Naturalness Pilot Data: Protein Perceptions Project

Sarah Coffin

February 21, 2022

Goal: to provide a pilot data overview for the Protein Perceptions naturalness project. The variables of main focus are perceptions of naturalness and risk, as well as endorsement for burger types. Six burgers were included in pilot data collection, with each participant being randomly assigned a survey regarding 2 of the 6 total burger types. Final data will be aggregated for a cross random effects analysis to account for relationships between key variables for all 6 proteins.

PP <- read.csv("Proteins_Full2.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))

##Demographics

#Number of responses (rows)
nrow(PP)
## [1] 115
#Age range
range(PP$Dem_2_Age, na.rm = T)
## [1] 19 77
#Average age
mean(PP$Dem_2_Age, na.rm = T)
## [1] 39.92233
#Standard deviation of age
sd(PP$Dem_2_Age, na.rm = T)
## [1] 12.06899
#Gender frequencies
table(PP$Dem_1_Gen)
## 
##  1  2  3 
## 65 37  2
#Ethnicity frequencies
table(PP$Dem_6_Ethnicity)
## 
##  1  2  3  4  6 
##  5 23  4  5 67

#Naturalness by Burger Type

#1. GFFB Naturalness Descriptives 

#Reverse Code Items 2 and 3

PP$Nat_1_GFFB <- PP$GFFB_Naturalness_30
PP$Nat_2R_GFFB <- (102-PP$GFFB_Naturalness_31)
PP$Nat_3R_GFFB <- (102-PP$GFFB_Naturalness_35)

PP$Nat_2_GFFB <- PP$GFFB_Naturalness_31
PP$Nat_3_GFFB <- PP$GFFB_Naturalness_35

#GFFB Naturalness Scale
PP$Naturalness_Score_GFFB <- rowMeans(PP [, c("Nat_1_GFFB", "Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
PP$Naturalness_Scale_GFFB <- data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)

#GFFB Cronbach's alpha for naturalness scale
psych::alpha(data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.Nat_1_GFFB ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.17      0.17    0.32     0.064 0.21 0.13   51 21     0.18
## 
##  lower alpha upper     95% confidence boundaries
## -0.09 0.17 0.43 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r med.r
## PP.Nat_1_GFFB       0.50      0.50    0.34      0.34  1.01    0.093    NA  0.34
## PP.Nat_2R_GFFB     -0.98     -0.98   -0.33     -0.33 -0.49    0.368    NA -0.33
## PP.Nat_3R_GFFB      0.31      0.31    0.18      0.18  0.45    0.128    NA  0.18
## 
##  Item statistics 
##                 n raw.r std.r r.cor  r.drop mean sd
## PP.Nat_1_GFFB  53  0.47  0.47  0.06 -0.0868   56 34
## PP.Nat_2R_GFFB 53  0.83  0.83  0.71  0.4490   46 34
## PP.Nat_3R_GFFB 53  0.55  0.55  0.27  0.0048   53 34
hist(PP$Naturalness_Score_GFFB, main = 'GFFB Naturalness Scale Score')

#Correlation
cor.plot(PP$Naturalness_Scale_GFFB, labels = c('1','2','3'), main = "Correlation Between GFFB Naturalness Items")

#Individual GFFB Naturalness Items
#Item 1
psych::describe(PP$Nat_1_GFFB)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis  se
## X1    1 53 55.7 34.23     66   57.05 40.03   0 100   100 -0.33    -1.37 4.7
range(PP$Nat_1_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_1_GFFB, main = 'GFFB Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(PP$Nat_2R_GFFB)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 53 45.64 34.09     45   44.37 45.96   2 102   100 0.19    -1.39 4.68
range(PP$Nat_2R_GFFB, na.rm=TRUE)
## [1]   2 102
hist(PP$Nat_2R_GFFB, main = 'GFFB Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(PP$Nat_3R_GFFB)
##    vars  n mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 53 52.7 33.94     47   52.79 41.51   2 102   100 0.04    -1.46 4.66
range(PP$Nat_3R_GFFB, na.rm=TRUE)
## [1]   2 102
hist(PP$Nat_3R_GFFB, main = 'GFFB Naturalness Item #3: "This relies on science-based technology."')

#2. GFPRB Naturalness Descriptives 

#Reverse Code Items 2 and 3

PP$Nat_1_GFPRB <- PP$GFPRB_Naturalness_30
PP$Nat_2R_GFPRB <- (102-PP$GFPRB_Naturalness_31)
PP$Nat_3R_GFPRB <- (102-PP$GFPRB_Naturalness_35)

PP$Nat_2_GFPRB <- PP$GFPRB_Naturalness_31
PP$Nat_3_GFPRB <- PP$GFPRB_Naturalness_35

#GFPRB Naturalness Scale
PP$Naturalness_Score_GFPRB <- rowMeans(PP [, c("Nat_1_GFPRB", "Nat_2R_GFPRB", "Nat_3R_GFPRB")], na.rm=TRUE)
PP$Naturalness_Scale_GFPRB <- data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB)

