)
## [1] 46.67961
#Standard deviation of age
sd(CC$Dem_Age, na.rm = T)
## [1] 16.9047
#Gender frequencies
table(CC$Dem_Gen)
## 
##  1  2 
## 61 42
#Ethnicity frequencies
table(CC$Dem_Ethnicity)
## 
##  1  2  3  4  6 
##  3 13  2  4 81

#Understanding

Understanding was measured with 1 item on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

Understanding Item 1: I understand how this works.

#AF/SCS Understanding/Familiarity Descriptives 

CC$Understanding_AFSCS <- CC$Risk_AFSCS_30

psych::describe(CC$Understanding_AFSCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 64.32 24.78     71    65.4 26.69   0 100   100 -0.46    -0.38 4.45
range(CC$Understanding_AFSCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Understanding_AFSCS, main = 'AFSCS Understanding Item #1: "I understand how this works."')

#Biochar Understanding/Familiarity Descriptives 

CC$Understanding_BIO <- CC$Risk_BIO_30

psych::describe(CC$Understanding_BIO)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 37 61.51 24.87     64   62.35 29.65  12 100    88 -0.22    -1.08 4.09
range(CC$Understanding_BIO, na.rm=TRUE)
## [1]  12 100
hist(CC$Understanding_BIO, main = 'BIO Understanding Item #1: "I understand how this works."')

#BECCS Understanding Descriptives

CC$Understanding_BECCS <- CC$Risk_BECCS_30

psych::describe(CC$Understanding_BECCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 53.53 31.67     60   54.23 36.32   0 100   100 -0.23    -1.28 5.28
range(CC$Understanding_BECCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Understanding_BECCS, main = 'BECCS Understanding Item #1: "I understand how this works."')

#DACCS Understanding Descriptives 

CC$Understanding_DACCS <- CC$Risk_DACCS_30

psych::describe(CC$Understanding_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 36 48.86 27.52   52.5   48.63 31.88   0 100   100 0.08    -0.77 4.59
range(CC$Understanding_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Understanding_DACCS, main = 'DACCS Understanding Item #1: "I understand how this works."')

#EW Understanding Descriptives 

CC$Understanding_EW <- CC$Risk_EW_30

psych::describe(CC$Understanding_EW)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 33 51.39 26.19     54      52 28.17   2 100    98 -0.19    -0.84 4.56
range(CC$Understanding_EW, na.rm=TRUE)
## [1]   2 100
hist(CC$Understanding_EW, main = 'EW Understanding Item #1: "I understand how this works."')

#OF Understanding Descriptives 

CC$Understanding_OF <- CC$Risk_OF_30

psych::describe(CC$Understanding_OF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 32 47.56 26.22   50.5   48.69 24.46   0  95    95 -0.37    -0.83 4.64
range(CC$Understanding_OF, na.rm=TRUE)
## [1]  0 95
hist(CC$Understanding_OF, main = 'OF Understanding Item #1: "I understand how this works."')

#BF Understanding Descriptives 

CC$Understanding_BF <- CC$Risk_BF_30

psych::describe(CC$Understanding_BF)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 23 59.61 28.94     62   61.63 25.2   0 100   100 -0.35     -0.6 6.03
range(CC$Understanding_BF, na.rm=TRUE)
## [1]   0 100
hist(CC$Understanding_BF, main = 'BF Understanding Item #1: "I understand how this works."')

#NE Understanding Descriptives 

CC$Understanding_NE <- CC$Risk_NE_30

psych::describe(CC$Understanding_NE)
##    vars  n  mean   sd median trimmed   mad min max range skew kurtosis   se
## X1    1 29 61.24 28.1     68   62.32 29.65   5 100    95 -0.4    -1.12 5.22
range(CC$Understanding_NE, na.rm=TRUE)
## [1]   5 100
hist(CC$Understanding_NE, main = 'NE Understanding Item #1: "I understand how this works."')

#SE Understanding/Familiarity Descriptives 

CC$Understanding_SE <- CC$Risk_SE_30

psych::describe(CC$Understanding_SE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 24 76.71 26.06   80.5   80.35 28.91  14 100    86 -0.95    -0.13 5.32
range(CC$Understanding_SE, na.rm=TRUE)
## [1]  14 100
hist(CC$Understanding_SE, main = 'SE Understanding Item #1: "I understand how this works."')

#WE Understanding Descriptives 

CC$Understanding_WE <- CC$Risk_WE_30

psych::describe(CC$Understanding_WE)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 26 63.46 25.41   66.5   64.23 23.72  15 100    85 -0.3    -1.04 4.98
range(CC$Understanding_WE, na.rm=TRUE)
## [1]  15 100
hist(CC$Understanding_WE, main = 'WE Understanding Item #1: "I understand how this works."')

#Familiarity

Familiarity and was measured with 1 item on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’). Familiarity Item 1: This is familiar.

#AF/SCS Familiarity Descriptives 

CC$Familiarity_AFSCS <-CC$Risk_AFSCS_31

psych::describe(CC$Familiarity_AFSCS)
##    vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 31 56.52 27.8     59   56.32 34.1   4 100    96 -0.02    -1.22 4.99
range(CC$Familiarity_AFSCS, na.rm=TRUE)
## [1]   4 100
hist(CC$Familiarity_AFSCS, main = 'AFSCS Familiarity Item #1: "This is familiar."')

#Biochar Familiarity Descriptives 
 
CC$Familiarity_BIO <-CC$Risk_BIO_31

psych::describe(CC$Familiarity_BIO)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 37 51.14 29.43     47   50.68 31.13   0 100   100 0.25    -1.13 4.84
range(CC$Familiarity_BIO, na.rm=TRUE)
## [1]   0 100
hist(CC$Familiarity_BIO, main = 'BIO Familiarity Item #1: "This is familiar."')

#BECCS Familiarity Descriptives

CC$Familiarity_BECCS <-CC$Risk_BECCS_31

psych::describe(CC$Familiarity_BECCS)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 35 41.97 32.88     31   40.28 37.06   0 100   100 0.36    -1.36 5.56
range(CC$Familiarity_BECCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Familiarity_BECCS, main = 'BECCS Familiarity Item #1: "This is familiar."')

#DACCS Understanding/Familiarity Descriptives 

CC$Familiarity_DACCS <-CC$Risk_DACCS_31

psych::describe(CC$Familiarity_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 36 41.89 28.97   40.5   40.53 29.65   0 100   100 0.28    -0.88 4.83
range(CC$Familiarity_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Familiarity_DACCS, main = 'DACCS Familiarity Item #1: "This is familiar."')

#EW Familiarity Descriptives 

CC$Familiarity_EW <-CC$Risk_EW_31

psych::describe(CC$Familiarity_EW)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 33 39.64 29.26     39      38 35.58   1 100    99 0.35    -1.01 5.09
range(CC$Familiarity_EW, na.rm=TRUE)
## [1]   1 100
hist(CC$Familiarity_EW, main = 'EW Familiarity Item #1: "This is familiar."')

#OF Familiarity Descriptives 

CC$Familiarity_OF <-CC$Risk_OF_31

psych::describe(CC$Familiarity_OF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis  se
## X1    1 31 37.03 23.38     39      37 26.69   0  78    78 -0.12     -1.2 4.2
range(CC$Familiarity_OF, na.rm=TRUE)
## [1]  0 78
hist(CC$Familiarity_OF, main = 'OF Familiarity Item #1: "This is familiar."')

#BF Familiarity Descriptives 

CC$Familiarity_BF <-CC$Risk_BF_31

psych::describe(CC$Familiarity_BF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis  se
## X1    1 23 58.57 22.08     60   59.58 14.83   0  99    99 -0.59      0.4 4.6
range(CC$Familiarity_BF, na.rm=TRUE)
## [1]  0 99
hist(CC$Familiarity_BF, main = 'BF Familiarity Item #1: "This is familiar."')

#NE Familiarity Descriptives 

CC$Familiarity_NE <-CC$Risk_NE_31

psych::describe(CC$Familiarity_NE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 66.31 24.08     76   68.12 19.27   9 100    91 -0.76    -0.36 4.47
range(CC$Familiarity_NE, na.rm=TRUE)
## [1]   9 100
hist(CC$Familiarity_NE, main = 'NE Familiarity Item #1: "This is familiar."')

#SE Familiarity Descriptives 

CC$Familiarity_SE <-CC$Risk_SE_31

psych::describe(CC$Familiarity_SE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis  se
## X1    1 25 73.04 26.02     74   75.76 32.62   3 100    97 -0.78    -0.02 5.2
range(CC$Familiarity_SE, na.rm=TRUE)
## [1]   3 100
hist(CC$Familiarity_SE, main = 'SE Familiarity Item #1: "This is familiar."')

#WE Familiarity Descriptives 

CC$Familiarity_WE <-CC$Risk_WE_31

psych::describe(CC$Familiarity_WE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 26 62.12 26.92   62.5   63.64 22.98   0 100   100 -0.42    -0.57 5.28
range(CC$Familiarity_WE, na.rm=TRUE)
## [1]   0 100
hist(CC$Familiarity_WE, main = 'WE Familiarity Item #1: "This is familiar."')

#Risk Perception

Risk perception was measured with 2 items on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

Risk Item 1: This is risky to deploy. Risk Item 2: This is frightening.

#AF/SCS Risk Descriptives 

#AFSCS Risk Scale
CC$Risk_Score_AFSCS <- rowMeans(CC [, c("Risk_AFSCS_32", "Risk_AFSCS_33")], na.rm=TRUE)

#AFSCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_AFSCS_32, CC$Risk_AFSCS_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_AFSCS_32, CC$Risk_AFSCS_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.89      0.89     0.8       0.8 7.9 0.022   43 31      0.8
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.89 0.93 
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_AFSCS_32      0.82       0.8    0.64       0.8   4       NA     0   0.8
## CC.Risk_AFSCS_33      0.77       0.8    0.64       0.8   4       NA     0   0.8
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_AFSCS_32 31  0.95  0.95  0.85    0.8   47 33
## CC.Risk_AFSCS_33 31  0.95  0.95  0.85    0.8   39 32
hist(CC$Risk_Score_AFSCS, main = 'AF/SCS Risk Scale Score')

#AFSCS Individual Risk Items
psych::describe(CC$Risk_AFSCS_32)
##    vars  n  mean    sd median trimmed mad min max range skew kurtosis   se
## X1    1 31 46.65 33.09     49   45.88  43   0 100   100 0.07    -1.17 5.94
range(CC$Risk_AFSCS_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_AFSCS_32, main = 'AFSCS Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_AFSCS_33)
##    vars  n mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 31   39 32.09     37   36.72 41.51   0 100   100 0.34     -1.1 5.76
range(CC$Risk_AFSCS_33, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_AFSCS_33, main = 'AFSCS Risk Item #2: "This is frightening."')

#BIOCHAR Risk Descriptives 

#BIO Risk Scale
CC$Risk_Score_BIO <- rowMeans(CC [, c("Risk_BIO_32", "Risk_BIO_33")], na.rm=TRUE)

#BIO Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_BIO_32, CC$Risk_BIO_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_BIO_32, CC$Risk_BIO_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.92      0.92    0.85      0.85  12 0.016   42 28     0.85
## 
##  lower alpha upper     95% confidence boundaries
## 0.89 0.92 0.95 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_BIO_32      0.84      0.85    0.73      0.85 5.8       NA     0  0.85
## CC.Risk_BIO_33      0.87      0.85    0.73      0.85 5.8       NA     0  0.85
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## CC.Risk_BIO_32 37  0.96  0.96  0.89   0.85   44 29
## CC.Risk_BIO_33 36  0.96  0.96  0.89   0.85   39 29
hist(CC$Risk_Score_BIO, main = 'BIO Risk Scale Score')

#BIO Individual Risk Items
psych::describe(CC$Risk_BIO_32)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 37 43.78 28.74     45   43.13 29.65   0 100   100  0.1    -1.01 4.72
range(CC$Risk_BIO_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_BIO_32, main = 'BIO Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_BIO_33)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 36 39.17 29.31     34    37.5 34.84   0  98    98 0.36    -1.05 4.89
range(CC$Risk_BIO_33, na.rm=TRUE)
## [1]  0 98
hist(CC$Risk_BIO_33, main = 'BIO Risk Item #2: "This is frightening."')

#BECCS Risk Descriptives

#BECCS Risk Scale
CC$Risk_Score_BECCS <- rowMeans(CC [, c("Risk_BECCS_32", "Risk_BECCS_33")], na.rm=TRUE)

#BECCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_BECCS_32, CC$Risk_BECCS_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_BECCS_32, CC$Risk_BECCS_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.83      0.83    0.72      0.72   5 0.032   48 24     0.72
## 
##  lower alpha upper     95% confidence boundaries
## 0.77 0.83 0.9 
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_BECCS_32      0.75      0.72    0.51      0.72 2.5       NA     0  0.72
## CC.Risk_BECCS_33      0.69      0.72    0.51      0.72 2.5       NA     0  0.72
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_BECCS_32 35  0.93  0.93  0.78   0.72   53 27
## CC.Risk_BECCS_33 36  0.92  0.93  0.78   0.72   43 26
hist(CC$Risk_Score_BECCS, main = 'BECCS Risk Scale Score')

#BECCS Individual Risk Items
psych::describe(CC$Risk_BECCS_32)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 35 53.2 26.87     56   54.41 32.62   0 100   100 -0.35    -0.93 4.54
range(CC$Risk_BECCS_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_BECCS_32, main = 'BECCS Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_BECCS_33)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis  se
## X1    1 36 43.31 25.77   39.5   42.93 25.95   0  99    99 0.11    -0.83 4.3
range(CC$Risk_BECCS_33, na.rm=TRUE)
## [1]  0 99
hist(CC$Risk_BECCS_33, main = 'BECCS Risk Item #2: "This is frightening."')

#DACCS Risk Descriptives 

#DACCS Risk Scale
CC$Risk_Score_DACCS <- rowMeans(CC [, c("Risk_DACCS_32", "Risk_DACCS_33")], na.rm=TRUE)

#DACCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_DACCS_32, CC$Risk_DACCS_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_DACCS_32, CC$Risk_DACCS_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.78      0.79    0.66      0.66 3.8 0.041   61 26     0.66
## 
##  lower alpha upper     95% confidence boundaries
## 0.7 0.78 0.86 
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_DACCS_32      0.51      0.66    0.43      0.66 1.9       NA     0  0.66
## CC.Risk_DACCS_33      0.84      0.66    0.43      0.66 1.9       NA     0  0.66
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_DACCS_32 36  0.89  0.91  0.74   0.66   64 25
## CC.Risk_DACCS_33 36  0.93  0.91  0.74   0.66   58 33
hist(CC$Risk_Score_DACCS, main = 'DACCS Risk Scale Score')

#DACCS Individual Risk Items
psych::describe(CC$Risk_DACCS_32)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 63.64 25.47     66   65.33 22.24   0 100   100 -0.54    -0.34 4.24
range(CC$Risk_DACCS_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_DACCS_32, main = 'DACCS Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_DACCS_33)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 57.61 32.59     64    59.1 34.84   0 100   100 -0.42    -1.12 5.43
range(CC$Risk_DACCS_33, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_DACCS_33, main = 'DACCS Risk Item #2: "This is frightening."')

#EW Risk Descriptives 

#EW Risk Scale
CC$Risk_Score_EW <- rowMeans(CC [, c("Risk_EW_32", "Risk_EW_33")], na.rm=TRUE)

#EW Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_EW_32, CC$Risk_EW_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_EW_32, CC$Risk_EW_33))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.46      0.46     0.3       0.3 0.85 0.11   40 23      0.3
## 
##  lower alpha upper     95% confidence boundaries
## 0.25 0.46 0.67 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Risk_EW_32      0.32       0.3   0.089       0.3 0.43       NA     0   0.3
## CC.Risk_EW_33      0.28       0.3   0.089       0.3 0.43       NA     0   0.3
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_EW_32 33  0.82  0.81  0.44    0.3   45 29
## CC.Risk_EW_33 33  0.79  0.81  0.44    0.3   35 27
hist(CC$Risk_Score_EW, main = 'EW Risk Scale Score')

#EW Individual Risk Items
psych::describe(CC$Risk_EW_32)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 33 45.21 28.91     46   44.74 28.17   0 100   100 0.01    -1.04 5.03
range(CC$Risk_EW_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_EW_32, main = 'EW Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_EW_33)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 33 34.61 27.08     35    33.3 41.51   0  83    83 0.16    -1.31 4.71
range(CC$Risk_EW_33, na.rm=TRUE)
## [1]  0 83
hist(CC$Risk_EW_33, main = 'EW Risk Item #2: "This is frightening."')

#OF Risk Descriptives 

#OF Risk Scale
CC$Risk_Score_OF <- rowMeans(CC [, c("Risk_OF_32", "Risk_OF_33")], na.rm=TRUE)

#OF Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_OF_32, CC$Risk_OF_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_OF_32, CC$Risk_OF_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.72      0.72    0.56      0.56 2.6 0.054   51 24     0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.61 0.72 0.82 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_OF_32      0.49      0.56    0.32      0.56 1.3       NA     0  0.56
## CC.Risk_OF_33      0.65      0.56    0.32      0.56 1.3       NA     0  0.56
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_OF_32 32  0.87  0.88  0.66   0.56   52 26
## CC.Risk_OF_33 32  0.90  0.88  0.66   0.56   51 29
hist(CC$Risk_Score_OF, main = 'OF Risk Scale Score')

#OF Individual Risk Items
psych::describe(CC$Risk_OF_32)
##    vars  n  mean    sd median trimmed  mad min max range skew kurtosis   se
## X1    1 32 51.69 25.67     48   50.92 25.2   0 100   100 0.32    -0.76 4.54
range(CC$Risk_OF_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_OF_32, main = 'OF Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_OF_33)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 32 50.69 29.48   51.5   50.65 28.91   0 100   100 0.16    -0.91 5.21
range(CC$Risk_OF_33, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_OF_33, main = 'OF Risk Item #2: "This is frightening."')

