Prueba caso 4. Medidas de Dispersión
library(ggplot2)
library(fdth)
datos <- c(27, 30, 22, 23, 20, 21, 25,
20, 18, 27, 19, 26, 30, 24)
datos
## [1] 27 30 22 23 20 21 25 20 18 27 19 26 30 24
Determinar la varianza con una tabla con columnas que determinan la suma
tabla.varianza <- data.frame(xi = datos,
media = mean(datos),
xi.menos.media = datos - mean(datos),
xi.menos.media.cuad = (datos - mean(datos))^2)
tabla.varianza
## xi media xi.menos.media xi.menos.media.cuad
## 1 27 23.71429 3.2857143 10.79591837
## 2 30 23.71429 6.2857143 39.51020408
## 3 22 23.71429 -1.7142857 2.93877551
## 4 23 23.71429 -0.7142857 0.51020408
## 5 20 23.71429 -3.7142857 13.79591837
## 6 21 23.71429 -2.7142857 7.36734694
## 7 25 23.71429 1.2857143 1.65306122
## 8 20 23.71429 -3.7142857 13.79591837
## 9 18 23.71429 -5.7142857 32.65306122
## 10 27 23.71429 3.2857143 10.79591837
## 11 19 23.71429 -4.7142857 22.22448980
## 12 26 23.71429 2.2857143 5.22448980
## 13 30 23.71429 6.2857143 39.51020408
## 14 24 23.71429 0.2857143 0.08163265
Determinamos la suma
suma <- sum(tabla.varianza$xi.menos.media.cuad)
suma
## [1] 200.8571
Determinando varianza
n <- length(datos)
varianza <- suma / (n-1)
varianza
## [1] 15.45055
varianza <- var(datos)
varianza
## [1] 15.45055
desv.std <- sqrt(varianza)
desv.std
## [1] 3.930719