#GFPRB Cronbach's alpha for naturalness scale
psych::alpha(data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, 
##     PP$Nat_3R_GFPRB))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N   ase mean sd median_r
##       0.53      0.49    0.58      0.24 0.95 0.069   60 21     0.25
## 
##  lower alpha upper     95% confidence boundaries
## 0.4 0.53 0.67 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## PP.Nat_1_GFPRB       0.75      0.75    0.60      0.60  3.06    0.046    NA
## PP.Nat_2R_GFPRB     -0.29     -0.32   -0.14     -0.14 -0.24    0.226    NA
## PP.Nat_3R_GFPRB      0.38      0.40    0.25      0.25  0.68    0.107    NA
##                 med.r
## PP.Nat_1_GFPRB   0.60
## PP.Nat_2R_GFPRB -0.14
## PP.Nat_3R_GFPRB  0.25
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_GFPRB  52  0.42  0.53  0.20  0.064   73 22
## PP.Nat_2R_GFPRB 53  0.91  0.88  0.83  0.687   54 32
## PP.Nat_3R_GFPRB 53  0.77  0.70  0.58  0.376   53 32
hist(PP$Naturalness_Score_GFPRB, main = 'GFPRB Naturalness Scale Score')

#Correlation
cor.plot(PP$Naturalness_Scale_GFPRB, labels = c('1','2','3'), main = "Correlation Between GFPRB Naturalness Items")

#Individual GFPRB Naturalness Items
#Item 1
psych::describe(PP$Nat_1_GFPRB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 52 72.77 22.26   77.5   75.43 15.57   0 100   100 -1.15     1.17 3.09
range(PP$Nat_1_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_1_GFPRB, main = 'GFPRB Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(PP$Nat_2_GFPRB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 53 48.09 31.95     58   48.14 40.03   0 100   100 -0.12    -1.45 4.39
range(PP$Nat_2_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_2_GFPRB, main = 'GFPRB Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(PP$Nat_3_GFPRB)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 53 49.4 32.15     57    49.7 40.03   0 100   100 -0.15    -1.41 4.42
range(PP$Nat_3_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_3_GFPRB, main = 'GFPRB Naturalness Item #3: "This relies on science-based technology."')

#3. CBB Naturalness Descriptives 

#Reverse Code Items 2 and 3

PP$Nat_1_CBB <- PP$CBB_Naturalness_30
PP$Nat_2R_CBB <- (102-PP$CBB_Naturalness_31)
PP$Nat_3R_CBB <- (102-PP$CBB_Naturalness_35)

PP$Nat_2_CBB <- PP$CBB_Naturalness_31
PP$Nat_3_CBB <- PP$CBB_Naturalness_35

#CBB Naturalness Scale
PP$Naturalness_Score_CBB <- rowMeans(PP [, c("Nat_1_CBB", "Nat_2R_CBB", "Nat_3R_CBB")], na.rm=TRUE)
PP$Naturalness_Scale_CBB <- data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)

#CBB Cronbach's alpha for naturalness scale
psych::alpha(data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.Nat_1_CBB ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##        0.1      0.12    0.09     0.042 0.13 0.14   35 18    0.029
## 
##  lower alpha upper     95% confidence boundaries
## -0.18 0.1 0.38 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r
## PP.Nat_1_CBB      0.240     0.242   0.138     0.138  0.319     0.14    NA
## PP.Nat_2R_CBB    -0.084    -0.088  -0.042    -0.042 -0.081     0.19    NA
## PP.Nat_3R_CBB     0.056     0.056   0.029     0.029  0.060     0.17    NA
##                med.r
## PP.Nat_1_CBB   0.138
## PP.Nat_2R_CBB -0.042
## PP.Nat_3R_CBB  0.029
## 
##  Item statistics 
##                n raw.r std.r  r.cor  r.drop mean sd
## PP.Nat_1_CBB  45  0.63  0.55 -0.018 -0.0053   44 34
## PP.Nat_2R_CBB 45  0.63  0.65  0.345  0.1077   35 29
## PP.Nat_3R_CBB 45  0.52  0.61  0.216  0.0571   28 25
hist(PP$Naturalness_Score_CBB, main = 'CBB Naturalness Scale Score')

#Correlation
cor.plot(PP$Naturalness_Scale_CBB, labels = c('1','2','3'), main = "Correlation Between CBB Naturalness Items")

#Individual CBB Naturalness Items
#Item 1
psych::describe(PP$Nat_1_CBB)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 45 43.62 33.85     39   42.65 44.48   0 100   100 0.07    -1.54 5.05
range(PP$Nat_1_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_1_CBB, main = 'CBB Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(PP$Nat_2_CBB)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 45   67 29.07     74   69.89 23.72   3 100    97 -0.79    -0.53 4.33
range(PP$Nat_2_CBB, na.rm=TRUE)
## [1]   3 100
hist(PP$Nat_2_CBB, main = 'CBB Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(PP$Nat_3_CBB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 45 74.22 25.25     79   77.76 22.24   0 100   100 -1.16     0.73 3.76
range(PP$Nat_3_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_3_CBB, main = 'CBB Naturalness Item #3: "This relies on science-based technology."')