#BIOFUEL Risk Descriptives 

#BF Risk Scale
CC$Risk_Score_BF <- rowMeans(CC [, c("Risk_BF_32", "Risk_BF_33")], na.rm=TRUE)

#DACCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_BF_32, CC$Risk_BF_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_BF_32, CC$Risk_BF_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.88      0.88    0.79      0.79 7.4 0.023   44 28     0.79
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.88 0.93 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_BF_32      0.78      0.79    0.62      0.79 3.7       NA     0  0.79
## CC.Risk_BF_33      0.80      0.79    0.62      0.79 3.7       NA     0  0.79
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_BF_32 23  0.94  0.95  0.84   0.79   49 30
## CC.Risk_BF_33 23  0.95  0.95  0.84   0.79   40 30
hist(CC$Risk_Score_BF, main = 'BF Risk Scale Score')

#DACCS Individual Risk Items
psych::describe(CC$Risk_BF_32)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 49.26 29.61     54   50.11 35.58   0  91    91 -0.26    -1.28 6.17
range(CC$Risk_BF_32, na.rm=TRUE)
## [1]  0 91
hist(CC$Risk_BF_32, main = 'BF Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_BF_33)
##    vars  n mean    sd median trimmed  mad min max range skew kurtosis   se
## X1    1 23 39.7 30.04     34   38.21 34.1   0  97    97 0.31     -1.2 6.26
range(CC$Risk_BF_33, na.rm=TRUE)
## [1]  0 97
hist(CC$Risk_BF_33, main = 'BF Risk Item #2: "This is frightening."')

#NE Risk Descriptives 

#NE Risk Scale
CC$Risk_Score_NE <- rowMeans(CC [, c("Risk_NE_32", "Risk_NE_33")], na.rm=TRUE)

#NE Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_NE_32, CC$Risk_NE_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_NE_32, CC$Risk_NE_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.97      0.97    0.93      0.93  28 0.0067   57 29     0.93
## 
##  lower alpha upper     95% confidence boundaries
## 0.95 0.97 0.98 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_NE_32      0.88      0.93    0.87      0.93  14       NA     0  0.93
## CC.Risk_NE_33      0.99      0.93    0.87      0.93  14       NA     0  0.93
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_NE_32 29  0.98  0.98  0.95   0.93   58 29
## CC.Risk_NE_33 29  0.98  0.98  0.95   0.93   56 31
hist(CC$Risk_Score_NE, main = 'NE Risk Scale Score')

#NE Individual Risk Items
psych::describe(CC$Risk_NE_32)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 57.9 29.04     62   58.88 37.06   1 100    99 -0.33    -1.24 5.39
range(CC$Risk_NE_32, na.rm=TRUE)
## [1]   1 100
hist(CC$Risk_NE_32, main = 'NE Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_NE_33)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 55.52 30.76     62    56.2 37.06   0 100   100 -0.22    -1.15 5.71
range(CC$Risk_NE_33, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_NE_33, main = 'NE Risk Item #2: "This is frightening."')

#SE Risk Descriptives 

#SE Risk Scale
CC$Risk_Score_SE <- rowMeans(CC [, c("Risk_SE_32", "Risk_SE_33")], na.rm=TRUE)

#DACCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_SE_32, CC$Risk_SE_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_SE_32, CC$Risk_SE_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.96      0.96    0.92      0.92  22 0.0084   33 32     0.92
## 
##  lower alpha upper     95% confidence boundaries
## 0.94 0.96 0.97 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_SE_32      0.92      0.92    0.84      0.92  11       NA     0  0.92
## CC.Risk_SE_33      0.91      0.92    0.84      0.92  11       NA     0  0.92
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_SE_32 25  0.98  0.98  0.94   0.92   35 33
## CC.Risk_SE_33 25  0.98  0.98  0.94   0.92   31 33
hist(CC$Risk_Score_SE, main = 'SE Risk Scale Score')

#DACCS Individual Risk Items
psych::describe(CC$Risk_SE_32)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 25 34.68 32.73     19   32.67 28.17   0 100   100 0.46     -1.4 6.55
range(CC$Risk_SE_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_SE_32, main = 'SE Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_SE_33)
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 25 31.44 32.6     17   28.86 25.2   0 100   100 0.63    -1.15 6.52
range(CC$Risk_SE_33, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_SE_33, main = 'SE Risk Item #2: "This is frightening."')

#WE Risk Descriptives 

#WE Risk Scale
CC$Risk_Score_WE <- rowMeans(CC [, c("Risk_WE_32", "Risk_WE_33")], na.rm=TRUE)

#WE Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_WE_32, CC$Risk_WE_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_WE_32, CC$Risk_WE_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.79      0.79    0.66      0.66 3.8 0.041   36 25     0.66
## 
##  lower alpha upper     95% confidence boundaries
## 0.71 0.79 0.87 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_WE_32      0.56      0.66    0.43      0.66 1.9       NA     0  0.66
## CC.Risk_WE_33      0.77      0.66    0.43      0.66 1.9       NA     0  0.66
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_WE_32 26  0.89  0.91  0.74   0.66   35 25
## CC.Risk_WE_33 26  0.92  0.91  0.74   0.66   37 30
hist(CC$Risk_Score_WE, main = 'WE Risk Scale Score')

#WE Individual Risk Items
psych::describe(CC$Risk_WE_32)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 26 34.54 25.39     33   33.95 37.06   0  77    77    0    -1.51 4.98
range(CC$Risk_WE_32, na.rm=TRUE)
## [1]  0 77
hist(CC$Risk_WE_32, main = 'WE Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_WE_33)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 26 36.77 29.96     34   34.91 31.88   0  97    97 0.46    -1.06 5.88
range(CC$Risk_WE_33, na.rm=TRUE)
## [1]  0 97
hist(CC$Risk_WE_33, main = 'WE Risk Item #2: "This is frightening."')

#Naturalness Descriptives

Naturalness perception was measured for 3 items on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’). Naturalness Item 1: This is natural. Naturalness Item 2: This involves humans altering naturally occurring processes. Naturalness Item 3: This relies on science-based technology.

#AF/SCS Naturalness Descriptives 

#Reverse Code Items 2 and 3

CC$Naturalness_1_AFSCS<- CC$Naturalness_AFSCS_30
CC$Naturalness_2R_AFSCS <- (102-CC$Naturalness_AFSCS_31)
CC$Naturalness_3R_AFSCS <- (102-CC$Naturalness_AFSCS_35)

#AFSCS Naturalness Scale
CC$Naturalness_Score_AFSCS <- rowMeans(CC [, c("Naturalness_1_AFSCS", "Naturalness_2R_AFSCS", "Naturalness_3R_AFSCS")], na.rm=TRUE)
CC$Naturalness_Scale_AFSCS <- data.frame(CC$Naturalness_1_AFSCS, CC$Naturalness_2R_AFSCS, CC$Naturalness_3R_AFSCS)

#AFSCS Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_AFSCS, CC$Naturalness_2R_AFSCS, CC$Naturalness_3R_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_AFSCS, CC$Naturalness_2R_AFSCS, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_AFSCS ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_AFSCS, CC$Naturalness_2R_AFSCS, 
##     CC$Naturalness_3R_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##      0.087     0.076    0.12     0.027 0.082 0.15   48 16    0.036
## 
##  lower alpha upper     95% confidence boundaries
## -0.21 0.09 0.39 
## 
##  Reliability if an item is dropped:
##                         raw_alpha std.alpha G6(smc) average_r    S/N alpha se
## CC.Naturalness_1_AFSCS      0.384     0.384   0.238     0.238  0.624     0.12
## CC.Naturalness_2R_AFSCS    -0.480    -0.480  -0.194    -0.194 -0.325     0.29
## CC.Naturalness_3R_AFSCS     0.068     0.069   0.036     0.036  0.074     0.18
##                         var.r  med.r
## CC.Naturalness_1_AFSCS     NA  0.238
## CC.Naturalness_2R_AFSCS    NA -0.194
## CC.Naturalness_3R_AFSCS    NA  0.036
## 
##  Item statistics 
##                          n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_AFSCS  31  0.46  0.47 -0.19 -0.098   61 27
## CC.Naturalness_2R_AFSCS 31  0.73  0.72  0.56  0.217   41 28
## CC.Naturalness_3R_AFSCS 31  0.59  0.59  0.23  0.040   43 27
hist(CC$Naturalness_Score_AFSCS, main = 'AFSCS Naturalness Scale Score')

#Correlation
cor.plot(CC$Naturalness_Scale_AFSCS, labels = c('1','2','3'), main = "Correlation Between AFSCS Naturalness Items")

#Individual AFSCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_AFSCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 60.77 26.62     63   62.36 17.79   0 100   100 -0.42    -0.15 4.78
range(CC$Naturalness_1_AFSCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_AFSCS, main = 'AFSCS Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(CC$Naturalness_AFSCS_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 60.65 28.23     64   62.16 29.65   2 100    98 -0.29    -0.82 5.07
range(CC$NNaturalness_AFSCS_31, na.rm=TRUE)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
## [1]  Inf -Inf
hist(CC$Naturalness_AFSCS_31, main = 'AFSCS Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_AFSCS_35)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 31 59.29 27.27     63   62.56 25.2   0  98    98 -0.92    -0.14 4.9
range(CC$Naturalness_AFSCS_35, na.rm=TRUE)
## [1]  0 98
hist(CC$Naturalness_AFSCS_35, main = 'AFSCS Naturalness Item #3: "This relies on science-based technology."')

#BIOCHAR Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_BIO<- CC$Naturalness_BIO_30
CC$Naturalness_2R_BIO <- abs(CC$Naturalness_BIO_31 -100)
CC$Naturalness_3R_BIO <- abs(CC$Naturalness_BIO_35 -100)

#BIO Naturalness Scale
CC$Naturalness_Score_BIO <- rowMeans(CC [, c("Naturalness_1_BIO", "Naturalness_2R_BIO", "Naturalness_3R_BIO")], na.rm=TRUE)

#BIO Cronbach's alpha for naturalness scale

psych::alpha(data.frame(CC$Naturalness_1_BIO, CC$Naturalness_2R_BIO, CC$Naturalness_3R_BIO))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_BIO, CC$Naturalness_2R_BIO, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_BIO ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Warning in sqrt(Vtc): NaNs produced
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_BIO, CC$Naturalness_2R_BIO, 
##     CC$Naturalness_3R_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##      -0.43     -0.39  -0.072      -0.1 -0.28 0.24   42 11    -0.18
## 
##  lower alpha upper     95% confidence boundaries
## -0.91 -0.43 0.05 
## 
##  Reliability if an item is dropped:
##                       raw_alpha std.alpha G6(smc) average_r   S/N alpha se
## CC.Naturalness_1_BIO       0.42      0.43    0.27      0.27  0.74     0.11
## CC.Naturalness_2R_BIO     -0.44     -0.44   -0.18     -0.18 -0.31     0.28
## CC.Naturalness_3R_BIO     -1.32     -1.32   -0.40     -0.40 -0.57     0.45
##                       var.r med.r
## CC.Naturalness_1_BIO     NA  0.27
## CC.Naturalness_2R_BIO    NA -0.18
## CC.Naturalness_3R_BIO    NA -0.40
## 
##  Item statistics 
##                        n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_BIO  37  0.30  0.27   NaN -0.370   57 23
## CC.Naturalness_2R_BIO 36  0.58  0.57   NaN -0.124   40 23
## CC.Naturalness_3R_BIO 37  0.67  0.71   NaN  0.088   29 20
hist(CC$Naturalness_Score_BIO, main = 'BIO Naturalness Scale Score')

#Individual BIO Naturalness Items
#Item 1 (Not reverse coded)
psych::describe(CC$Naturalness_1_BIO)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 37 56.54 22.61     61   56.58 17.79   9 100    91 -0.19     -0.7 3.72
range(CC$Naturalness_1_BIO, na.rm=TRUE)
## [1]   9 100
hist(CC$Naturalness_1_BIO, main = 'BIO Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(CC$Naturalness_BIO_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 59.67 23.25     62   60.73 20.76  11  97    86 -0.36    -0.76 3.87
range(CC$Naturalness_BIO_31, na.rm=TRUE)
## [1] 11 97
hist(CC$Naturalness_BIO_31, main = 'BIO Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_BIO_35)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 37 70.65 20.47     71      72 22.24  15 100    85 -0.53    -0.11 3.36
range(CC$Naturalness_BIO_35, na.rm=TRUE)
## [1]  15 100
hist(CC$Naturalness_BIO_35, main = 'BIO Naturalness Item #3: "This relies on science-based technology."')

#BECCS Naturalness Descriptives

#Reverse Code Items 2 and 3
CC$Naturalness_1_BECCS<- CC$Naturalness_BECCS_30
CC$Naturalness_2R_BECCS <- abs(CC$Naturalness_BECCS_31 -100)
CC$Naturalness_3R_BECCS <- abs(CC$Naturalness_BECCS_35 -100)

#BECCS Naturalness Scale
CC$Naturalness_Score_BECCS <- rowMeans(CC [, c("Naturalness_1_BECCS", "Naturalness_2R_BECCS", "Naturalness_3R_BECCS")], na.rm=TRUE)

#BECCS Cronbach's alpha for naturalness scale

psych::alpha(data.frame(CC$Naturalness_1_BECCS, CC$Naturalness_2R_BECCS, CC$Naturalness_3R_BECCS))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_BECCS, CC$Naturalness_2R_BECCS, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_BECCS ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_BECCS, CC$Naturalness_2R_BECCS, 
##     CC$Naturalness_3R_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r    S/N  ase mean sd median_r
##     -0.087    -0.067    0.21    -0.021 -0.063 0.18   41 15   -0.084
## 
##  lower alpha upper     95% confidence boundaries
## -0.45 -0.09 0.27 
## 
##  Reliability if an item is dropped:
##                         raw_alpha std.alpha G6(smc) average_r   S/N alpha se
## CC.Naturalness_1_BECCS       0.61      0.61   0.441     0.441  1.58    0.076
## CC.Naturalness_2R_BECCS     -1.42     -1.46  -0.422    -0.422 -0.59    0.465
## CC.Naturalness_3R_BECCS     -0.18     -0.18  -0.084    -0.084 -0.15    0.231
##                         var.r  med.r
## CC.Naturalness_1_BECCS     NA  0.441
## CC.Naturalness_2R_BECCS    NA -0.422
## CC.Naturalness_3R_BECCS    NA -0.084
## 
##  Item statistics 
##                          n raw.r std.r r.cor  r.drop mean sd
## CC.Naturalness_1_BECCS  36  0.36  0.29 -0.40 -0.2825   51 29
## CC.Naturalness_2R_BECCS 35  0.80  0.80  0.72  0.2882   39 28
## CC.Naturalness_3R_BECCS 36  0.54  0.60  0.46  0.0079   32 24
hist(CC$Naturalness_Score_BECCS, main = 'BECCS Naturalness Scale Score')

#Individual BECCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_BECCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 50.81 28.51   51.5    51.4 40.77   0 100   100 -0.06    -1.16 4.75
range(CC$Naturalness_1_BECCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_BECCS, main = 'BECCS Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(CC$Naturalness_BECCS_31)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 35 60.97 27.92     69   62.41 25.2   2 100    98 -0.48    -0.89 4.72
range(CC$Naturalness_BECCS_31, na.rm=TRUE)
## [1]   2 100
hist(CC$Naturalness_BECCS_31, main = 'BECCS Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_BECCS_35)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis se
## X1    1 36 67.69 24.02     73   70.13 17.79   0 100   100 -0.91     0.58  4
range(CC$Naturalness_BECCS_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_BECCS_35, main = 'BECCS Naturalness Item #3: "This relies on science-based technology."')

#DACCS Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_DACCS<- CC$Naturalness_DACCS_30
CC$Naturalness_2R_DACCS <- abs(CC$Naturalness_DACCS_31 -100)
CC$Naturalness_3R_DACCS <- abs(CC$Naturalness_DACCS_35 -100)

#DACCS Naturalness Scale
CC$Naturalness_Score_DACCS <- rowMeans(CC [, c("Naturalness_1_DACCS", "Naturalness_2R_DACCS", "Naturalness_3R_DACCS")], na.rm=TRUE)

#DACCS Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_DACCS, CC$Naturalness_2R_DACCS, CC$Naturalness_3R_DACCS))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_DACCS, CC$Naturalness_2R_DACCS, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_3R_DACCS ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_DACCS, CC$Naturalness_2R_DACCS, 
##     CC$Naturalness_3R_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##      0.096      0.11   0.088     0.038 0.12 0.15   34 15   0.0091
## 
##  lower alpha upper     95% confidence boundaries
## -0.2 0.1 0.39 
## 
##  Reliability if an item is dropped:
##                         raw_alpha std.alpha G6(smc) average_r    S/N alpha se
## CC.Naturalness_1_DACCS      0.018     0.018  0.0091    0.0091  0.018     0.19
## CC.Naturalness_2R_DACCS    -0.113    -0.116 -0.0549   -0.0549 -0.104     0.21
## CC.Naturalness_3R_DACCS     0.261     0.275  0.1594    0.1594  0.379     0.14
##                         var.r   med.r
## CC.Naturalness_1_DACCS     NA  0.0091
## CC.Naturalness_2R_DACCS    NA -0.0549
## CC.Naturalness_3R_DACCS    NA  0.1594
## 
##  Item statistics 
##                          n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_DACCS  36  0.71  0.61  0.25  0.064   45 29
## CC.Naturalness_2R_DACCS 36  0.58  0.65  0.36  0.134   27 20
## CC.Naturalness_3R_DACCS 36  0.50  0.53 -0.08 -0.037   30 23
hist(CC$Naturalness_Score_DACCS, main = 'DACCS Naturalness Scale Score')

#Individual DACCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 36 45.08 28.96   48.5   43.93 37.81   0 100   100 0.26    -1.02 4.83
range(CC$Naturalness_1_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_DACCS, main = 'DACCS Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_DACCS_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 73.17 20.43     73   74.47 17.79  29 100    71 -0.28    -0.76 3.41
range(CC$Naturalness_DACCS_31, na.rm=TRUE)
## [1]  29 100
hist(CC$Naturalness_DACCS_31, main = 'DACCS Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_DACCS_35)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 70.08 23.31     69   72.07 18.53   0 100   100 -0.68     0.47 3.89
range(CC$Naturalness_DACCS_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_DACCS_35, main = 'DACCS Naturalness Item #3: "This relies on science-based technology."')