#4. PBPB Naturalness Descriptives 

#Reverse Code Items 2 and 3

PP$Nat_1_PBPB <- PP$PBPB_Naturalness_30
PP$Nat_2R_PBPB <- (102-PP$PBPB_Naturalness_31)
PP$Nat_3R_PBPB <- (102-PP$PBPB_Naturalness_35)

PP$Nat_2_PBPB <- PP$PBPB_Naturalness_31
PP$Nat_3_PBPB <- PP$PBPB_Naturalness_35

#PBPB Naturalness Scale
PP$Naturalness_Score_PBPB <- rowMeans(PP [, c("Nat_1_PBPB", "Nat_2R_PBPB", "Nat_3R_PBPB")], na.rm=TRUE)
PP$Naturalness_Scale_PBPB <- data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)

#PBPB Cronbach's alpha for naturalness scale
psych::alpha(data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.Nat_1_PBPB ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##      0.044     0.018    0.13     0.006 0.018 0.15   51 16    -0.12
## 
##  lower alpha upper     95% confidence boundaries
## -0.25 0.04 0.34 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r med.r
## PP.Nat_1_PBPB       0.52      0.53    0.36      0.36  1.12    0.087    NA  0.36
## PP.Nat_2R_PBPB     -0.58     -0.58   -0.22     -0.22 -0.37    0.293    NA -0.22
## PP.Nat_3R_PBPB     -0.26     -0.27   -0.12     -0.12 -0.21    0.232    NA -0.12
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_PBPB  50  0.35  0.38 -0.47  -0.20   72 27
## PP.Nat_2R_PBPB 50  0.76  0.71  0.60   0.18   49 31
## PP.Nat_3R_PBPB 50  0.62  0.65  0.48   0.14   32 25
hist(PP$Naturalness_Score_PBPB, main = 'PBPB Naturalness Scale Score')

#Correlation
cor.plot(PP$Naturalness_Scale_PBPB, labels = c('1','2','3'), main = "Correlation Between PBPB Naturalness Items")

#Individual PBPB Naturalness Items
#Item 1
psych::describe(PP$Nat_1_PBPB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 50 72.18 26.74     77   76.25 22.24   0 100   100 -1.17     0.71 3.78
range(PP$Nat_1_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_1_PBPB, main = 'PBPB Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(PP$Nat_2_PBPB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 50 53.06 31.39   61.5    53.4 36.32   0 100   100 -0.22    -1.32 4.44
range(PP$Nat_2_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_2_PBPB, main = 'PBPB Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(PP$Nat_3_PBPB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 50 69.78 25.37     74   73.05 19.27   3 100    97 -1.02     0.49 3.59
range(PP$Nat_3_PBPB, na.rm=TRUE)
## [1]   3 100
hist(PP$Nat_3_PBPB, main = 'PBPB Naturalness Item #3: "This relies on science-based technology."')

#5. PBFB Naturalness Descriptives 

#Reverse Code Items 2 and 3

PP$Nat_1_PBFB <- PP$PBFB_Naturalness_30
PP$Nat_2R_PBFB <- (102-PP$PBFB_Naturalness_31)
PP$Nat_3R_PBFB <- (102-PP$PBFB_Naturalness_35)

PP$Nat_2_PBFB <- PP$PBFB_Naturalness_31
PP$Nat_3_PBFB <- PP$PBFB_Naturalness_35

#PBFB Naturalness Scale
PP$Naturalness_Score_PBFB <- rowMeans(PP [, c("Nat_1_PBFB", "Nat_2R_PBFB", "Nat_3R_PBFB")], na.rm=TRUE)
PP$Naturalness_Scale_PBFB <- data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)

#PBFB Cronbach's alpha for naturalness scale
psych::alpha(data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.Nat_1_PBFB ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.28      0.32    0.38      0.13 0.47 0.12   42 16   -0.037
## 
##  lower alpha upper     95% confidence boundaries
## 0.04 0.28 0.52 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r
## PP.Nat_1_PBFB      0.718     0.719   0.561     0.561  2.557    0.052    NA
## PP.Nat_2R_PBFB    -0.268    -0.272  -0.120    -0.120 -0.214    0.233    NA
## PP.Nat_3R_PBFB    -0.077    -0.077  -0.037    -0.037 -0.072    0.200    NA
##                 med.r
## PP.Nat_1_PBFB   0.561
## PP.Nat_2R_PBFB -0.120
## PP.Nat_3R_PBFB -0.037
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_PBFB  60  0.49  0.43 -0.12 -0.087   56 27
## PP.Nat_2R_PBFB 60  0.76  0.78  0.69  0.355   36 25
## PP.Nat_3R_PBFB 60  0.70  0.74  0.63  0.292   35 23
hist(PP$Naturalness_Score_PBFB, main = 'PBFB Naturalness Scale Score')

#Correlation
cor.plot(PP$Naturalness_Scale_PBFB, labels = c('1','2','3'), main = "Correlation Between PBFB Naturalness Items")

#Individual PBPB Naturalness Items
#Item 1
psych::describe(PP$Nat_1_PBFB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 60 55.58 27.45     56   56.44 27.43   0 100   100 -0.26    -0.79 3.54
range(PP$Nat_1_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_1_PBFB, main = 'PBFB Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(PP$Nat_2_PBFB)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 60 66.42 24.69     70   68.46 21.5   0 100   100 -0.71     0.12 3.19
range(PP$Nat_2_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_2_PBFB, main = 'PBFB Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(PP$Nat_3_PBFB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 60 67.03 23.16     71   68.69 22.24   0 100   100 -0.73      0.4 2.99
range(PP$Nat_3_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_3_PBFB, main = 'PBFB Naturalness Item #3: "This relies on science-based technology."')

#6. VB Naturalness Descriptives 

#Reverse Code Items 2 and 3

PP$Nat_1_VB <- PP$VB_Naturalness_30
PP$Nat_2R_VB <- (102-PP$VB_Naturalness_31)
PP$Nat_3R_VB <- (102-PP$VB_Naturalness_35)

PP$Nat_2_VB <- PP$VB_Naturalness_31
PP$Nat_3_VB <- PP$VB_Naturalness_35

#VB Naturalness Scale
PP$Naturalness_Score_VB <- rowMeans(PP [, c("Nat_1_VB", "Nat_2R_VB", "Nat_3R_VB")], na.rm=TRUE)
PP$Naturalness_Scale_VB <- data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)

#VB Cronbach's alpha for naturalness scale
psych::alpha(data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.Nat_1_VB ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##        0.2      0.14    0.25      0.05 0.16 0.12   50 17   -0.082
## 
##  lower alpha upper     95% confidence boundaries
## -0.04 0.2 0.44 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r  med.r
## PP.Nat_1_VB       0.63      0.63   0.463     0.463  1.72    0.069    NA  0.463
## PP.Nat_2R_VB     -0.59     -0.60  -0.231    -0.231 -0.37    0.293    NA -0.231
## PP.Nat_3R_VB     -0.17     -0.18  -0.082    -0.082 -0.15    0.214    NA -0.082
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_VB  56  0.30  0.38 -0.29  -0.18   69 24
## PP.Nat_2R_VB 55  0.80  0.76  0.66   0.34   45 30
## PP.Nat_3R_VB 56  0.71  0.68  0.53   0.23   37 28
hist(PP$Naturalness_Score_VB, main = 'VB Naturalness Scale Score')

#Correlation
cor.plot(PP$Naturalness_Scale_VB, labels = c('1','2','3'), main = "Correlation Between VB Naturalness Items")

#Individual VB Naturalness Items
#Item 1
psych::describe(PP$Nat_1_VB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 56 68.68 24.43     72   70.83 20.76   0 100   100 -0.72    -0.07 3.26
range(PP$Nat_1_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_1_VB, main = 'VB Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(PP$Nat_2_VB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 55 56.84 30.46     65   57.73 35.58   0 100   100 -0.26    -1.19 4.11
range(PP$Nat_2_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_2_VB, main = 'VB Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(PP$Nat_3_VB)
##    vars  n  mean    sd median trimmed  mad min max range skew kurtosis   se
## X1    1 56 65.25 28.39     76   67.65 25.2   0 100   100 -0.7    -0.65 3.79
range(PP$Nat_3_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Nat_3_VB, main = 'VB Naturalness Item #3: "This relies on science-based technology."')

#Risk Perception by Burger Type Risk perception was measured with 2 items on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’). Risk Item 1: This is risky to deploy. Risk Item 2: This is frightening.

#1. GFFB Risk Descriptives 

PP$Risk_1_GFFB <- PP$GFFB_Risk_32
PP$Risk_2_GFFB <- PP$GFFB_Risk_35

#GFFB Risk Scale
PP$Risk_Score_GFFB <- rowMeans(PP [, c("Risk_1_GFFB", "Risk_2_GFFB")], na.rm=TRUE)
PP$Risk_Scale_GFFB <- data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB)

#GFFB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.83      0.83    0.71      0.71 4.9 0.032   48 32     0.71
## 
##  lower alpha upper     95% confidence boundaries
## 0.77 0.83 0.89 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_GFFB      0.68      0.71     0.5      0.71 2.4       NA     0  0.71
## PP.Risk_2_GFFB      0.74      0.71     0.5      0.71 2.4       NA     0  0.71
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_GFFB 53  0.92  0.92  0.78   0.71   47 34
## PP.Risk_2_GFFB 53  0.93  0.92  0.78   0.71   49 35
hist(PP$Risk_Score_GFFB, main = 'GFFB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_GFFB, labels = c('1','2'), main = "Correlation Between GFFB Risk Items")

#Individual GFFB Risk Items
#Item 1
psych::describe(PP$Risk_1_GFFB)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 53 46.91 34.16     49   46.35 45.96   0 100   100 0.05    -1.41 4.69
range(PP$Risk_1_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_GFFB, main = 'GFFB Risk Item #1: "This is risky to deploy.')