#EW Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_EW<- CC$Naturalness_EW_30
CC$Naturalness_2R_EW <- abs(CC$Naturalness_EW_31 -100)
CC$Naturalness_3R_EW <- abs(CC$Naturalness_EW_35 -100)

#EW Naturalness Scale
CC$Naturalness_Score_EW <- rowMeans(CC [, c("Naturalness_1_EW", "Naturalness_2R_EW", "Naturalness_3R_EW")], na.rm=TRUE)

#EW Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_EW, CC$Naturalness_2R_EW, CC$Naturalness_3R_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_EW, CC$Naturalness_2R_EW, 
##     CC$Naturalness_3R_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.53      0.56    0.61       0.3 1.3 0.084   41 20     0.15
## 
##  lower alpha upper     95% confidence boundaries
## 0.37 0.53 0.7 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## CC.Naturalness_1_EW      0.842     0.842   0.727     0.727 5.321    0.031    NA
## CC.Naturalness_2R_EW     0.018     0.018   0.009     0.009 0.018    0.190    NA
## CC.Naturalness_3R_EW     0.258     0.260   0.150     0.150 0.352    0.144    NA
##                      med.r
## CC.Naturalness_1_EW  0.727
## CC.Naturalness_2R_EW 0.009
## CC.Naturalness_3R_EW 0.150
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_EW  34  0.57  0.53  0.12  0.085   52 30
## CC.Naturalness_2R_EW 34  0.84  0.86  0.84  0.593   39 27
## CC.Naturalness_3R_EW 34  0.77  0.79  0.75  0.454   33 27
hist(CC$Naturalness_Score_EW, main = 'EW Naturalness Scale Score')

#Individual EW Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_EW)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 52.09 30.36   52.5   52.39 36.32   1 100    99 -0.12    -1.15 5.21
range(CC$Naturalness_1_EW, na.rm=TRUE)
## [1]   1 100
hist(CC$Naturalness_1_EW, main = 'EW Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_EW_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 61.15 26.67     66   63.11 19.27   0 100   100 -0.71    -0.22 4.57
range(CC$Naturalness_EW_31, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_EW_31, main = 'EW Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_EW_35)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 67.06 27.08     74   70.21 23.72   0 100   100 -1.01     0.23 4.64
range(CC$Naturalness_EW_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_EW_35, main = 'EW Naturalness Item #3: "This relies on science-based technology."')

#OF Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_OF <- CC$Naturalness_OF_30
CC$Naturalness_2R_OF <- abs(CC$Naturalness_OF_31 -100)
CC$Naturalness_3R_OF <- abs(CC$Naturalness_OF_35 -100)

#OF Naturalness Scale
CC$Naturalness_Score_OF <- rowMeans(CC [, c("Naturalness_1_OF", "Naturalness_2R_OF", "Naturalness_3R_OF")], na.rm=TRUE)

#OF Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_OF, CC$Naturalness_2R_OF, CC$Naturalness_3R_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_OF, CC$Naturalness_2R_OF, 
##     CC$Naturalness_3R_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.52      0.54    0.59      0.28 1.2 0.085   43 20    0.098
## 
##  lower alpha upper     95% confidence boundaries
## 0.36 0.52 0.69 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## CC.Naturalness_1_OF      0.844     0.844   0.730     0.730 5.399    0.031    NA
## CC.Naturalness_2R_OF     0.044     0.044   0.023     0.023 0.046    0.186    NA
## CC.Naturalness_3R_OF     0.178     0.179   0.098     0.098 0.218    0.160    NA
##                      med.r
## CC.Naturalness_1_OF  0.730
## CC.Naturalness_2R_OF 0.023
## CC.Naturalness_3R_OF 0.098
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_OF  31  0.54  0.52 0.081  0.065   46 30
## CC.Naturalness_2R_OF 32  0.83  0.84 0.819  0.560   42 27
## CC.Naturalness_3R_OF 32  0.79  0.81 0.771  0.483   43 28
hist(CC$Naturalness_Score_OF, main = 'OF Naturalness Scale Score')

#Individual OF Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_OF)
##    vars  n  mean    sd median trimmed  mad min max range skew kurtosis   se
## X1    1 31 45.81 29.99     41    44.8 34.1   0 100   100 0.19    -1.14 5.39
range(CC$Naturalness_1_OF, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_OF, main = 'OF Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_OF_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis  se
## X1    1 32 57.69 27.14   63.5   59.46 19.27   0 100   100 -0.63     -0.5 4.8
range(CC$Naturalness_OF_31, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_OF_31, main = 'OF Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_OF_35)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 32 57.38 27.54     65   58.92 21.5   0 100   100 -0.56    -0.83 4.87
range(CC$Naturalness_OF_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_OF_35, main = 'OF Naturalness Item #3: "This relies on science-based technology."')

#BIOFUEL Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_BF<- CC$Naturalness_BF_30
CC$Naturalness_2R_BF <- abs(CC$Naturalness_BF_31 -100)
CC$Naturalness_3R_BF <- abs(CC$Naturalness_BF_35 -100)

#DACCS Naturalness Scale
CC$Naturalness_Score_BF <- rowMeans(CC [, c("Naturalness_1_BF", "Naturalness_2R_BF", "Naturalness_3R_BF")], na.rm=TRUE)

#BF Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_BF, CC$Naturalness_2R_BF, CC$Naturalness_3R_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_BF, CC$Naturalness_2R_BF, 
##     CC$Naturalness_3R_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N   ase mean sd median_r
##       0.39      0.41    0.32      0.19 0.69 0.098   38 18     0.19
## 
##  lower alpha upper     95% confidence boundaries
## 0.2 0.39 0.59 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r
## CC.Naturalness_1_BF       0.25      0.27    0.16      0.16 0.37     0.13    NA
## CC.Naturalness_2R_BF      0.32      0.35    0.21      0.21 0.54     0.12    NA
## CC.Naturalness_3R_BF      0.32      0.32    0.19      0.19 0.48     0.13    NA
##                      med.r
## CC.Naturalness_1_BF   0.16
## CC.Naturalness_2R_BF  0.21
## CC.Naturalness_3R_BF  0.19
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_BF  23  0.74  0.69  0.42   0.26   58 31
## CC.Naturalness_2R_BF 23  0.72  0.66  0.35   0.23   34 31
## CC.Naturalness_3R_BF 23  0.56  0.67  0.37   0.24   20 19
hist(CC$Naturalness_Score_BF, main = 'BF Naturalness Scale Score')

#Individual BF Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_BF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 58.04 30.85     66   59.79 26.69   0 100   100 -0.58    -0.87 6.43
range(CC$Naturalness_1_BF, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_BF, main = 'BF Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_BF_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 65.74 30.64     72   68.58 31.13   2 100    98 -0.64    -0.89 6.39
range(CC$Naturalness_BF_31, na.rm=TRUE)
## [1]   2 100
hist(CC$Naturalness_BF_31, main = 'BF Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_BF_35)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 79.7 19.44     79   82.11 23.72  33 100    67 -0.81    -0.23 4.05
range(CC$Naturalness_BF_35, na.rm=TRUE)
## [1]  33 100
hist(CC$Naturalness_BF_35, main = 'BF Naturalness Item #3: "This relies on science-based technology."')

#NE Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_NE<- CC$Naturalness_NE_30
CC$Naturalness_2R_NE <- abs(CC$Naturalness_NE_31 -100)
CC$Naturalness_3R_NE <- abs(CC$Naturalness_NE_35 -100)

#NE Naturalness Scale
CC$Naturalness_Score_NE <- rowMeans(CC [, c("Naturalness_1_NE", "Naturalness_2R_NE", "Naturalness_3R_NE")], na.rm=TRUE)

#NE Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_NE, CC$Naturalness_2R_NE, CC$Naturalness_3R_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_NE, CC$Naturalness_2R_NE, 
##     CC$Naturalness_3R_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N ase mean sd median_r
##       0.41      0.43     0.4       0.2 0.77 0.1   38 17     0.13
## 
##  lower alpha upper     95% confidence boundaries
## 0.21 0.41 0.61 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## CC.Naturalness_1_NE      0.624     0.624   0.454     0.454 1.661    0.073    NA
## CC.Naturalness_2R_NE     0.048     0.048   0.025     0.025 0.051    0.182    NA
## CC.Naturalness_3R_NE     0.233     0.237   0.134     0.134 0.310    0.147    NA
##                      med.r
## CC.Naturalness_1_NE  0.454
## CC.Naturalness_2R_NE 0.025
## CC.Naturalness_3R_NE 0.134
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_NE  29  0.63  0.56  0.14  0.093   47 29
## CC.Naturalness_2R_NE 29  0.74  0.77  0.63  0.387   37 24
## CC.Naturalness_3R_NE 29  0.68  0.72  0.53  0.290   30 24
hist(CC$Naturalness_Score_NE, main = 'NE Naturalness Scale Score')

#Individual DACCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_NE)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 29 47.38 28.96     43   46.68 35.58   4 100    96 0.22    -1.23 5.38
range(CC$Naturalness_1_NE, na.rm=TRUE)
## [1]   4 100
hist(CC$Naturalness_1_NE, main = 'NE Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_DACCS_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 73.17 20.43     73   74.47 17.79  29 100    71 -0.28    -0.76 3.41
range(CC$Naturalness_NE_31, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_NE_31, main = 'NE Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_NE_35)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 70.38 23.82     74    72.8 20.76   1 100    99 -1.13     1.02 4.42
range(CC$Naturalness_NE_35, na.rm=TRUE)
## [1]   1 100
hist(CC$Naturalness_NE_35, main = 'NE Naturalness Item #3: "This relies on science-based technology."')

#SE Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_SE<- CC$Naturalness_SE_30
CC$Naturalness_2R_SE <- abs(CC$Naturalness_SE_31 -100)
CC$Naturalness_3R_SE <- abs(CC$Naturalness_SE_35 -100)

#SE Naturalness Scale
CC$Naturalness_Score_SE <- rowMeans(CC [, c("Naturalness_1_SE", "Naturalness_2R_SE", "Naturalness_3R_SE")], na.rm=TRUE)

#SE Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_SE, CC$Naturalness_2R_SE, CC$Naturalness_3R_SE))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_SE, CC$Naturalness_2R_SE, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_SE ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_SE, CC$Naturalness_2R_SE, 
##     CC$Naturalness_3R_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##       -0.1     -0.16   0.015    -0.048 -0.14 0.18   48 17    0.034
## 
##  lower alpha upper     95% confidence boundaries
## -0.46 -0.1 0.25 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r    S/N alpha se
## CC.Naturalness_1_SE      0.294     0.294   0.172     0.172  0.416     0.14
## CC.Naturalness_2R_SE    -1.061    -1.079  -0.350    -0.350 -0.519     0.40
## CC.Naturalness_3R_SE     0.066     0.067   0.034     0.034  0.071     0.18
##                      var.r  med.r
## CC.Naturalness_1_SE     NA  0.172
## CC.Naturalness_2R_SE    NA -0.350
## CC.Naturalness_3R_SE    NA  0.034
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_SE  25  0.34  0.42  -0.9  -0.20   70 27
## CC.Naturalness_2R_SE 25  0.76  0.73   1.2   0.19   45 33
## CC.Naturalness_3R_SE 25  0.54  0.50  -0.1  -0.09   30 31
hist(CC$Naturalness_Score_SE, main = 'SE Naturalness Scale Score')

#Individual DACCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_SE)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 25 69.64 27.09     73   72.43 25.2   0 100   100 -0.88    -0.03 5.42
range(CC$Naturalness_1_SE, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_SE, main = 'SE Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_SE_31)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 25 55.4 32.68     57   56.33 44.48   1 100    99 -0.07    -1.41 6.54
range(CC$Naturalness_SE_31, na.rm=TRUE)
## [1]   1 100
hist(CC$Naturalness_SE_31, main = 'SE Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_SE_35)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 25 69.6 31.31     72   73.33 32.62   0 100   100 -0.89    -0.26 6.26
range(CC$Naturalness_SE_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_SE_35, main = 'SE Naturalness Item #3: "This relies on science-based technology."')

#WE Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_WE<- CC$Naturalness_WE_30
CC$Naturalness_2R_WE <- abs(CC$Naturalness_WE_31 -100)
CC$Naturalness_3R_WE <- abs(CC$Naturalness_WE_35 -100)

#WE Naturalness Scale
CC$Naturalness_Score_WE <- rowMeans(CC [, c("Naturalness_1_WE", "Naturalness_2R_WE", "Naturalness_3R_WE")], na.rm=TRUE)

#WE Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_WE, CC$Naturalness_2R_WE, CC$Naturalness_3R_WE))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_WE, CC$Naturalness_2R_WE, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_3R_WE ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_WE, CC$Naturalness_2R_WE, 
##     CC$Naturalness_3R_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##       -1.4      -1.2    0.03     -0.23 -0.55 0.38   53 12    -0.22
## 
##  lower alpha upper     95% confidence boundaries
## -2.12 -1.37 -0.62 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## CC.Naturalness_1_WE      -0.56     -0.56   -0.22     -0.22 -0.36    0.303    NA
## CC.Naturalness_2R_WE     -7.58     -7.70   -0.79     -0.79 -0.89    1.659    NA
## CC.Naturalness_3R_WE      0.50      0.50    0.33      0.33  1.00    0.097    NA
##                      med.r
## CC.Naturalness_1_WE  -0.22
## CC.Naturalness_2R_WE -0.79
## CC.Naturalness_3R_WE  0.33
## 
##  Item statistics 
##                       n  raw.r   std.r r.cor r.drop mean sd
## CC.Naturalness_1_WE  26  0.477  0.4211  0.89  -0.40   61 31
## CC.Naturalness_2R_WE 26  0.853  0.8700  1.05   0.21   57 27
## CC.Naturalness_3R_WE 26 -0.052 -0.0097 -1.72  -0.65   42 29
hist(CC$Naturalness_Score_WE, main = 'WE Naturalness Scale Score')

#Individual WE Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_WE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 26 60.92 31.01   64.5   62.82 29.65   0 100   100 -0.51    -0.94 6.08
range(CC$Naturalness_1_WE, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_WE, main = 'WE Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_WE_31)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 26 42.96 26.7   51.5   42.64 30.39   0 100   100 -0.01    -0.93 5.24
range(CC$Naturalness_WE_31, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_WE_31, main = 'WE Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_WE_35)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 26 58.38 28.58   67.5   59.91 23.72   0 100   100 -0.6    -0.66 5.61
range(CC$Naturalness_WE_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_WE_35, main = 'WE Naturalness Item #3: "This relies on science-based technology."')

#Benefit

#Perceived benefit of climate methods was measured with 1 item on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#Benefit Item 1: This is likely to lead to achieving carbon neutral climate goals.