#Item 2
psych::describe(PP$Risk_2_GFFB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 53 48.74 35.42     47   48.63 47.44   0 100   100 -0.05    -1.58 4.86
range(PP$Risk_2_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_GFFB, main = 'GFFB Risk Item #2: "This is frightening."')

#2. GFPRB Risk Descriptives 

PP$Risk_1_GFPRB <- PP$GFPRB_Risk_32
PP$Risk_2_GFPRB <- PP$GFPRB_Risk_35

#GFPRB Risk Scale
PP$Risk_Score_GFPRB <- rowMeans(PP [, c("Risk_1_GFPRB", "Risk_2_GFPRB")], na.rm=TRUE)
PP$Risk_Scale_GFPRB <- data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB)

#GFPRB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.91      0.91    0.84      0.84  10 0.017   47 31     0.84
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.91 0.94 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_GFPRB      0.82      0.84     0.7      0.84 5.1       NA     0  0.84
## PP.Risk_2_GFPRB      0.86      0.84     0.7      0.84 5.1       NA     0  0.84
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_GFPRB 53  0.96  0.96  0.88   0.84   46 32
## PP.Risk_2_GFPRB 53  0.96  0.96  0.88   0.84   47 33
hist(PP$Risk_Score_GFPRB, main = 'GFFB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_GFPRB, labels = c('1','2'), main = "Correlation Between GFPRB Risk Items")

#Individual GFPRB Risk Items
#Item 1
psych::describe(PP$Risk_1_GFPRB)
##    vars  n  mean    sd median trimmed mad min max range  skew kurtosis   se
## X1    1 53 46.49 32.44     52   46.28  43   0 100   100 -0.01    -1.49 4.46
range(PP$Risk_1_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_GFPRB, main = 'GFPRB Risk Item #1: "This is risky to deploy.')

#Item 2
psych::describe(PP$Risk_2_GFPRB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 53 46.98 33.21     50   46.63 44.48   0 100   100 -0.02     -1.5 4.56
range(PP$Risk_2_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_GFPRB, main = 'GFPRB Risk Item #2: "This is frightening."')

#3. CBB Risk Descriptives 

PP$Risk_1_CBB <- PP$CBB_Risk_32
PP$Risk_2_CBB <- PP$CBB_Risk_35

#CBB Risk Scale
PP$Risk_Score_CBB <- rowMeans(PP [, c("Risk_1_CBB", "Risk_2_CBB")], na.rm=TRUE)
PP$Risk_Scale_CBB <- data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB)

#CBB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.84      0.84    0.72      0.72 5.2 0.03   53 29     0.72
## 
##  lower alpha upper     95% confidence boundaries
## 0.78 0.84 0.9 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_CBB      0.72      0.72    0.52      0.72 2.6       NA     0  0.72
## PP.Risk_2_CBB      0.72      0.72    0.52      0.72 2.6       NA     0  0.72
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_CBB 44  0.93  0.93  0.79   0.72   52 32
## PP.Risk_2_CBB 44  0.93  0.93  0.79   0.72   53 32
hist(PP$Risk_Score_CBB, main = 'CBB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_CBB, labels = c('1','2'), main = "Correlation Between CBB Risk Items")

#Individual CBB Risk Items
#Item 1
psych::describe(PP$Risk_1_CBB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 44 51.95 31.62     56   52.14 40.77   0 100   100 -0.07    -1.35 4.77
range(PP$Risk_1_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_CBB, main = 'CBB Risk Item #1: "This is risky to deploy.')

#Item 2
psych::describe(PP$Risk_2_CBB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 44 53.48 31.76     64   54.36 33.36   0 100   100 -0.29     -1.3 4.79
range(PP$Risk_2_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_CBB, main = 'CBB Risk Item #2: "This is frightening."')

#4. PBPB Risk Descriptives 

PP$Risk_1_PBPB <- PP$PBPB_Risk_32
PP$Risk_2_PBPB <- PP$PBPB_Risk_35

#PBPB Risk Scale
PP$Risk_Score_PBPB <- rowMeans(PP [, c("Risk_1_PBPB", "Risk_2_PBPB")], na.rm=TRUE)
PP$Risk_Scale_PBPB <- data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB)

#PBPB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.93      0.93    0.86      0.86  12 0.014   45 31     0.86
## 
##  lower alpha upper     95% confidence boundaries
## 0.9 0.93 0.95 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_PBPB      0.85      0.86    0.74      0.86 6.2       NA     0  0.86
## PP.Risk_2_PBPB      0.87      0.86    0.74      0.86 6.2       NA     0  0.86
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_PBPB 50  0.96  0.96   0.9   0.86   46 32
## PP.Risk_2_PBPB 50  0.97  0.96   0.9   0.86   44 33
hist(PP$Risk_Score_PBPB, main = 'PBPB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_PBPB, labels = c('1','2'), main = "Correlation Between PBPB Risk Items")

#Individual PBPB Risk Items
#Item 1
psych::describe(PP$Risk_1_PBPB)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 50 45.82 32.4     53    45.6 43.74   0 100   100 -0.01    -1.52 4.58
range(PP$Risk_1_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_PBPB, main = 'PBPB Risk Item #1: "This is risky to deploy.')