#AF/SCS Benefit Descriptives 
CC$Benefit_AFSCS <- CC$Ben_AFSCS_18

psych::describe(CC$Benefit_AFSCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 63.16 25.36     65   65.28 19.27   0 100   100 -0.76     0.29 4.55
range(CC$Benefit_AFSCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_AFSCS, main = 'AFSCS Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#BIO Benefit Descriptives 

CC$Benefit_BIO <- CC$Ben_BIO_18

psych::describe(CC$Benefit_BIO)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 37 62.14 25.77     66   63.81 22.24   3 100    97 -0.62    -0.44 4.24
range(CC$Benefit_BIO, na.rm=TRUE)
## [1]   3 100
hist(CC$Benefit_BIO, main = 'BIO Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#BECCS Benefit Descriptives

CC$Benefit_BECCS <- CC$Ben_BECCS_18

psych::describe(CC$Benefit_BECCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 58.85 21.85     63   60.32 18.53   8  97    89 -0.56    -0.16 3.75
range(CC$Benefit_BECCS, na.rm=TRUE)
## [1]  8 97
hist(CC$Benefit_BECCS, main = 'BECCS Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#DACCS Benefit Descriptives 

CC$Benefit_DACCS <- CC$Ben_DACCS_18

psych::describe(CC$Benefit_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 68.44 23.25     69   70.47 17.79   0 100   100 -0.66     0.52 3.88
range(CC$Benefit_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_DACCS, main = 'DACCS Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#EW Benefit Descriptives 

CC$Benefit_EW <- CC$Ben_EW_18

psych::describe(CC$Benefit_EW)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 62.62 26.3     66    64.5 22.24   0 100   100 -0.54    -0.38 4.51
range(CC$Benefit_EW, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_EW, main = 'EW Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#OF Benefit Descriptives 

CC$Benefit_EW <- CC$Ben_EW_18

psych::describe(CC$Benefit_EW)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 62.62 26.3     66    64.5 22.24   0 100   100 -0.54    -0.38 4.51
range(CC$Benefit_EW, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_EW, main = 'EW Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#BF Benefit Descriptives 

CC$Benefit_BF <- CC$Ben_BF_18

psych::describe(CC$Benefit_BF)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 23 72.65 21.27     70   73.74 25.2  35 100    65 -0.16    -1.19 4.44
range(CC$Benefit_BF, na.rm=TRUE)
## [1]  35 100
hist(CC$Benefit_BF, main = 'BF Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#NE Benefit Descriptives 

CC$Benefit_NE <- CC$Ben_NE_18

psych::describe(CC$Benefit_NE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 66.93 19.82     70   68.24 22.24  20 100    80 -0.56    -0.15 3.68
range(CC$Benefit_NE, na.rm=TRUE)
## [1]  20 100
hist(CC$Benefit_NE, main = 'NE Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#SE Benefit Descriptives 

CC$Benefit_SE <- CC$Ben_SE_18

psych::describe(CC$Benefit_SE)
##    vars  n mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 25 66.6 23.68     70   68.24 25.2   0 100   100 -0.62     0.49 4.74
range(CC$Benefit_SE, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_SE, main = 'SE Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#WE Benefit Descriptives 

CC$Benefit_WE <- CC$Ben_WE_18

psych::describe(CC$Benefit_WE)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 25 61.92 23.4     65   63.33 14.83   0 100   100 -0.72     0.35 4.68
range(CC$Benefit_WE, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_WE, main = 'WE Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#Behavioral Intent

#Behavioral intent was measured with 2 items on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#Behavioral Intent Item 1: I would personally support non-government entities deploying these on a large scale. #Behavioral Intent Item 2: I would personally support spending government tax dollars to deploy these on a large scale.

#AF/SCS Behavioral Intent Descriptives 

#Item 1
CC$BehavInt1_AFSCS <- CC$BI_AFSCS_18

psych::describe(CC$BehavInt1_AFSCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 60.71 29.59     57   63.08 29.65   0 100   100 -0.46    -0.65 5.31
range(CC$BehavInt1_AFSCS, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_AFSCS, main = 'AFSCS Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_AFSCS <- CC$BI_AFSCS_19

psych::describe(CC$BehavInt2_AFSCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 55.35 29.72     56   56.76 31.13   0 100   100 -0.31    -0.84 5.34
range(CC$BehavInt2_AFSCS, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt2_AFSCS, main = 'AFSCS Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#AF/SCS Behavioral Intent Scale
CC$BI_Score_AFSCS <- rowMeans(CC [, c("BehavInt1_AFSCS", "BehavInt2_AFSCS")], na.rm=TRUE)

#AF/SCS Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_AFSCS, CC$BehavInt2_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_AFSCS, CC$BehavInt2_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.9       0.9    0.83      0.83 9.5 0.019   58 28     0.83
## 
##  lower alpha upper     95% confidence boundaries
## 0.87 0.9 0.94 
## 
##  Reliability if an item is dropped:
##                    raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.BehavInt1_AFSCS      0.82      0.83    0.68      0.83 4.7       NA     0
## CC.BehavInt2_AFSCS      0.83      0.83    0.68      0.83 4.7       NA     0
##                    med.r
## CC.BehavInt1_AFSCS  0.83
## CC.BehavInt2_AFSCS  0.83
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_AFSCS 31  0.96  0.96  0.87   0.83   61 30
## CC.BehavInt2_AFSCS 31  0.96  0.96  0.87   0.83   55 30
hist(CC$BI_Score_AFSCS, main = 'AFSCS Behavioral Intent Scale Score')

#BIO Behavioral Intent Descriptives 

#Item 1
CC$BehavInt1_BIO <- CC$BI_BIO_18

psych::describe(CC$BehavInt1_BIO)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 36 66.14 24.18   68.5   67.77 25.2  11 100    89 -0.52     -0.7 4.03
range(CC$BehavInt1_BIO, na.rm=TRUE)
## [1]  11 100
hist(CC$BehavInt1_BIO, main = 'BIO Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_BIO <- CC$BI_BIO_19

psych::describe(CC$BehavInt2_BIO)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 37 60.35 26.04     64   60.97 25.2  15 100    85 -0.27    -1.05 4.28
range(CC$BehavInt2_BIO, na.rm=TRUE)
## [1]  15 100
hist(CC$BehavInt2_BIO, main = 'BIO Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#BIO Behavioral Intent Scale
CC$BI_Score_BIO <- rowMeans(CC [, c("BehavInt1_BIO", "BehavInt2_BIO")], na.rm=TRUE)

#BIO Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_BIO, CC$BehavInt2_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_BIO, CC$BehavInt2_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.85      0.85    0.74      0.74 5.6 0.03   63 23     0.74
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.85 0.9 
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_BIO      0.68      0.74    0.54      0.74 2.8       NA     0  0.74
## CC.BehavInt2_BIO      0.79      0.74    0.54      0.74 2.8       NA     0  0.74
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_BIO 36  0.92  0.93   0.8   0.74   66 24
## CC.BehavInt2_BIO 37  0.93  0.93   0.8   0.74   60 26
hist(CC$BI_Score_BIO, main = 'BIO Naturalness Scale Score')

#BECCS Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_BECCS <- CC$BI_BACCS_18

psych::describe(CC$BehavInt1_BECCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 35 59.46 25.12     61   60.62 26.69   7 100    93 -0.47    -0.71 4.25
range(CC$BehavInt1_BECCS, na.rm=TRUE)
## [1]   7 100
hist(CC$BehavInt1_BECCS, main = 'BECCS Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_BECCS <- CC$BI_BACCS_19

psych::describe(CC$BehavInt2_BECCS)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 35 54.94 31.63     65    55.9 34.1   0 100   100 -0.33    -1.32 5.35
range(CC$BehavInt2_BECCS, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt2_BECCS, main = 'BECCS Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#BIO Behavioral Intent Scale
CC$BI_Score_BECCS <- rowMeans(CC [, c("BehavInt1_BECCS", "BehavInt2_BECCS")], na.rm=TRUE)

#BIO Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_BECCS, CC$BehavInt2_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_BECCS, CC$BehavInt2_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.71      0.72    0.56      0.56 2.6 0.055   57 25     0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.6 0.71 0.82 
## 
##  Reliability if an item is dropped:
##                    raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.BehavInt1_BECCS      0.45      0.56    0.32      0.56 1.3       NA     0
## CC.BehavInt2_BECCS      0.71      0.56    0.32      0.56 1.3       NA     0
##                    med.r
## CC.BehavInt1_BECCS  0.56
## CC.BehavInt2_BECCS  0.56
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_BECCS 35  0.85  0.88  0.66   0.56   59 25
## CC.BehavInt2_BECCS 35  0.91  0.88  0.66   0.56   55 32
hist(CC$BI_Score_BECCS, main = 'BECCS Naturalness Scale Score')

#DACCS Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_DACCS <- CC$BI_DACCS_18

psych::describe(CC$BehavInt1_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 58.33 25.28   59.5   59.07 22.24   0 100   100 -0.37    -0.43 4.21
range(CC$BehavInt1_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_DACCS, main = 'DACCS Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_DACCS <- CC$BI_DACCS_19

psych::describe(CC$BehavInt2_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 51.14 27.16   53.5   51.83 30.39   0 100   100 -0.37    -0.63 4.53
range(CC$BehavInt2_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt2_DACCS, main = 'DACCS Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#DACCS Behavioral Intent Scale
CC$BI_Score_DACCS <- rowMeans(CC [, c("BehavInt1_DACCS", "BehavInt2_DACCS")], na.rm=TRUE)

#DACCS Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_DACCS, CC$BehavInt2_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_DACCS, CC$BehavInt2_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.64      0.65    0.48      0.48 1.8 0.069   55 23     0.48
## 
##  lower alpha upper     95% confidence boundaries
## 0.51 0.64 0.78 
## 
##  Reliability if an item is dropped:
##                    raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r
## CC.BehavInt1_DACCS      0.44      0.48    0.23      0.48 0.91       NA     0
## CC.BehavInt2_DACCS      0.51      0.48    0.23      0.48 0.91       NA     0
##                    med.r
## CC.BehavInt1_DACCS  0.48
## CC.BehavInt2_DACCS  0.48
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_DACCS 36  0.85  0.86  0.59   0.48   58 25
## CC.BehavInt2_DACCS 36  0.87  0.86  0.59   0.48   51 27
hist(CC$BI_Score_DACCS, main = 'DACCS Naturalness Scale Score')

#EW Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_EW <- CC$BI_EW_18

psych::describe(CC$BehavInt1_EW)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 67.21 27.63     73   70.46 25.95   2 100    98 -0.85    -0.02 4.74
range(CC$BehavInt1_EW, na.rm=TRUE)
## [1]   2 100
hist(CC$BehavInt1_EW, main = 'EW Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_EW <- CC$BI_EW_19

psych::describe(CC$BehavInt2_EW)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 59.24 30.05   68.5   60.71 27.43   2 100    98 -0.46    -0.97 5.15
range(CC$BehavInt2_EW, na.rm=TRUE)
## [1]   2 100
hist(CC$BehavInt2_EW, main = 'EW Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#EW Behavioral Intent Scale
CC$BI_Score_EW <- rowMeans(CC [, c("BehavInt1_EW", "BehavInt2_EW")], na.rm=TRUE)

#EW Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_EW, CC$BehavInt2_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_EW, CC$BehavInt2_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.82     0.7       0.7 4.7 0.034   63 27      0.7
## 
##  lower alpha upper     95% confidence boundaries
## 0.75 0.82 0.89 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_EW      0.64       0.7    0.49       0.7 2.3       NA     0   0.7
## CC.BehavInt2_EW      0.76       0.7    0.49       0.7 2.3       NA     0   0.7
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_EW 34  0.92  0.92  0.77    0.7   67 28
## CC.BehavInt2_EW 34  0.93  0.92  0.77    0.7   59 30
hist(CC$BI_Score_EW, main = 'EW Naturalness Scale Score')

#OF Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_OF <- CC$BI_OF_18

psych::describe(CC$BehavInt1_OF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 47.16 22.58     48   47.92 28.17   0  84    84 -0.23    -1.07 4.06
range(CC$BehavInt1_OF, na.rm=TRUE)
## [1]  0 84
hist(CC$BehavInt1_OF, main = 'OF Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_OF <- CC$BI_OF_19

psych::describe(CC$BehavInt2_OF)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 31 47.42 22.97     51   48.68 25.2   0  86    86 -0.39    -0.75 4.13
range(CC$BehavInt2_OF, na.rm=TRUE)
## [1]  0 86
hist(CC$BehavInt2_OF, main = 'OF Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#OF Behavioral Intent Scale
CC$BI_Score_OF <- rowMeans(CC [, c("BehavInt1_OF", "BehavInt2_OF")], na.rm=TRUE)

#OF Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_OF, CC$BehavInt2_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_OF, CC$BehavInt2_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.91      0.91    0.84      0.84  10 0.017   47 22     0.84
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.91 0.94 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_OF      0.82      0.84     0.7      0.84 5.1       NA     0  0.84
## CC.BehavInt2_OF      0.85      0.84     0.7      0.84 5.1       NA     0  0.84
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_OF 31  0.96  0.96  0.88   0.84   47 23
## CC.BehavInt2_OF 31  0.96  0.96  0.88   0.84   47 23
hist(CC$BI_Score_OF, main = 'OF Naturalness Scale Score')

#BF Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_BF <- CC$BI_BF_18

psych::describe(CC$BehavInt1_BF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 66.61 23.76     70   68.37 26.69   0 100   100 -0.84     0.51 4.95
range(CC$BehavInt1_BF, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_BF, main = 'BF Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_BF <- CC$BI_BF_19

psych::describe(CC$BehavInt2_BF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 57.39 26.28     63   59.84 28.17   0  95    95 -0.65     -0.4 5.48
range(CC$BehavInt2_BF, na.rm=TRUE)
## [1]  0 95
hist(CC$BehavInt2_BF, main = 'BF Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#BIO Behavioral Intent Scale
CC$BI_Score_BF <- rowMeans(CC [, c("BehavInt1_BF", "BehavInt2_BF")], na.rm=TRUE)

#BIO Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_BF, CC$BehavInt2_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_BF, CC$BehavInt2_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.44      0.44    0.28      0.28 0.79 0.11   62 20     0.28
## 
##  lower alpha upper     95% confidence boundaries
## 0.23 0.44 0.65 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_BF      0.26      0.28    0.08      0.28 0.4       NA     0  0.28
## CC.BehavInt2_BF      0.31      0.28    0.08      0.28 0.4       NA     0  0.28
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_BF 23  0.78   0.8  0.43   0.28   67 24
## CC.BehavInt2_BF 23  0.82   0.8  0.43   0.28   57 26
hist(CC$BI_Score_BF, main = 'BF Naturalness Scale Score')

#NE Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_NE <- CC$BI_NE_18

psych::describe(CC$BehavInt1_NE)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 29 56.07 28.34     62   56.88 25.2   0 100   100 -0.47    -0.98 5.26
range(CC$BehavInt1_NE, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_NE, main = 'NE Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_NE <- CC$BI_NE_19

psych::describe(CC$BehavInt2_NE)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 49.69 31.1     51    49.8 35.58   0 100   100 -0.05    -1.33 5.77
range(CC$BehavInt2_NE, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt2_NE, main = 'NE Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#NE Behavioral Intent Scale
CC$BI_Score_NE <- rowMeans(CC [, c("BehavInt1_NE", "BehavInt2_NE")], na.rm=TRUE)

#NE Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_NE, CC$BehavInt2_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_NE, CC$BehavInt2_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##        0.9       0.9    0.82      0.82 8.9 0.02   53 28     0.82
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.9 0.94 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_NE      0.74      0.82    0.67      0.82 4.5       NA     0  0.82
## CC.BehavInt2_NE      0.90      0.82    0.67      0.82 4.5       NA     0  0.82
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_NE 29  0.95  0.95  0.86   0.82   56 28
## CC.BehavInt2_NE 29  0.96  0.95  0.86   0.82   50 31
hist(CC$BI_Score_NE, main = 'NE Naturalness Scale Score')

#SE Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_SE <- CC$BI_SE_18

psych::describe(CC$BehavInt1_SE)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 25 68.2 25.14     72   71.62 13.34   0 100   100 -1.28     1.66 5.03
range(CC$BehavInt1_SE, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_SE, main = 'SE Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_SE <- CC$BI_SE_19

psych::describe(CC$BehavInt2_SE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 25 65.24 26.81     68    67.9 17.79   2 100    98 -0.88     0.23 5.36
range(CC$BehavInt2_SE, na.rm=TRUE)
## [1]   2 100
hist(CC$BehavInt2_SE, main = 'SE Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#SE Behavioral Intent Scale
CC$BI_Score_SE <- rowMeans(CC [, c("BehavInt1_SE", "BehavInt2_SE")], na.rm=TRUE)

#SE Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_SE, CC$BehavInt2_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_SE, CC$BehavInt2_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.92      0.92    0.85      0.85  11 0.016   67 25     0.85
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.92 0.95 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_SE      0.79      0.85    0.72      0.85 5.5       NA     0  0.85
## CC.BehavInt2_SE      0.90      0.85    0.72      0.85 5.5       NA     0  0.85
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_SE 25  0.96  0.96  0.88   0.85   68 25
## CC.BehavInt2_SE 25  0.96  0.96  0.88   0.85   65 27
hist(CC$BI_Score_SE, main = 'SE Naturalness Scale Score')

#WE Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_WE <- CC$BI_WI_18

psych::describe(CC$BehavInt1_WE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 26 59.85 29.68   62.5   61.64 34.84   0 100   100 -0.45    -0.83 5.82
range(CC$BehavInt1_WE, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_WE, main = 'WE Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_WE <- CC$BI_WI_19

psych::describe(CC$BehavInt2_WE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 26 53.27 27.09   52.5   54.27 34.84   0  97    97 -0.26    -0.86 5.31
range(CC$BehavInt2_WE, na.rm=TRUE)
## [1]  0 97
hist(CC$BehavInt2_WE, main = 'WE Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#WE Behavioral Intent Scale
CC$BI_Score_WE <- rowMeans(CC [, c("BehavInt1_WE", "BehavInt2_WE")], na.rm=TRUE)

#WE Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_WE, CC$BehavInt2_WE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_WE, CC$BehavInt2_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.91      0.91    0.84      0.84  10 0.017   57 27     0.84
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.91 0.94 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_WE      0.92      0.84    0.71      0.84 5.2       NA     0  0.84
## CC.BehavInt2_WE      0.77      0.84    0.71      0.84 5.2       NA     0  0.84
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_WE 26  0.96  0.96  0.88   0.84   60 30
## CC.BehavInt2_WE 26  0.96  0.96  0.88   0.84   53 27
hist(CC$BI_Score_WE, main = 'WE Naturalness Scale Score')

#Environmentalism Scale

#Environmentalism was measured on with 3 items a 1-00 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#ENV Item 1: Protecting the environment, preserving nature #ENV Item 2: Unity with nature #ENV Item 3: Respecting the earth, harmony with other species