#Item 2
psych::describe(PP$Risk_2_PBPB)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 50 44.34 32.7   52.5      44 45.96   0 100   100 -0.02    -1.57 4.63
range(PP$Risk_2_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_PBPB, main = 'PBPB Risk Item #2: "This is frightening."')

#5. PBFB Risk Descriptives 

PP$Risk_1_PBFB <- PP$PBFB_Risk_32
PP$Risk_2_PBFB <- PP$PBFB_Risk_35

#PBFB Risk Scale
PP$Risk_Score_PBFB <- rowMeans(PP [, c("Risk_1_PBFB", "Risk_2_PBFB")], na.rm=TRUE)
PP$Risk_Scale_PBFB <- data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB)

#PBFB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.86      0.86    0.75      0.75   6 0.027   48 28     0.75
## 
##  lower alpha upper     95% confidence boundaries
## 0.8 0.86 0.91 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_PBFB      0.78      0.75    0.56      0.75   3       NA     0  0.75
## PP.Risk_2_PBFB      0.72      0.75    0.56      0.75   3       NA     0  0.75
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_PBFB 60  0.94  0.94  0.81   0.75   49 31
## PP.Risk_2_PBFB 60  0.93  0.94  0.81   0.75   48 30
hist(PP$Risk_Score_PBFB, main = 'PBFB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_PBFB, labels = c('1','2'), main = "Correlation Between PBFB Risk Items")

#Individual PBPB Risk Items
#Item 1
psych::describe(PP$Risk_1_PBFB)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis se
## X1    1 60 49.07 30.98     53   49.25 37.06   0 100   100 -0.12    -1.21  4
range(PP$Risk_1_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_PBFB, main = 'PBFB Risk Item #1: "This is risky to deploy.')

#Item 2
psych::describe(PP$Risk_2_PBFB)
##    vars  n  mean   sd median trimmed   mad min max range skew kurtosis   se
## X1    1 60 47.57 29.6     45    47.5 34.84   0 100   100    0     -1.1 3.82
range(PP$Risk_2_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_PBFB, main = 'PBFB Risk Item #2: "This is frightening."')

#6. VB Risk Descriptives 

PP$Risk_1_VB <- PP$VB_Risk_32
PP$Risk_2_VB <- PP$VB_Risk_35

#VB Risk Scale
PP$Risk_Score_VB <- rowMeans(PP [, c("Risk_1_VB", "Risk_2_VB")], na.rm=TRUE)
PP$Risk_Scale_VB <- data.frame(PP$Risk_1_VB, PP$Risk_2_VB)

#VB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_VB, PP$Risk_2_VB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_VB, PP$Risk_2_VB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.84      0.84    0.73      0.73 5.4 0.029   37 30     0.73
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.84 0.9 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_VB      0.68      0.73    0.53      0.73 2.7       NA     0  0.73
## PP.Risk_2_VB      0.79      0.73    0.53      0.73 2.7       NA     0  0.73
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_VB 56  0.92  0.93   0.8   0.73   36 31
## PP.Risk_2_VB 56  0.94  0.93   0.8   0.73   37 34
hist(PP$Risk_Score_VB, main = 'VB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_VB, labels = c('1','2'), main = "Correlation Between VB Risk Items")

#Individual VB Risk Items
#Item 1
psych::describe(PP$Risk_1_VB)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 56 35.79 31.19     29   33.74 42.25   0 100   100 0.42    -1.22 4.17
range(PP$Risk_1_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_VB, main = 'VB Risk Item #1: "This is risky to deploy.')

#Item 2
psych::describe(PP$Risk_2_VB)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 56 37.38 33.74   24.5   35.41 36.32   0 100   100 0.36    -1.43 4.51
range(PP$Risk_2_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_VB, main = 'VB Risk Item #2: "This is frightening."')