#Environmentalism Item Definitions
CC$ENV_1 <- as.numeric(as.character(CC$Environ_GP_1))
CC$ENV_2 <- as.numeric(as.character(CC$Environ_GP_2))
CC$ENV_3 <- as.numeric(as.character(CC$Environ_GP_3))

#Environmentalism Descriptives 
psych::describe(CC$ENV_1)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 83.16 1.76     83   83.36 2.97  79  85     6 -0.62    -0.46 0.17
range(CC$ENV_1, na.rm=TRUE)
## [1] 79 85
psych::describe(CC$ENV_2)
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103   83 1.77     83   83.14 2.97  79  85     6 -0.43     -0.8 0.17
range(CC$ENV_2, na.rm=TRUE)
## [1] 79 85
psych::describe(CC$ENV_3)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 83.09 1.79     83   83.29 2.97  79  85     6 -0.62    -0.55 0.18
range(CC$ENV_3, na.rm=TRUE)
## [1] 79 85
#Environmentalism Scale Histograms by Item 
hist(CC$ENV_1, main = 'ENV #1: Protecting the environment, preserving nature')

hist(CC$ENV_2, main = 'ENV #2: Unity with nature')

hist(CC$ENV_3, main = 'ENV #3: Respecting the earth, harmony with other species')

#Cronbach's Alpha
CC$ENVS_Score <- rowMeans(CC [, c("ENV_1", "ENV_2", "ENV_3")], na.rm=TRUE)
CC$ENV_Scale <- data.frame(CC$ENV_1, CC$ENV_2, CC$ENV_3)
psych::alpha(CC$ENV_Scale)
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$ENV_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean  sd median_r
##       0.94      0.94    0.92      0.84  16 0.01   83 1.7     0.85
## 
##  lower alpha upper     95% confidence boundaries
## 0.92 0.94 0.96 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.ENV_1      0.92      0.92    0.85      0.85 11.2    0.016    NA  0.85
## CC.ENV_2      0.90      0.90    0.82      0.82  8.9    0.020    NA  0.82
## CC.ENV_3      0.93      0.93    0.86      0.86 12.5    0.014    NA  0.86
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## CC.ENV_1 103  0.94  0.94  0.90   0.87   83 1.8
## CC.ENV_2 103  0.96  0.96  0.93   0.90   83 1.8
## CC.ENV_3 103  0.94  0.94  0.89   0.86   83 1.8
## 
## Non missing response frequency for each item
##            79   80   81   82   83   84   85 miss
## CC.ENV_1 0.05 0.04 0.07 0.18 0.23 0.07 0.36 0.02
## CC.ENV_2 0.05 0.02 0.15 0.20 0.15 0.13 0.31 0.02
## CC.ENV_3 0.06 0.03 0.10 0.18 0.17 0.15 0.32 0.02
#Correlation ENV Scale
cor.plot(CC$ENV_Scale, labels = c('1','2','3'), main = "Correlations Between Environmentalism Scale Items")

#Aversion to Tampering with Nature Scale

#Aversion to tampering with nature was measured on with 5 items a 1-00 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#ATNS Item 1: People who push for technological fixes to environmental problems are underestimating the risks. #ATNS Item 2: People who say we shouldn’t tamper with nature are just being naïve. #ATNS Item 3: Human beings have no right to meddle with the natural environment. #ATNS Item 4: I would prefer to live in a world where humans leave nature alone. #ATNS Item 5: Altering nature will be our downfall as a species.

#Aversion to Tampering with Nature Item Definitions
CC$ATNS_1 <- as.numeric(as.character(CC$ATNS_1_1))
CC$ATNS_2 <- as.numeric(as.character(CC$ATNS_1_2))
CC$ATNS_3 <- as.numeric(as.character(CC$ATNS_1_3))
CC$ATNS_4 <- as.numeric(as.character(CC$ATNS_1_4))
CC$ATNS_5 <- as.numeric(as.character(CC$ATNS_1_5))

#Recode item 2
CC$ATNS_2R <- (102- CC$ATNS_2)

#Aversion to Tampering with Nature Scale Descriptives (No reversed codes)
psych::describe(CC$ATNS_1)
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 37.5 1.54     37   37.53 1.48  34  40     6 -0.09    -0.44 0.15
range(CC$ATNS_1, na.rm=TRUE)
## [1] 34 40
psych::describe(CC$ATNS_2)
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 103 36.66 1.91     37   36.58 1.48  34  40     6 0.15    -0.96 0.19
range(CC$ATNS_2, na.rm=TRUE)
## [1] 34 40
psych::describe(CC$ATNS_3)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 37.64 1.71     38   37.76 1.48  34  40     6 -0.42    -0.61 0.17
range(CC$ATNS_3, na.rm=TRUE)
## [1] 34 40
psych::describe(CC$ATNS_4)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 37.89 1.74     38   38.05 1.48  34  40     6 -0.53    -0.51 0.17
range(CC$ATNS_4, na.rm=TRUE)
## [1] 34 40
psych::describe(CC$ATNS_5)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 37.73 1.74     38   37.86 1.48  34  40     6 -0.33    -0.66 0.17
range(CC$ATNS_5, na.rm=TRUE)
## [1] 34 40
#Aversion to Tampering with Nature Scale Histograms by Item (No reversed codes)
hist(CC$ATNS_1, main = 'ATNS #1: People who push for technological fixes to environmental problems are underestimating the risks."')

hist(CC$ATNS_2, main = 'ATNS #2: People who say we shouldn’t tamper with nature are just being naïve. "')

hist(CC$ATNS_3, main = 'ATNS #3: Human beings have no right to meddle with the natural environment."')

hist(CC$ATNS_4, main = 'ATNS #4: I would prefer to live in a world where humans leave nature alone."')

hist(CC$ATNS_5, main = 'ATNS #5: Altering nature will be our downfall as a species."')

#Cronbach's Alpha (4 and 5 reverse coded)
CC$ATNS_Scale <- data.frame(CC$ATNS_1, CC$ATNS_2R, CC$ATNS_3, CC$ATNS_4, CC$ATNS_5)
CC$ATNS_Score <- rowMeans(CC [, c("ATNS_1", "ATNS_2R", "ATNS_3", "ATNS_4", "ATNS_5")], na.rm=TRUE)
psych::alpha(CC$ATNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$ATNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.71      0.72    0.72      0.34 2.6 0.046   43 1.2     0.47
## 
##  lower alpha upper     95% confidence boundaries
## 0.62 0.71 0.8 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.ATNS_1       0.63      0.64    0.65      0.31 1.8    0.060 0.064  0.35
## CC.ATNS_2R      0.80      0.80    0.76      0.50 4.1    0.031 0.002  0.50
## CC.ATNS_3       0.62      0.64    0.61      0.30 1.7    0.061 0.038  0.33
## CC.ATNS_4       0.60      0.61    0.61      0.28 1.6    0.066 0.056  0.33
## CC.ATNS_5       0.60      0.62    0.62      0.29 1.6    0.066 0.072  0.30
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean  sd
## CC.ATNS_1  103  0.71  0.73  0.64   0.54   38 1.5
## CC.ATNS_2R 103  0.43  0.40  0.15   0.11   65 1.9
## CC.ATNS_3  103  0.73  0.75  0.70   0.55   38 1.7
## CC.ATNS_4  103  0.78  0.78  0.72   0.61   38 1.7
## CC.ATNS_5  103  0.78  0.77  0.70   0.61   38 1.7
describe(CC$ATNS_Scale)
## CC$ATNS_Scale 
## 
##  5  Variables      105  Observations
## --------------------------------------------------------------------------------
## CC.ATNS_1 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.957     37.5    1.718 
## 
## lowest : 34 35 36 37 38, highest: 36 37 38 39 40
##                                                     
## Value         34    35    36    37    38    39    40
## Frequency      4     4    18    26    27     9    15
## Proportion 0.039 0.039 0.175 0.252 0.262 0.087 0.146
## --------------------------------------------------------------------------------
## CC.ATNS_2R 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.969    65.34     2.17 
## 
## lowest : 62 63 64 65 66, highest: 64 65 66 67 68
##                                                     
## Value         62    63    64    65    66    67    68
## Frequency     12     5    16    24    16     9    21
## Proportion 0.117 0.049 0.155 0.233 0.155 0.087 0.204
## --------------------------------------------------------------------------------
## CC.ATNS_3 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.969    37.64    1.923 
## 
## lowest : 34 35 36 37 38, highest: 36 37 38 39 40
##                                                     
## Value         34    35    36    37    38    39    40
## Frequency      7     4    14    22    19    21    16
## Proportion 0.068 0.039 0.136 0.214 0.184 0.204 0.155
## --------------------------------------------------------------------------------
## CC.ATNS_4 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.964    37.89    1.947 
## 
## lowest : 34 35 36 37 38, highest: 36 37 38 39 40
##                                                     
## Value         34    35    36    37    38    39    40
## Frequency      7     1    13    22    16    20    24
## Proportion 0.068 0.010 0.126 0.214 0.155 0.194 0.233
## --------------------------------------------------------------------------------
## CC.ATNS_5 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.961    37.73    1.951 
## 
## lowest : 34 35 36 37 38, highest: 36 37 38 39 40
##                                                     
## Value         34    35    36    37    38    39    40
## Frequency      6     5    11    25    22    10    24
## Proportion 0.058 0.049 0.107 0.243 0.214 0.097 0.233
## --------------------------------------------------------------------------------
#Correlation ATNS 
cor.plot(CC$ATNS_Scale, labels = c('1','2','3','4','5'), main = "Correlations Between Aversion to Tampering with Nature Scale Items")

#Connectedness to Nature Scale

#Connectedness to nature was measured on with 5 items a 1-00 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’). #CNS Item 1: I often feel a sense of oneness with the natural world around me. #CNS Item 2: I think of the natural world as a community to which I belong. #CNS Item 3: I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’. #CNS Item 4: My personal welfare is independent of the welfare of the natural world. #CNS Item 5: When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.

#Connectedness to Nature Item Definitions
CC$CNS_1 <- as.numeric(as.character(CC$CNS_1_1))
CC$CNS_2 <- as.numeric(as.character(CC$CNS_1_2))
CC$CNS_3 <- as.numeric(as.character(CC$CNS_1_3))
CC$CNS_4 <- as.numeric(as.character(CC$CNS_1_4))
CC$CNS_5 <- as.numeric(as.character(CC$CNS_1_5))

#Recode items 4 and 5
CC$CNS_4R <- (102 - CC$CNS_4) 
CC$CNS_5R <- (102 - CC$CNS_5) 

#Connectedness to Nature Descriptives (No reversed codes)
psych::describe(CC$CNS_1)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 32.83 1.64     33   32.93 1.48  29  35     6 -0.39    -0.45 0.16
range(CC$CNS_1, na.rm=TRUE)
## [1] 29 35
psych::describe(CC$CNS_2)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 33.16 1.55     33   33.29 1.48  29  35     6 -0.54    -0.38 0.15
range(CC$CNS_2, na.rm=TRUE)
## [1] 29 35
psych::describe(CC$CNS_3)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 33.24 1.52     33   33.37 1.48  29  35     6 -0.54    -0.52 0.15
range(CC$CNS_3, na.rm=TRUE)
## [1] 29 35
psych::describe(CC$CNS_4)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 32.26 1.88     32   32.33 1.48  29  35     6 -0.24    -0.92 0.19
range(CC$CNS_4, na.rm=TRUE)
## [1] 29 35
psych::describe(CC$CNS_5R)
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 103 69.36 1.61     69   69.29 1.48  67  73     6 0.18    -0.74 0.16
range(CC$CNS_5, na.rm=TRUE)
## [1] 29 35
#Connectedness to Nature Scale Histograms by Item (No reversed codes)
hist(CC$CNS_1, main = 'CNS #1: I often feel a sense of oneness with the natural world around me."')

hist(CC$CNS_2, main = 'CNS #2: I think of the natural world as a community to which I belong. "')

hist(CC$CNS_3, main = 'CNS #3: I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’. "')

hist(CC$CNS_4, main = 'CNS #4: My personal welfare is independent of the welfare of the natural world."')

hist(CC$CNS_5, main = 'CNS #5: When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature."')

#Cronbach's Alpha (4 and 5 reverse coded)
CC$CNS_Scale <- data.frame(CC$CNS_1, CC$CNS_2, CC$CNS_3, CC$CNS_4R, CC$CNS_5R)
CC$CNS_Score <- rowMeans(CC [, c("CNS_1", "CNS_2", "CNS_3", "CNS_4R", "CNS_5R")], na.rm=TRUE)
describe(CC$CNS_Scale)
## CC$CNS_Scale 
## 
##  5  Variables      105  Observations
## --------------------------------------------------------------------------------
## CC.CNS_1 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.961    32.83    1.829 
## 
## lowest : 29 30 31 32 33, highest: 31 32 33 34 35
##                                                     
## Value         29    30    31    32    33    34    35
## Frequency      5     2    14    21    26    13    22
## Proportion 0.049 0.019 0.136 0.204 0.252 0.126 0.214
## --------------------------------------------------------------------------------
## CC.CNS_2 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.954    33.16    1.718 
## 
## lowest : 29 30 31 32 33, highest: 31 32 33 34 35
##                                                     
## Value         29    30    31    32    33    34    35
## Frequency      2     4     9    17    27    17    27
## Proportion 0.019 0.039 0.087 0.165 0.262 0.165 0.262
## --------------------------------------------------------------------------------
## CC.CNS_3 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.948    33.24    1.685 
## 
## lowest : 29 30 31 32 33, highest: 31 32 33 34 35
##                                                     
## Value         29    30    31    32    33    34    35
## Frequency      1     4    11    12    29    17    29
## Proportion 0.010 0.039 0.107 0.117 0.282 0.165 0.282
## --------------------------------------------------------------------------------
## CC.CNS_4R 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.971    69.74    2.131 
## 
## lowest : 67 68 69 70 71, highest: 69 70 71 72 73
##                                                     
## Value         67    68    69    70    71    72    73
## Frequency     15    15    16    26    11     7    13
## Proportion 0.146 0.146 0.155 0.252 0.107 0.068 0.126
## --------------------------------------------------------------------------------
## CC.CNS_5R 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.966    69.36    1.824 
## 
## lowest : 67 68 69 70 71, highest: 69 70 71 72 73
##                                                     
## Value         67    68    69    70    71    72    73
## Frequency     18    13    24    23    15     7     3
## Proportion 0.175 0.126 0.233 0.223 0.146 0.068 0.029
## --------------------------------------------------------------------------------
psych::alpha(CC$CNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(CC$CNS_Scale): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.CNS_4R CC.CNS_5R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean   sd median_r
##       0.26      0.31    0.53     0.083 0.45 0.12   48 0.83    -0.15
## 
##  lower alpha upper     95% confidence boundaries
## 0.03 0.26 0.5 
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r med.r
## CC.CNS_1     0.0855     0.110    0.40    0.0300  0.124    0.154  0.16 -0.15
## CC.CNS_2    -0.0038     0.018    0.24    0.0045  0.018    0.167  0.12 -0.15
## CC.CNS_3    -0.1205    -0.108    0.21   -0.0251 -0.098    0.187  0.15 -0.22
## CC.CNS_4R    0.4691     0.483    0.64    0.1893  0.934    0.082  0.24  0.21
## CC.CNS_5R    0.4565     0.522    0.64    0.2145  1.092    0.090  0.21  0.20
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean  sd
## CC.CNS_1  103  0.61  0.64  0.57   0.26   33 1.6
## CC.CNS_2  103  0.66  0.70  0.75   0.36   33 1.5
## CC.CNS_3  103  0.73  0.77  0.81   0.47   33 1.5
## CC.CNS_4R 103  0.34  0.27 -0.10  -0.12   70 1.9
## CC.CNS_5R 103  0.24  0.21 -0.14  -0.16   69 1.6
#Correlation CNS Scale
cor.plot(CC$CNS_Scale, labels = c('1','2','3','4','5'), main = "Correlations Between Connectedness to Nature Scale Items")

#Climate Change Belief Scale

#Climate change beliefs were measured on with 5 items a 1-7 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’). #CCB Item 1: Climate change is happening. #CCB Item 2: Climate change poses a risk to human health, safety, and prosperity. #CCB Item 3: Human activity is largely responsible for recent climate change. #CCB Item 4: Reducing greenhouse gas emissions will reduce global warming and climate change.

#Climate Change Belief Item Definitions
CC$CCBelief_1 <- as.numeric(as.character(CC$CCB_1_1))
CC$CCBelief_2 <- as.numeric(as.character(CC$CCB_1_2))
CC$CCBelief_3 <- as.numeric(as.character(CC$CCB_1_3))
CC$CCBelief_4 <- as.numeric(as.character(CC$CCB_1_4))

#Climate Change Belief Descriptives
psych::describe(CC$CCBelief_1)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 41.46 1.66     42   41.66 1.48  37  43     6 -0.83    -0.12 0.16
range(CC$CCBelief_1, na.rm=TRUE)
## [1] 37 43
psych::describe(CC$CCBelief_2)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 102 41.36 1.68     42   41.57 1.48  37  43     6 -0.78    -0.34 0.17
range(CC$CCBelief_2, na.rm=TRUE)
## [1] 37 43
psych::describe(CC$CCBelief_3)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 41.26 1.74     42   41.51 1.48  37  43     6 -0.91    -0.04 0.17
range(CC$CCBelief_3, na.rm=TRUE)
## [1] 37 43
psych::describe(CC$CCBelief_4)
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 103 40.91 1.74     41   41.07 1.48  37  43     6 -0.49    -0.56 0.17
range(CC$CCBelief_4, na.rm=TRUE)
## [1] 37 43
#Climate Change Belief Histograms
hist(CC$CCBelief_1, main = 'Climate Change Belief #1: Climate change is happening."')

hist(CC$CCBelief_2, main = 'Climate Change Belief #2:Climate change poses a risk to human health, safety, and prosperity."')

hist(CC$CCBelief_3, main = 'Climate Change Belief #3:Human activity is largely responsible for recent climate change."')

hist(CC$CCBelief_4, main = 'Climate Change Belief #4: Reducing greenhouse gas emissions will reduce global warming and climate change."')