##Individual Difference Measures

##Environmentalism Scale

Environmentalism was measured on with 3 items a 1-00 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

ENV Item 1: Protecting the environment, preserving nature ENV Item 2: Unity with nature ENV Item 3: Respecting the earth, harmony with other species

#Environmentalism Item Definitions
PP$ENV_1 <- as.numeric(as.character(PP$Environ_1_18))
PP$ENV_2 <- as.numeric(as.character(PP$Environ_1_19))
PP$ENV_3 <- as.numeric(as.character(PP$Environ_1_26))

#Environmentalism Descriptives 
psych::describe(PP$ENV_1)
##    vars   n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105   72 24.89     76   75.32 22.24   0 100   100 -1.07     0.73 2.43
range(PP$ENV_1, na.rm=TRUE)
## [1]   0 100
psych::describe(PP$ENV_2)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis  se
## X1    1 105 71.63 24.57     75   74.94 22.24   0 100   100 -1.11     0.86 2.4
range(PP$ENV_2, na.rm=TRUE)
## [1]   0 100
psych::describe(PP$ENV_3)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 73.34 24.35     78   76.87 23.72   0 100   100 -1.16     1.16 2.38
range(PP$ENV_3, na.rm=TRUE)
## [1]   0 100
#Environmentalism Scale Histograms by Item 
hist(PP$ENV_1, main = 'ENV #1: Protecting the environment, preserving nature')

hist(PP$ENV_2, main = 'ENV #2: Unity with nature')

hist(PP$ENV_3, main = 'ENV #3: Respecting the earth, harmony with other species')

#Cronbach's Alpha
PP$ENVS_Score <- rowMeans(PP [, c("ENV_1", "ENV_2", "ENV_3")], na.rm=TRUE)
PP$ENV_Scale <- data.frame(PP$ENV_1, PP$ENV_2, PP$ENV_3)
psych::alpha(PP$ENV_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$ENV_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.92      0.92    0.89      0.79  11 0.013   72 23     0.81
## 
##  lower alpha upper     95% confidence boundaries
## 0.89 0.92 0.94 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.ENV_1      0.89      0.89    0.81      0.81 8.5    0.020    NA  0.81
## PP.ENV_2      0.89      0.89    0.81      0.81 8.4    0.020    NA  0.81
## PP.ENV_3      0.86      0.86    0.75      0.75 6.1    0.026    NA  0.75
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean sd
## PP.ENV_1 105  0.92  0.92  0.86   0.82   72 25
## PP.ENV_2 105  0.92  0.92  0.86   0.82   72 25
## PP.ENV_3 105  0.94  0.94  0.90   0.86   73 24
#Correlation ENV Scale
cor.plot(PP$ENV_Scale, labels = c('1','2','3'), main = "Correlations Between Environmentalism Scale Items")

##Aversion to Tampering with Nature Scale

Aversion to tampering with nature was measured on with 5 items a 1-00 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

ATNS Item 1: People who push for technological fixes to environmental problems are underestimating the risks. ATNS Item 2: People who say we shouldn’t tamper with nature are just being naïve. ATNS Item 3: Human beings have no right to meddle with the natural environment. ATNS Item 4: I would prefer to live in a world where humans leave nature alone. ATNS Item 5: Altering nature will be our downfall as a species.

#Aversion to Tampering with Nature Item Definitions
PP$ATNS_1 <- as.numeric(as.character(PP$ATNS_1_1))
PP$ATNS_2 <- as.numeric(as.character(PP$ATNS_1_2))
PP$ATNS_3 <- as.numeric(as.character(PP$ATNS_1_3))
PP$ATNS_4 <- as.numeric(as.character(PP$ATNS_1_8))
PP$ATNS_5 <- as.numeric(as.character(PP$ATNS_1_9))

#Recode item 2
PP$ATNS_2R <- (102- PP$ATNS_2)

#Aversion to Tampering with Nature Scale Descriptives (No reversed codes)
psych::describe(PP$ATNS_1)
##    vars   n  mean sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 60.34 27     65      62 26.69   0 100   100 -0.49    -0.56 2.64
range(PP$ATNS_1, na.rm=TRUE)
## [1]   0 100
psych::describe(PP$ATNS_2)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 50.88 31.16     51   51.46 40.03   0 100   100 -0.09     -1.3 3.04
range(PP$ATNS_2, na.rm=TRUE)
## [1]   0 100
psych::describe(PP$ATNS_3)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 104 67.07 26.04     72   69.45 28.17   2 100    98 -0.69    -0.32 2.55
range(PP$ATNS_3, na.rm=TRUE)
## [1]   2 100
psych::describe(PP$ATNS_4)
##    vars   n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 73.96 21.8     78   75.98 23.72   4 100    96 -0.81     0.27 2.13
range(PP$ATNS_4, na.rm=TRUE)
## [1]   4 100
psych::describe(PP$ATNS_5)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 69.61 24.78     74   72.46 20.76   0 100   100 -0.97     0.38 2.42
range(PP$ATNS_5, na.rm=TRUE)
## [1]   0 100
#Aversion to Tampering with Nature Scale Histograms by Item (No reversed codes)
hist(PP$ATNS_1, main = 'ATNS #1: People who push for technological fixes to environmental problems are underestimating the risks."')

hist(PP$ATNS_2, main = 'ATNS #2: "People who say we shouldn’t tamper with nature are just being naïve."')

hist(PP$ATNS_3, main = 'ATNS #3: "Human beings have no right to meddle with the natural environment."')

hist(PP$ATNS_4, main = 'ATNS #4: "I would prefer to live in a world where humans leave nature alone."')

hist(PP$ATNS_5, main = 'ATNS #5: "Altering nature will be our downfall as a species."')