CC$CCBelief_Score <- rowMeans(CC[, c('CCBelief_1', 'CCBelief_2', 'CCBelief_3','CCBelief_4')], na.rm=T)
describe(CC$CCBelief_Score)
## CC$CCBelief_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      103        2       23    0.991    41.25    1.689    38.77    39.25 
##      .25      .50      .75      .90      .95 
##    40.00    41.75    42.50    43.00    43.00 
## 
## lowest : 37.00000 37.50000 37.75000 38.50000 38.75000
## highest: 42.25000 42.50000 42.66667 42.75000 43.00000
#Cronbach's Alpha
CC$CCB_Scale <- data.frame(CC$CCB_1_1, CC$CCB_1_2, CC$CCB_1_3, CC$CCB_1_4)
psych::alpha(CC$CCB_Scale)
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CCB_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.91      0.91    0.89      0.71 9.7 0.015   41 1.5     0.71
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.91 0.94 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.CCB_1_1      0.89      0.89    0.84      0.72 7.9    0.019 0.0022  0.75
## CC.CCB_1_2      0.86      0.86    0.82      0.68 6.3    0.023 0.0048  0.68
## CC.CCB_1_3      0.87      0.87    0.83      0.69 6.6    0.023 0.0082  0.67
## CC.CCB_1_4      0.90      0.90    0.86      0.74 8.6    0.018 0.0028  0.76
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean  sd
## CC.CCB_1_1 103  0.87  0.87  0.81   0.76   41 1.7
## CC.CCB_1_2 102  0.91  0.91  0.88   0.83   41 1.7
## CC.CCB_1_3 103  0.90  0.90  0.86   0.82   41 1.7
## CC.CCB_1_4 103  0.86  0.85  0.78   0.74   41 1.7
## 
## Non missing response frequency for each item
##              37   38   39   40   41   42   43 miss
## CC.CCB_1_1 0.04 0.00 0.09 0.17 0.15 0.15 0.41 0.02
## CC.CCB_1_2 0.03 0.04 0.08 0.16 0.15 0.19 0.36 0.03
## CC.CCB_1_3 0.06 0.03 0.06 0.17 0.14 0.24 0.31 0.02
## CC.CCB_1_4 0.06 0.03 0.10 0.24 0.16 0.17 0.25 0.02
#Correlation CCB Scale
cor.plot(CC$CCB_Scale, labels = c('1','2','3','4'), main = "Correlations Between Climate Change Belief Items")

#Individualism/Collectivism Scale

#Individualism and collectivism were each measured with 4 items (for a total of 8 items) on a 1-7 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#Collectivism Items ##Individualism/Collectivism Item #3 (C): It is important to me to think of myself as a member of my religious, national, or ethnic group. ##Individualism/Collectivism Item #4 (C): Learning about the traditions, values, and beliefs of my family is important to me. ##Individualism/Collectivism Item #7 (C): In the end, a person feels closest to members of their own religious, national, or ethnic group. ##Individualism/Collectivism Item #8 (C): It is important to me to respect decisions made by my family.

#Individualism Items ##Individualism/Collectivism Item #1 (I): It is important to me to develop my own personal style. ##Individualism/Collectivism Item #2 (I): It is better for me to follow my own ideas than to follow those of anyone else.
##Individualism/Collectivism Item #5 (I): I enjoy being unique and different from others in many respects. ##Individualism/Collectivism Item #6 (I): My personal achievements and accomplishments are very important to who I am.

#Individualism and Collectivism Scale (Code adapted from J.Cole Collectivism Study)

#Individualism (Items 1,2,5,6)
CC$Ind_1 <- as.numeric(as.character(CC$Individualism_1))
CC$Ind_2 <- as.numeric(as.character(CC$Individualism_2))
CC$Ind_5 <- as.numeric(as.character(CC$Individualism_5))
CC$Ind_6 <- as.numeric(as.character(CC$Individualism_6))
CC$Individualism_Score <- rowMeans(CC[, c('Ind_1', 'Ind_2', 'Ind_5','Ind_6')], na.rm=T)

#Collectivism (Items 3,4,7,8)
CC$Ind_3 <- as.numeric(as.character(CC$Individualism_3))
CC$Ind_4 <- as.numeric(as.character(CC$Individualism_4))
CC$Ind_7 <- as.numeric(as.character(CC$Individualism_7))
CC$Ind_8 <- as.numeric(as.character(CC$Individualism_8))
CC$Collectivism_Score <- rowMeans(CC[, c('Ind_3', 'Ind_4', 'Ind_7','Ind_8')], na.rm=T)

#Individualism Alpha and Histogram (4 items)
psych::alpha(data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5,CC$Ind_6))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5, CC$Ind_6))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.86      0.86    0.83       0.6 6.1 0.023   58 1.3      0.6
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.86 0.9 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Ind_1      0.78      0.78    0.71      0.54 3.5    0.037 0.0096  0.50
## CC.Ind_2      0.87      0.88    0.83      0.70 7.0    0.022 0.0019  0.71
## CC.Ind_5      0.80      0.80    0.75      0.57 4.1    0.034 0.0152  0.54
## CC.Ind_6      0.81      0.81    0.76      0.59 4.4    0.032 0.0161  0.54
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## CC.Ind_1 103  0.89  0.89  0.87   0.80   58 1.4
## CC.Ind_2 103  0.75  0.75  0.60   0.56   58 1.5
## CC.Ind_5 103  0.86  0.86  0.81   0.74   58 1.5
## CC.Ind_6 103  0.85  0.85  0.78   0.71   58 1.7
## 
## Non missing response frequency for each item
##            54   55   56   57   58   59   60 miss
## CC.Ind_1 0.02 0.03 0.03 0.19 0.20 0.25 0.27 0.02
## CC.Ind_2 0.02 0.03 0.11 0.22 0.20 0.18 0.23 0.02
## CC.Ind_5 0.02 0.02 0.14 0.20 0.19 0.19 0.23 0.02
## CC.Ind_6 0.04 0.06 0.06 0.21 0.17 0.19 0.26 0.02
hist(CC$Individualism_Score , main = 'Individualism Score')

#Collectivism Alpha and Histogram (4 items)
psych::alpha(data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.82      0.82     0.8      0.54 4.7 0.029   58 1.4     0.51
## 
##  lower alpha upper     95% confidence boundaries
## 0.76 0.82 0.88 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Ind_3      0.78      0.78    0.72      0.54 3.5    0.038 0.0143  0.50
## CC.Ind_4      0.76      0.76    0.69      0.51 3.1    0.041 0.0134  0.44
## CC.Ind_7      0.77      0.78    0.72      0.55 3.6    0.039 0.0137  0.52
## CC.Ind_8      0.79      0.79    0.72      0.56 3.8    0.035 0.0058  0.52
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## CC.Ind_3 103  0.83  0.81  0.72   0.64   57 1.9
## CC.Ind_4 103  0.82  0.83  0.77   0.69   58 1.6
## CC.Ind_7 103  0.80  0.80  0.71   0.64   58 1.6
## CC.Ind_8 103  0.78  0.79  0.70   0.61   58 1.6
## 
## Non missing response frequency for each item
##            54   55   56   57   58   59   60 miss
## CC.Ind_3 0.11 0.12 0.13 0.18 0.18 0.10 0.18 0.02
## CC.Ind_4 0.01 0.07 0.07 0.24 0.19 0.14 0.28 0.02
## CC.Ind_7 0.02 0.08 0.11 0.27 0.19 0.14 0.19 0.02
## CC.Ind_8 0.02 0.06 0.10 0.26 0.20 0.11 0.25 0.02
hist(CC$Collectivism_Score , main = 'Collectivism Score')

#Cronbachs Alpha for Individualism/Collectivism full scale (8 items)
CC$ICScale <- data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_3, CC$Ind_4, CC$Ind_5,CC$Ind_6, CC$Ind_7, CC$Ind_8)
psych::alpha(CC$ICScale)
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$ICScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.88      0.88     0.9      0.48 7.4 0.019   58 1.2     0.48
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.88 0.91 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Ind_1      0.85      0.85    0.87      0.45 5.8    0.023 0.018  0.44
## CC.Ind_2      0.87      0.88    0.89      0.51 7.2    0.019 0.018  0.50
## CC.Ind_3      0.88      0.88    0.88      0.52 7.5    0.018 0.011  0.50
## CC.Ind_4      0.86      0.86    0.88      0.47 6.2    0.022 0.024  0.47
## CC.Ind_5      0.86      0.87    0.88      0.48 6.5    0.021 0.018  0.48
## CC.Ind_6      0.85      0.86    0.88      0.46 6.0    0.023 0.022  0.44
## CC.Ind_7      0.86      0.87    0.88      0.48 6.5    0.021 0.026  0.50
## CC.Ind_8      0.86      0.86    0.88      0.47 6.2    0.022 0.024  0.48
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## CC.Ind_1 103  0.82  0.83  0.82   0.76   58 1.4
## CC.Ind_2 103  0.63  0.64  0.57   0.52   58 1.5
## CC.Ind_3 103  0.63  0.61  0.56   0.49   57 1.9
## CC.Ind_4 103  0.78  0.77  0.74   0.70   58 1.6
## CC.Ind_5 103  0.72  0.73  0.70   0.63   58 1.5
## CC.Ind_6 103  0.80  0.81  0.78   0.73   58 1.7
## CC.Ind_7 103  0.75  0.74  0.70   0.66   58 1.6
## CC.Ind_8 103  0.77  0.77  0.73   0.69   58 1.6
## 
## Non missing response frequency for each item
##            54   55   56   57   58   59   60 miss
## CC.Ind_1 0.02 0.03 0.03 0.19 0.20 0.25 0.27 0.02
## CC.Ind_2 0.02 0.03 0.11 0.22 0.20 0.18 0.23 0.02
## CC.Ind_3 0.11 0.12 0.13 0.18 0.18 0.10 0.18 0.02
## CC.Ind_4 0.01 0.07 0.07 0.24 0.19 0.14 0.28 0.02
## CC.Ind_5 0.02 0.02 0.14 0.20 0.19 0.19 0.23 0.02
## CC.Ind_6 0.04 0.06 0.06 0.21 0.17 0.19 0.26 0.02
## CC.Ind_7 0.02 0.08 0.11 0.27 0.19 0.14 0.19 0.02
## CC.Ind_8 0.02 0.06 0.10 0.26 0.20 0.11 0.25 0.02
#Correlation Matrix: Individualism and Collectivism Items (8)

cor.plot(CC$ICScale, labels = c('1','2','3','4','5','6','7','8'), main = "Correlations Between Individualistic/Collectivist Items")

#Systems/Holistic Thinking

ST Item #1: All the Earth’s systems, from the climate to the economy, are interconnected. ST Item #2: Everything is constantly changing. ST Item #3: The Earth, including all its inhabitants, is a living system. ST Item #4: Seemingly small choices we make today can ultimately have major consequences.

HT Item #1: Everything in the universe is somehow related to each other. HT Item #2: It is more desirable to take the middle ground than go to extremes. HT Item #3: Every phenomenon in the world moves in predictable directions. HT Item #4: The whole, rather than its parts, should be considered in order to understand a phenomenon.

#Order of Items on Full Scale #Systems Thinking (15 items full scale) ST Item #1 = #5 ST Item #2 = #6 ST Item #3 = #10 ST Item #4 = #13

#Holistic Thinking (24 items full scale) HT Item #1 = #1 (Factor 1: Causality) HT Item #2 = #7 (Factor 2: Attitude Toward Contradictions) HT Item #3 (Reverse coded) = #13 (Factor 3: Perception of Change) HT Item #4 = #19 (Factor 4: Locus of Attention)

#Systems Thinking 
CC$ST_1 <- as.numeric(as.character(CC$SystemsHolistic_1))
CC$ST_2 <- as.numeric(as.character(CC$SystemsHolistic_2))
CC$ST_3 <- as.numeric(as.character(CC$SystemsHolistic_3))
CC$ST_4 <- as.numeric(as.character(CC$SystemsHolistic_4))
CC$ST_Score <- rowMeans(CC[, c('ST_1', 'ST_2', 'ST_3','ST_4')], na.rm=T)

#Systems Thinking Histograms
hist(CC$ST_1, main = 'All the Earth’s systems, from the climate to the economy, are interconnected.')

hist(CC$ST_2, main = 'Everything is constantly changing.')

hist(CC$ST_3, main = 'The Earth, including all its inhabitants, is a living system.')

hist(CC$ST_4, main = 'Seemingly small choices we make today can ultimately have major consequences."')

#Holistic Thinking
CC$HT_1 <- as.numeric(as.character(CC$SystemsHolistic_1))
CC$HT_2 <- as.numeric(as.character(CC$SystemsHolistic_2))
CC$HT_3 <- as.numeric(as.character(CC$SystemsHolistic_3))
CC$HT_4 <- as.numeric(as.character(CC$SystemsHolistic_4))
CC$HT_Score <- rowMeans(CC[, c('HT_1', 'HT_2', 'HT_3','HT_4')], na.rm=T)

#Holistic Recode #3
CC$HT_3R <- abs(CC$HT_3 -100)

#Holistic Thinking Histograms (No reverse codes)
hist(CC$HT_1, main = 'Everything in the universe is somehow related to each other.')

hist(CC$HT_2, main = 'It is more desirable to take the middle ground than go to extremes.')

hist(CC$HT_3, main = 'Every phenomenon in the world moves in predictable directions.')

hist(CC$HT_4, main = 'The whole, rather than its parts, should be considered in order to understand a phenomenon.')

#Descriptives by Item 
describe(CC$ST_1)
## CC$ST_1 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        6    0.938    58.41    1.634 
## 
## lowest : 55 56 57 58 59, highest: 56 57 58 59 60
##                                               
## Value         55    56    57    58    59    60
## Frequency      5     6    16    26    15    35
## Proportion 0.049 0.058 0.155 0.252 0.146 0.340
describe(CC$ST_2)
## CC$ST_2 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.938    58.54    1.512 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      1     2     3    20    19    24    34
## Proportion 0.010 0.019 0.029 0.194 0.184 0.233 0.330
describe(CC$ST_3)
## CC$ST_3 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.923    58.62    1.566 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      1     2     5    18    15    22    40
## Proportion 0.010 0.019 0.049 0.175 0.146 0.214 0.388
describe(CC$ST_4)
## CC$ST_4 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.924    58.63     1.55 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      1     2     5    16    18    21    40
## Proportion 0.010 0.019 0.049 0.155 0.175 0.204 0.388
describe(CC$HT_1)
## CC$HT_1 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        6    0.938    58.41    1.634 
## 
## lowest : 55 56 57 58 59, highest: 56 57 58 59 60
##                                               
## Value         55    56    57    58    59    60
## Frequency      5     6    16    26    15    35
## Proportion 0.049 0.058 0.155 0.252 0.146 0.340
describe(CC$HT_2)
## CC$HT_2 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.938    58.54    1.512 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      1     2     3    20    19    24    34
## Proportion 0.010 0.019 0.029 0.194 0.184 0.233 0.330
describe(CC$HT_3R)
## CC$HT_3R 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.923    41.38    1.566 
## 
## lowest : 40 41 42 43 44, highest: 42 43 44 45 46
##                                                     
## Value         40    41    42    43    44    45    46
## Frequency     40    22    15    18     5     2     1
## Proportion 0.388 0.214 0.146 0.175 0.049 0.019 0.010
describe(CC$HT_4)
## CC$HT_4 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        7    0.924    58.63     1.55 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      1     2     5    16    18    21    40
## Proportion 0.010 0.019 0.049 0.155 0.175 0.204 0.388
#Systems Thinking Alpha and Histogram (4 items)
psych::alpha(data.frame(CC$ST_1, CC$ST_2, CC$ST_3,CC$ST_4))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$ST_1, CC$ST_2, CC$ST_3, CC$ST_4))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.89       0.9    0.87      0.68 8.5 0.017   59 1.3      0.7
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.89 0.93 
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## CC.ST_1      0.88      0.88    0.83      0.70 7.1    0.021 0.00223  0.71
## CC.ST_2      0.85      0.85    0.80      0.66 5.7    0.026 0.00732  0.70
## CC.ST_3      0.84      0.84    0.79      0.64 5.4    0.027 0.00632  0.65
## CC.ST_4      0.89      0.89    0.84      0.72 7.7    0.019 0.00063  0.71
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean  sd
## CC.ST_1 103  0.85  0.85  0.78   0.73   58 1.5
## CC.ST_2 103  0.89  0.89  0.85   0.80   59 1.4
## CC.ST_3 103  0.91  0.91  0.87   0.82   59 1.4
## CC.ST_4 103  0.84  0.84  0.76   0.71   59 1.4
## 
## Non missing response frequency for each item
##           54   55   56   57   58   59   60 miss
## CC.ST_1 0.00 0.05 0.06 0.16 0.25 0.15 0.34 0.02
## CC.ST_2 0.01 0.02 0.03 0.19 0.18 0.23 0.33 0.02
## CC.ST_3 0.01 0.02 0.05 0.17 0.15 0.21 0.39 0.02
## CC.ST_4 0.01 0.02 0.05 0.16 0.17 0.20 0.39 0.02
hist(CC$ST_Score , main = 'Systems Thinking Score')

#Holistic Thinking Alpha and Histogram (4 items)
psych::alpha(data.frame(CC$HT_1, CC$HT_2, CC$HT_3R, CC$HT_4))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$HT_1, CC$HT_2, CC$HT_3R, CC$HT_4)): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.HT_3R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$HT_1, CC$HT_2, CC$HT_3R, CC$HT_4))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean   sd median_r
##       -0.2     -0.18    0.56    -0.039 -0.15 0.13   54 0.67   -0.071
## 
##  lower alpha upper     95% confidence boundaries
## -0.45 -0.2 0.06 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r   S/N alpha se  var.r med.r
## CC.HT_1      -1.85     -1.73   0.120     -0.27 -0.63    0.410 0.6388 -0.71
## CC.HT_2      -1.95     -1.98  -0.046     -0.28 -0.66    0.421 0.5308 -0.70
## CC.HT_3R      0.84      0.84   0.792      0.64  5.38    0.027 0.0063  0.65
## CC.HT_4      -1.48     -1.44   0.230     -0.24 -0.59    0.357 0.6905 -0.70
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## CC.HT_1  103  0.84  0.84  0.81   0.47   58 1.5
## CC.HT_2  103  0.86  0.86  0.90   0.55   59 1.4
## CC.HT_3R 103 -0.61 -0.62 -1.05  -0.82   41 1.4
## CC.HT_4  103  0.80  0.80  0.74   0.40   59 1.4
hist(CC$HT_Score , main = 'Holistic Thinking Score')

#Cronbachs Alpha for Systems/Holistic Thinking full scale (8 items)
CC$STHTScale <- data.frame(CC$ST_1, CC$ST_2, CC$ST_3, CC$ST_4, CC$HT_1,CC$HT_2, CC$HT_3R, CC$HT_4)
psych::alpha(CC$STHTScale)
## Number of categories should be increased  in order to count frequencies.
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## In factor.stats, I could not find the RMSEA upper bound . Sorry about that
## Warning in psych::alpha(CC$STHTScale): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.HT_3R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$STHTScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.81      0.81    0.71      0.35 4.2 0.016   56 0.94     0.65
## 
##  lower alpha upper     95% confidence boundaries
## 0.78 0.81 0.84 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.ST_1       0.74      0.74    0.67      0.29  2.9   0.0210 0.489  0.65
## CC.ST_2       0.73      0.74    0.66      0.28  2.8   0.0219 0.476  0.65
## CC.ST_3       0.75      0.75    0.68      0.30  3.1   0.0226 0.458  0.65
## CC.ST_4       0.75      0.75    0.67      0.30  3.0   0.0202 0.492  0.70
## CC.HT_1       0.74      0.74    0.67      0.29  2.9   0.0210 0.489  0.65
## CC.HT_2       0.73      0.74    0.66      0.28  2.8   0.0219 0.476  0.65
## CC.HT_3R      0.95      0.95    0.83      0.72 17.6   0.0088 0.018  0.71
## CC.HT_4       0.75      0.75    0.67      0.30  3.0   0.0202 0.492  0.70
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## CC.ST_1  103  0.87  0.87  0.80   0.81   58 1.5
## CC.ST_2  103  0.90  0.91  0.85   0.86   59 1.4
## CC.ST_3  103  0.82  0.82  0.75   0.74   59 1.4
## CC.ST_4  103  0.84  0.84  0.78   0.77   59 1.4
## CC.HT_1  103  0.87  0.87  0.80   0.81   58 1.5
## CC.HT_2  103  0.90  0.91  0.85   0.86   59 1.4
## CC.HT_3R 103 -0.82 -0.82 -1.21  -0.87   41 1.4
## CC.HT_4  103  0.84  0.84  0.78   0.77   59 1.4
#Correlation Matrix: Individualism and Collectivism Items (8)

cor.plot(CC$STHTScale, labels = c('1','2','3','4','5','6','7','8'), main = "Correlations Between Systems Thinking and Holistic Thinking Items")

#Correlations - Aggregated Naturalness to Individual Difference Measures

#Naturalness - Deeper Examination
#By looking at naturalness across 10 technologies, questions of power were raised in our initial discussions of the data. Further examinations have been conducted below looking at 1) alpha values of naturalness items for first technologies seen across ALL tech (n=100). The first technology naturalness ratings were used, rather than all three participants saw, because we wanted to look at items with a larger sample of 100, while also maintaining the randomness of methods seen. 

#Define new variables
CC$Nat_1_Aggregated<- CC$Nat_1
CC$Nat_2_Aggregated <- (102-CC$Nat_2)
CC$Nat_3_Aggregated <- (102-CC$Nat_3)

CC$Nat_Score_Aggregated <- rowMeans(CC [, c("Nat_1_Aggregated", "Nat_2_Aggregated", "Nat_3_Aggregated")], na.rm=TRUE)
CC$NatAg_Scale <- data.frame(CC$Nat_1, CC$Nat_2, CC$Nat_3)

#Cronbach's alpha for aggregated naturalness scale

psych::alpha(data.frame(CC$Nat_1_Aggregated, CC$Nat_2_Aggregated, CC$Nat_3_Aggregated))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Nat_1_Aggregated, CC$Nat_2_Aggregated, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Nat_1_Aggregated ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_Aggregated, CC$Nat_2_Aggregated, 
##     CC$Nat_3_Aggregated))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.26      0.29    0.37      0.12 0.4 0.13   44 17   -0.027
## 
##  lower alpha upper     95% confidence boundaries
## 0.01 0.26 0.52 
## 
##  Reliability if an item is dropped:
##                     raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r
## CC.Nat_1_Aggregated     0.705     0.707   0.546     0.546  2.409    0.057    NA
## CC.Nat_2_Aggregated    -0.390    -0.393  -0.164    -0.164 -0.282    0.269    NA
## CC.Nat_3_Aggregated    -0.055    -0.055  -0.027    -0.027 -0.052    0.206    NA
##                      med.r
## CC.Nat_1_Aggregated  0.546
## CC.Nat_2_Aggregated -0.164
## CC.Nat_3_Aggregated -0.027
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_Aggregated 103  0.46  0.42 -0.14  -0.11   52 29
## CC.Nat_2_Aggregated 103  0.78  0.79  0.70   0.37   44 27
## CC.Nat_3_Aggregated 104  0.68  0.72  0.60   0.26   37 25
hist(CC$Nat_Score_Aggregated, main = 'Aggregated Naturalness Scale Score')

#Individual AFSCS Naturalness Items
#Item 1
psych::describe(CC$Nat_1_Aggregated)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 103 51.91 28.74     54   52.17 37.06   0 100   100 -0.06    -1.03 2.83
range(CC$Nat_1_Aggregated, na.rm=TRUE)
## [1]   0 100
hist(CC$Nat_1_Aggregated, main = '"This is natural."')

#Item 2 (Not reverse coded)
psych::describe(CC$Nat_2)
##    vars   n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 103 58.14 27.3     63   59.53 22.24   0 100   100 -0.47    -0.55 2.69
range(CC$Nat_2, na.rm=TRUE)
## [1]   0 100
hist(CC$Nat_2, main = '"This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Nat_3)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 104 65.19 25.34     71   68.12 19.27   0 100   100 -1.02      0.6 2.48
range(CC$Nat_3, na.rm=TRUE)
## [1]   0 100
hist(CC$Nat_3, main = '"This relies on science-based technology."')

#Naturalness Correlation
cor.plot(CC$NatAg_Scale, labels = c('1','2','3'), main = "Correlation Between Aggregated Nat Items")

#Naturalness Correlation to Individual Difference Measures 
#Environmentalism
cor(CC$ENVS_Score, CC$Nat_Score_Aggregated, use="complete.obs")
## [1] -0.05507577
plot(CC$ENVS_Score, CC$Nat_Score_Aggregated, main="Correlation Between Environmentalism and Naturalness Scales",
   xlab="Environmentalism Scale", ylab="Naturalness Scale", pch=19)

#Correlation between environmentalism scale score and naturalness scale score negatively correlated. The following tests the relationship between individual naturalness items and Environmentalism scale. While we do see an incredibly slight negative correlation between reverse coded naturalness items (2, 3) and Environmentalism scale, the correlation between the core "This is natural" item (1) has an incredibly small positive correlation. 
cor(CC$ENVS_Score, CC$Nat_1_Aggregated, use="complete.obs")
## [1] 0.1392068
cor(CC$ENVS_Score, CC$Nat_2_Aggregated, use="complete.obs")
## [1] -0.09146713
cor(CC$ENVS_Score, CC$Nat_3_Aggregated, use="complete.obs")
## [1] -0.186224
#Aversion to Tampering with Nature
cor(CC$ATNS_Score, CC$Nat_Score_Aggregated, use="complete.obs")
## [1] -0.09768477
plot(CC$ATNS_Score, CC$Nat_Score_Aggregated, main="Correlation Between Aversion to Tampering with Nature and Naturalness Scales",
   xlab="ATNS Scale", ylab="Naturalness Scale", pch=19)

cor(CC$ATNS_Score, CC$Nat_1_Aggregated, use="complete.obs")
## [1] -0.03073172
cor(CC$ATNS_Score, CC$Nat_2_Aggregated, use="complete.obs")
## [1] -0.08765947
cor(CC$ATNS_Score, CC$Nat_3_Aggregated, use="complete.obs")
## [1] -0.08501642
#Connectedness to Nature
cor(CC$CNS_Score, CC$Nat_Score_Aggregated, use="complete.obs")
## [1] -0.06590193
plot(CC$CNS_Score, CC$Nat_Score_Aggregated, main="Correlation Between Connectedness to Nature and Naturalness Scales",
   xlab="CNS Scale", ylab="Naturalness Scale", pch=19)

cor(CC$CNS_Score, CC$Nat_1_Aggregated, use="complete.obs")
## [1] -0.01626357
cor(CC$CNS_Score, CC$Nat_2_Aggregated, use="complete.obs")
## [1] 0.01474817
cor(CC$CNS_Score, CC$Nat_3_Aggregated, use="complete.obs")
## [1] -0.1257454
#Climate Change Belief
cor(CC$CCBelief_Score, CC$Nat_Score_Aggregated, use="complete.obs")
## [1] -0.1014121
plot(CC$CCBelief_Score, CC$Nat_Score_Aggregated, main="Correlation Between Climate Change Belief and Naturalness Scales",
   xlab="CC Belief Scale", ylab="Naturalness Scale", pch=19)

cor(CC$CCBelief_Score, CC$Nat_1_Aggregated, use="complete.obs")
## [1] 0.1574064
cor(CC$CCBelief_Score, CC$Nat_2_Aggregated, use="complete.obs")
## [1] -0.05898942
cor(CC$CCBelief_Score, CC$Nat_3_Aggregated, use="complete.obs")
## [1] -0.322444
#Individualism
cor(CC$Individualism_Score, CC$Nat_Score_Aggregated, use="complete.obs")
## [1] -0.09937843
plot(CC$Individualism_Score, CC$Nat_Score_Aggregated, main="Correlation Between Individualism and Naturalness Scales",
   xlab="Individualism Scale", ylab="Naturalness Scale", pch=19)

cor(CC$Individualism_Score, CC$Nat_1_Aggregated, use="complete.obs")
## [1] 0.0997064
cor(CC$Individualism_Score, CC$Nat_2_Aggregated, use="complete.obs")
## [1] -0.08352061
cor(CC$Individualism_Score, CC$Nat_3_Aggregated, use="complete.obs")
## [1] -0.2384698
#Collectivism
cor(CC$Collectivism_Score, CC$Nat_Score_Aggregated, use="complete.obs")
## [1] -0.08822026
plot(CC$Collectivism_Score, CC$Nat_Score_Aggregated, main="Correlation Between Collectivism and Naturalness Scales",
   xlab="Collectivism Scale", ylab="Naturalness Scale", pch=19)

cor(CC$Collectivism_Score, CC$Nat_1_Aggregated, use="complete.obs")
## [1] 0.1009656
cor(CC$Collectivism_Score, CC$Nat_2_Aggregated, use="complete.obs")
## [1] -0.02915125
cor(CC$Collectivism_Score, CC$Nat_3_Aggregated, use="complete.obs")
## [1] -0.273157
#Systems Thinking
CC$ST_Score
##   [1] 57.00 59.00 59.50 59.50 59.25 59.50 58.75 60.00 56.00 59.50 59.75 56.25
##  [13] 59.25 59.25 58.50 58.25 57.75 58.75 60.00 57.50 60.00 60.00 57.75 57.00
##  [25] 58.75 58.00 55.50 55.75 59.00 59.00 59.00 59.75   NaN 60.00 57.00 59.00
##  [37] 60.00 57.75 59.25 59.75 56.25   NaN 59.00 56.75 59.00 59.75 58.75 58.75
##  [49] 60.00 59.25 58.50 60.00 59.50 57.50 58.25 59.75 57.00 60.00 57.50 56.50
##  [61] 57.75 57.00 58.75 58.75 59.00 59.25 60.00 57.00 59.50 57.00 58.25 58.75
##  [73] 59.50 59.75 60.00 59.75 57.50 59.50 59.50 54.50 59.25 57.25 58.75 60.00
##  [85] 57.75 57.75 60.00 59.75 59.75 59.75 57.00 58.75 57.00 59.75 59.75 57.25
##  [97] 60.00 57.25 59.25 58.00 57.00 58.50 57.75 57.75 57.25
cor(CC$ST_Score, CC$Nat_Score_Aggregated, use="complete.obs")
## [1] -0.06958118
plot(CC$ST_Score, CC$Nat_Score_Aggregated, main="Correlation Between Systems Thinking and Naturalness Scales",
   xlab="Systems Thinking Scale", ylab="Naturalness Scale", pch=19)

cor(CC$ST_Score, CC$Nat_1_Aggregated, use="complete.obs")
## [1] 0.0930561
cor(CC$ST_Score, CC$Nat_2_Aggregated, use="complete.obs")
## [1] -0.06468005
cor(CC$ST_Score, CC$Nat_3_Aggregated, use="complete.obs")
## [1] -0.1745634
#Holistic Thinking
CC$HT_Score
##   [1] 57.00 59.00 59.50 59.50 59.25 59.50 58.75 60.00 56.00 59.50 59.75 56.25
##  [13] 59.25 59.25 58.50 58.25 57.75 58.75 60.00 57.50 60.00 60.00 57.75 57.00
##  [25] 58.75 58.00 55.50 55.75 59.00 59.00 59.00 59.75   NaN 60.00 57.00 59.00
##  [37] 60.00 57.75 59.25 59.75 56.25   NaN 59.00 56.75 59.00 59.75 58.75 58.75
##  [49] 60.00 59.25 58.50 60.00 59.50 57.50 58.25 59.75 57.00 60.00 57.50 56.50
##  [61] 57.75 57.00 58.75 58.75 59.00 59.25 60.00 57.00 59.50 57.00 58.25 58.75
##  [73] 59.50 59.75 60.00 59.75 57.50 59.50 59.50 54.50 59.25 57.25 58.75 60.00
##  [85] 57.75 57.75 60.00 59.75 59.75 59.75 57.00 58.75 57.00 59.75 59.75 57.25
##  [97] 60.00 57.25 59.25 58.00 57.00 58.50 57.75 57.75 57.25
cor(CC$HT_Score, CC$Nat_Score_Aggregated, use="complete.obs")
## [1] -0.06958118
plot(CC$HT_Score, CC$Nat_Score_Aggregated, main="Correlation Between Holistic Thinking and Naturalness Scales",
   xlab="Holistic Thinking Scale", ylab="Naturalness Scale", pch=19)

cor(CC$HT_Score, CC$Nat_1_Aggregated, use="complete.obs")
## [1] 0.0930561
cor(CC$HT_Score, CC$Nat_2_Aggregated, use="complete.obs")
## [1] -0.06468005
cor(CC$HT_Score, CC$Nat_3_Aggregated, use="complete.obs")
## [1] -0.1745634

#Demographics

#Ethnicity
CC$Ethnicity <- NA
CC$Ethnicity[CC$Dem_Ethnicity == 1] <- 'Asian'
CC$Ethnicity[CC$Dem_Ethnicity == 2] <- 'Black'
CC$Ethnicity[CC$Dem_Ethnicity == 3] <- 'Hispanic'
CC$Ethnicity[CC$Dem_Ethnicity == 4] <- 'Nat Amer'
CC$Ethnicity[CC$Dem_Ethnicity == 5] <- 'Nat Pac'
CC$Ethnicity[CC$Dem_Ethnicity == 6] <- 'White'
CC$Ethnicity[CC$Dem_Ethnicity == 7] <- 'Other'

describe(CC$Dem_Ethnicity)
## CC$Dem_Ethnicity 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        5    0.512    5.214    1.292 
## 
## lowest : 1 2 3 4 6, highest: 1 2 3 4 6
##                                         
## Value          1     2     3     4     6
## Frequency      3    13     2     4    81
## Proportion 0.029 0.126 0.019 0.039 0.786
#Gender
CC$Dem_Gender <- as.numeric(as.character(CC$Dem_Gen))
describe(CC$Dem_Gen)
## CC$Dem_Gen 
##        n  missing distinct     Info     Mean      Gmd 
##      103        2        2    0.725    1.408   0.4877 
##                       
## Value          1     2
## Frequency     61    42
## Proportion 0.592 0.408
#Age
CC$Demograph_Age <- as.numeric(as.character(CC$Dem_Age))
describe(CC$Demograph_Age)
## CC$Demograph_Age 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      103        2       52    0.999    46.68     19.3     25.0     27.4 
##      .25      .50      .75      .90      .95 
##     32.0     42.0     61.0     72.0     75.8 
## 
## lowest : 20 21 23 24 25, highest: 76 77 78 80 85
range(CC$Demograph_Age ,na.rm = T)
## [1] 20 85

#Predictions - Risk/Naturalness by Method Type

  #1. #AFSCS
CC$Risk_Score_AFSCS <- rowMeans(CC [, c("Risk_AFSCS_32", "Risk_AFSCS_33")], na.rm=TRUE)
CC$Naturalness_Score_AFSCS <- rowMeans(CC [, c("Naturalness_1_AFSCS", "Naturalness_2R_AFSCS", "Naturalness_3R_AFSCS")], na.rm=TRUE)
  m.a1 <- lm(CC$Risk_Score_AFSCS ~ Naturalness_Score_AFSCS, data = CC)
  mcSummary(m.a1)
## lm(formula = CC$Risk_Score_AFSCS ~ Naturalness_Score_AFSCS, data = CC)
## 
## Omnibus ANOVA
##                   SS df      MS EtaSq     F     p
## Model        425.575  1 425.575 0.015 0.437 0.514
## Error      28231.199 29 973.490                  
## Corr Total 28656.774 30 955.226                  
## 
##    RMSE AdjEtaSq
##  31.201   -0.019
## 
## Coefficients
##                            Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)             53.986 17.79  3.035 8964.737 0.241  NA 17.601  90.371
## Naturalness_Score_AFSCS -0.231  0.35 -0.661  425.575 0.015  NA -0.947   0.484
##                             p
## (Intercept)             0.005
## Naturalness_Score_AFSCS 0.514
  m.c1 <- lm(Risk_Score_AFSCS ~ 1, data = CC) 
  mcSummary(m.c1)
## lm(formula = Risk_Score_AFSCS ~ 1, data = CC)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      28656.77 30 955.226          
## Corr Total 28656.77 30 955.226          
## 
##    RMSE AdjEtaSq
##  30.907        0
## 
## Coefficients
##                Est StErr     t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 42.823 5.551 7.714 56846.98 0.665  NA 31.486  54.159 0
  modelCompare(m.c1, m.a1)
## SSE (Compact) =  28656.77 
## SSE (Augmented) =  28231.2 
## Delta R-Squared =  0.01485076 
## Partial Eta-Squared (PRE) =  0.01485076 
## F(1,29) = 0.4371643, p = 0.5137134
  #2. Biochar
  m.a2 <- lm(CC$Risk_Score_BIO ~ Naturalness_Score_BIO, data = CC)
  mcSummary(m.a2)
## lm(formula = CC$Risk_Score_BIO ~ Naturalness_Score_BIO, data = CC)
## 
## Omnibus ANOVA
##                   SS df       MS EtaSq     F     p
## Model       4650.578  1 4650.578 0.165 6.936 0.012
## Error      23466.124 35  670.461                  
## Corr Total 28116.703 36  781.020                  
## 
##    RMSE AdjEtaSq
##  25.893    0.142
## 
## Coefficients
##                          Est  StErr      t    SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)           84.482 16.727  5.051 17102.505 0.422  NA 50.524 118.440
## Naturalness_Score_BIO -1.011  0.384 -2.634  4650.578 0.165  NA -1.791  -0.232
##                           p
## (Intercept)           0.000
## Naturalness_Score_BIO 0.012
  m.c2 <- lm(Risk_Score_BIO ~ 1, data = CC) 
  mcSummary(m.c2)
## lm(formula = Risk_Score_BIO ~ 1, data = CC)
## 
## Omnibus ANOVA
##                 SS df     MS EtaSq F p
## Model          0.0  0    Inf     0    
## Error      28116.7 36 781.02          
## Corr Total 28116.7 36 781.02          
## 
##    RMSE AdjEtaSq
##  27.947        0
## 
## Coefficients
##                Est StErr     t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 41.878 4.594 9.115 64890.55 0.698  NA  32.56  51.196 0
  modelCompare(m.c2, m.a2)
## SSE (Compact) =  28116.7 
## SSE (Augmented) =  23466.12 
## Delta R-Squared =  0.1654027 
## Partial Eta-Squared (PRE) =  0.1654027 
## F(1,35) = 6.936392, p = 0.01249091
  #3. BECCS
  m.a3 <- lm(CC$Risk_Score_BECCS ~ CC$Naturalness_Score_BECCS)
  mcSummary(m.a3)
## lm(formula = CC$Risk_Score_BECCS ~ CC$Naturalness_Score_BECCS)
## 
## Omnibus ANOVA
##                   SS df      MS EtaSq     F     p
## Model        741.767  1 741.767 0.036 1.283 0.265
## Error      19652.420 34 578.012                  
## Corr Total 20394.188 35 582.691                  
## 
##    RMSE AdjEtaSq
##  24.042    0.008
## 
## Coefficients
##                               Est  StErr      t    SSR(3) EtaSq tol CI_2.5
## (Intercept)                60.805 11.751  5.175 15477.553 0.441  NA 36.925
## CC$Naturalness_Score_BECCS -0.307  0.271 -1.133   741.767 0.036  NA -0.857
##                            CI_97.5     p
## (Intercept)                 84.685 0.000
## CC$Naturalness_Score_BECCS   0.243 0.265
  m.c3 <- lm(CC$Risk_Score_BECCS ~ 1, data = CC) 
  mcSummary(m.c3)
## lm(formula = CC$Risk_Score_BECCS ~ 1, data = CC)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      20394.19 35 582.691          
## Corr Total 20394.19 35 582.691          
## 
##    RMSE AdjEtaSq
##  24.139        0
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 48.292 4.023 12.003 83955.06 0.805  NA 40.124  56.459 0
  modelCompare(m.c3, m.a3)
## SSE (Compact) =  20394.19 
## SSE (Augmented) =  19652.42 
## Delta R-Squared =  0.03637151 
## Partial Eta-Squared (PRE) =  0.03637151 
## F(1,34) = 1.283307, p = 0.2652107
  #4. DACCS
  m.a4 <- lm(CC$Risk_Score_DACCS ~ Naturalness_Score_DACCS, data = CC)
  mcSummary(m.a4)
## lm(formula = CC$Risk_Score_DACCS ~ Naturalness_Score_DACCS, data = CC)
## 
## Omnibus ANOVA
##                   SS df      MS EtaSq     F     p
## Model        869.682  1 869.682 0.036 1.251 0.271
## Error      23628.005 34 694.941                  
## Corr Total 24497.688 35 699.934                  
## 
##    RMSE AdjEtaSq
##  26.362    0.007
## 
## Coefficients
##                            Est  StErr     t    SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)             49.049 11.242 4.363 13229.567 0.359  NA 26.203  71.895
## Naturalness_Score_DACCS  0.341  0.305 1.119   869.682 0.036  NA -0.278   0.961
##                             p
## (Intercept)             0.000
## Naturalness_Score_DACCS 0.271
  m.c4 <- lm(Risk_Score_DACCS ~ 1, data = CC) 
  mcSummary(m.c4)
## lm(formula = Risk_Score_DACCS ~ 1, data = CC)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      24497.69 35 699.934          
## Corr Total 24497.69 35 699.934          
## 
##    RMSE AdjEtaSq
##  26.456        0
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 60.625 4.409 13.749 132314.1 0.844  NA 51.673  69.577 0
  modelCompare(m.c4, m.a4)
## SSE (Compact) =  24497.69 
## SSE (Augmented) =  23628.01 
## Delta R-Squared =  0.03550059 
## Partial Eta-Squared (PRE) =  0.03550059 
## F(1,34) = 1.251447, p = 0.2711179
  #5. EW
  m.a5 <- lm(Risk_Score_EW ~ Naturalness_Score_EW, data = CC)
  mcSummary(m.a5)
## lm(formula = Risk_Score_EW ~ Naturalness_Score_EW, data = CC)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq     F     p
## Model        394.22  1 394.220 0.024 0.769 0.387
## Error      15901.01 31 512.936                  
## Corr Total 16295.23 32 509.226                  
## 
##    RMSE AdjEtaSq
##  22.648   -0.007
## 
## Coefficients
##                         Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)          46.949 8.946  5.248 14126.43 0.470  NA 28.703  65.196
## Naturalness_Score_EW -0.171 0.196 -0.877   394.22 0.024  NA -0.570   0.227
##                          p
## (Intercept)          0.000
## Naturalness_Score_EW 0.387
  m.c5 <- lm(Risk_Score_EW ~ 1, data = CC) 
  mcSummary(m.c5)
## lm(formula = Risk_Score_EW ~ 1, data = CC)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      16295.23 32 509.226          
## Corr Total 16295.23 32 509.226          
## 
##    RMSE AdjEtaSq
##  22.566        0
## 
## Coefficients
##                Est StErr     t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 39.909 3.928 10.16 52560.27 0.763  NA 31.908  47.911 0
  modelCompare(m.c5, m.a5)
## SSE (Compact) =  16295.23 
## SSE (Augmented) =  15901.01 
## Delta R-Squared =  0.02419239 
## Partial Eta-Squared (PRE) =  0.02419239 
## F(1,31) = 0.7685572, p = 0.387407
  #6. OF
  m.a6 <- lm(Risk_Score_OF ~ Naturalness_Score_OF, data = CC)
  mcSummary(m.a6)
## lm(formula = Risk_Score_OF ~ Naturalness_Score_OF, data = CC)
## 
## Omnibus ANOVA
##                   SS df       MS EtaSq     F     p
## Model       1478.978  1 1478.978  0.08 2.611 0.117
## Error      16990.897 30  566.363                  
## Corr Total 18469.875 31  595.802                  
## 
##    RMSE AdjEtaSq
##  23.798    0.049
## 
## Coefficients
##                         Est  StErr      t    SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)          66.024 10.099  6.538 24206.468 0.588  NA 45.399  86.649
## Naturalness_Score_OF -0.342  0.211 -1.616  1478.978 0.080  NA -0.773   0.090
##                          p
## (Intercept)          0.000
## Naturalness_Score_OF 0.117
  m.c6 <- lm(Risk_Score_OF ~ 1, data = CC) 
  mcSummary(m.c6)
## lm(formula = Risk_Score_OF ~ 1, data = CC)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      18469.88 31 595.802          
## Corr Total 18469.88 31 595.802          
## 
##    RMSE AdjEtaSq
##  24.409        0
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 51.188 4.315 11.863 83845.12 0.819  NA 42.387  59.988 0
  modelCompare(m.c6, m.a6)
## SSE (Compact) =  18469.88 
## SSE (Augmented) =  16990.9 
## Delta R-Squared =  0.08007514 
## Partial Eta-Squared (PRE) =  0.08007514 
## F(1,30) = 2.611359, p = 0.11657
  #7. BF
  m.a7 <- lm(Risk_Score_BF ~ Naturalness_Score_BF, data = CC)
  mcSummary(m.a7)
## lm(formula = Risk_Score_BF ~ Naturalness_Score_BF, data = CC)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq     F     p
## Model        315.29  1 315.290 0.018 0.386 0.541
## Error      17174.95 21 817.855                  
## Corr Total 17490.24 22 795.011                  
## 
##    RMSE AdjEtaSq
##  28.598   -0.029
## 
## Coefficients
##                         Est  StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)          52.165 13.742  3.796 11785.40 0.407  NA 23.587  80.743
## Naturalness_Score_BF -0.205  0.330 -0.621   315.29 0.018  NA -0.891   0.481
##                          p
## (Intercept)          0.001
## Naturalness_Score_BF 0.541
  m.c7 <- lm(Risk_Score_BF ~ 1, data = CC) 
  mcSummary(m.c7)
## lm(formula = Risk_Score_BF ~ 1, data = CC)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      17490.24 22 795.011          
## Corr Total 17490.24 22 795.011          
## 
##    RMSE AdjEtaSq
##  28.196        0
## 
## Coefficients
##                Est StErr     t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 44.478 5.879 7.565 45501.26 0.722  NA 32.285  56.671 0
  modelCompare(m.c7, m.a7)
## SSE (Compact) =  17490.24 
## SSE (Augmented) =  17174.95 
## Delta R-Squared =  0.01802662 
## Partial Eta-Squared (PRE) =  0.01802662 
## F(1,21) = 0.3855084, p = 0.541351
  #8. NE
  m.a8 <- lm(Risk_Score_NE ~ Naturalness_Score_NE, data = CC)
  mcSummary(m.a8)
## lm(formula = Risk_Score_NE ~ Naturalness_Score_NE, data = CC)
## 
## Omnibus ANOVA
##                   SS df       MS EtaSq      F     p
## Model       7836.382  1 7836.382 0.324 12.924 0.001
## Error      16370.877 27  606.329                   
## Corr Total 24207.259 28  864.545                   
## 
##    RMSE AdjEtaSq
##  24.624    0.299
## 
## Coefficients
##                         Est  StErr      t    SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)          93.415 11.188  8.350 42271.582 0.721  NA 70.460 116.371
## Naturalness_Score_NE -0.963  0.268 -3.595  7836.382 0.324  NA -1.513  -0.413
##                          p
## (Intercept)          0.000
## Naturalness_Score_NE 0.001
  m.c8 <- lm(Risk_Score_NE ~ 1, data = CC) 
  mcSummary(m.c8)
## lm(formula = Risk_Score_NE ~ 1, data = CC)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      24207.26 28 864.545          
## Corr Total 24207.26 28 864.545          
## 
##    RMSE AdjEtaSq
##  29.403        0
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 56.707  5.46 10.386 93254.49 0.794  NA 45.523  67.891 0
  modelCompare(m.c8, m.a8)
## SSE (Compact) =  24207.26 
## SSE (Augmented) =  16370.88 
## Delta R-Squared =  0.3237203 
## Partial Eta-Squared (PRE) =  0.3237203 
## F(1,27) = 12.92431, p = 0.001278274
  #9. SE
  m.a9 <- lm(Risk_Score_SE ~ Naturalness_Score_SE, data = CC)
  mcSummary(m.a9)
## lm(formula = Risk_Score_SE ~ Naturalness_Score_SE, data = CC)
## 
## Omnibus ANOVA
##                  SS df       MS EtaSq     F    p
## Model       1401.16  1 1401.160 0.057 1.392 0.25
## Error      23151.50 23 1006.587                 
## Corr Total 24552.66 24 1023.028                 
## 
##    RMSE AdjEtaSq
##  31.727    0.016
## 
## Coefficients
##                         Est  StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)          54.730 19.432  2.816 7984.775 0.256  NA 14.532  94.928
## Naturalness_Score_SE -0.449  0.381 -1.180 1401.160 0.057  NA -1.238   0.339
##                         p
## (Intercept)          0.01
## Naturalness_Score_SE 0.25
  m.c9 <- lm(Risk_Score_SE ~ 1, data = CC) 
  mcSummary(m.c9)
## lm(formula = Risk_Score_SE ~ 1, data = CC)
## 
## Omnibus ANOVA
##                  SS df       MS EtaSq F p
## Model          0.00  0      Inf     0    
## Error      24552.66 24 1023.028          
## Corr Total 24552.66 24 1023.028          
## 
##    RMSE AdjEtaSq
##  31.985        0
## 
## Coefficients
##               Est StErr     t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 33.06 6.397 5.168 27324.09 0.527  NA 19.857  46.263 0
  modelCompare(m.c9, m.a9)
## SSE (Compact) =  24552.66 
## SSE (Augmented) =  23151.5 
## Delta R-Squared =  0.05706756 
## Partial Eta-Squared (PRE) =  0.05706756 
## F(1,23) = 1.391992, p = 0.2501288
  #10. WE
  m.a10 <- lm(Risk_Score_WE ~ Naturalness_Score_WE, data = CC)
  mcSummary(m.a10)
## lm(formula = Risk_Score_WE ~ Naturalness_Score_WE, data = CC)
## 
## Omnibus ANOVA
##                   SS df       MS EtaSq     F     p
## Model       4238.864  1 4238.864 0.267 8.741 0.007
## Error      11638.521 24  484.938                  
## Corr Total 15877.385 25  635.095                  
## 
##    RMSE AdjEtaSq
##  22.021    0.236
## 
## Coefficients
##                         Est  StErr      t    SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)          93.220 19.944  4.674 10594.341 0.477  NA 52.058 134.383
## Naturalness_Score_WE -1.082  0.366 -2.957  4238.864 0.267  NA -1.838  -0.327
##                          p
## (Intercept)          0.000
## Naturalness_Score_WE 0.007
  m.c10 <- lm(Risk_Score_WE ~ 1, data = CC) 
  mcSummary(m.c10)
## lm(formula = Risk_Score_WE ~ 1, data = CC)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      15877.39 25 635.095          
## Corr Total 15877.39 25 635.095          
## 
##    RMSE AdjEtaSq
##  25.201        0
## 
## Coefficients
##                Est StErr     t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 35.654 4.942 7.214 33051.11 0.675  NA 25.475  45.833 0
  modelCompare(m.c10, m.a10)
## SSE (Compact) =  15877.38 
## SSE (Augmented) =  11638.52 
## Delta R-Squared =  0.2669749 
## Partial Eta-Squared (PRE) =  0.2669749 
## F(1,24) = 8.741035, p = 0.006879434