#Cronbach's Alpha (4 and 5 reverse coded)
PP$ATNS_Scale <- data.frame(PP$ATNS_1, PP$ATNS_2R, PP$ATNS_3, PP$ATNS_4, PP$ATNS_5)
PP$ATNS_Score <- rowMeans(PP [, c("ATNS_1", "ATNS_2R", "ATNS_3", "ATNS_4", "ATNS_5")], na.rm=TRUE)
psych::alpha(PP$ATNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(PP$ATNS_Scale): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.ATNS_2R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$ATNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.52      0.57    0.64      0.21 1.3 0.073   64 15     0.29
## 
##  lower alpha upper     95% confidence boundaries
## 0.37 0.52 0.66 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## PP.ATNS_1       0.43      0.49    0.52      0.19 0.96    0.089 0.082  0.17
## PP.ATNS_2R      0.75      0.76    0.72      0.44 3.12    0.037 0.014  0.48
## PP.ATNS_3       0.22      0.32    0.40      0.10 0.47    0.123 0.094  0.13
## PP.ATNS_4       0.35      0.41    0.51      0.15 0.69    0.103 0.116  0.13
## PP.ATNS_5       0.38      0.46    0.56      0.18 0.85    0.099 0.155  0.21
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## PP.ATNS_1  105  0.62  0.64  0.57   0.32   60 27
## PP.ATNS_2R 105  0.24  0.16 -0.15  -0.17   51 31
## PP.ATNS_3  104  0.81  0.82  0.81   0.62   67 26
## PP.ATNS_4  105  0.70  0.74  0.66   0.50   74 22
## PP.ATNS_5  105  0.67  0.68  0.54   0.42   70 25
describe(PP$ATNS_Scale)
## PP$ATNS_Scale 
## 
##  5  Variables      115  Observations
## --------------------------------------------------------------------------------
## PP.ATNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      105       10       56    0.999    60.34     30.7      5.2     24.4 
##      .25      .50      .75      .90      .95 
##     42.0     65.0     81.0     93.4     99.8 
## 
## lowest :   0   2   5   6  20, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
## PP.ATNS_2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      105       10       64    0.999    51.12    36.04      8.0     11.0 
##      .25      .50      .75      .90      .95 
##     24.0     51.0     78.0     97.2    102.0 
## 
## lowest :   2   4   8   9  10, highest:  96  98  99 101 102
## --------------------------------------------------------------------------------
## PP.ATNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104       11       57    0.998    67.07    29.27    20.15    28.90 
##      .25      .50      .75      .90      .95 
##    51.75    72.00    87.25   100.00   100.00 
## 
## lowest :   2   4   5   6   7, highest:  93  94  96  97 100
## --------------------------------------------------------------------------------
## PP.ATNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      105       10       54    0.997    73.96    24.29     37.6     42.8 
##      .25      .50      .75      .90      .95 
##     59.0     78.0     92.0    100.0    100.0 
## 
## lowest :   4   5  31  32  35, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
## PP.ATNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      105       10       53    0.998    69.61    27.11     16.8     35.2 
##      .25      .50      .75      .90      .95 
##     59.0     74.0     88.0    100.0    100.0 
## 
## lowest :   0   3   4   7  13, highest:  93  94  96  98 100
## --------------------------------------------------------------------------------
#Correlation ATNS 
cor.plot(PP$ATNS_Scale, labels = c('1','2','3','4','5'), main = "Correlations Between Aversion to Tampering with Nature Scale Items")

##Connectedness to Nature Scale

Connectedness to nature was measured on with 5 items a 1-00 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’). CNS Item 1: I often feel a sense of oneness with the natural world around me. CNS Item 2: I think of the natural world as a community to which I belong. CNS Item 3: I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’. CNS Item 4: My personal welfare is independent of the welfare of the natural world. CNS Item 5: When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.

#Connectedness to Nature Item Definitions
PP$CNS_1 <- as.numeric(as.character(PP$CNS_1_1))
PP$CNS_2 <- as.numeric(as.character(PP$CNS_1_2))
PP$CNS_3 <- as.numeric(as.character(PP$CNS_1_3))
PP$CNS_4 <- as.numeric(as.character(PP$CNS_1_8))
PP$CNS_5 <- as.numeric(as.character(PP$CNS_1_9))

#Recode items 4 and 5
PP$CNS_4R <- (102 - PP$CNS_4) 
PP$CNS_5R <- (102 - PP$CNS_5) 

#Connectedness to Nature Descriptives (No reversed codes)
psych::describe(PP$CNS_1)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 69.77 22.77     74   71.78 23.72   0 100   100 -0.84     0.51 2.22
range(PP$CNS_1, na.rm=TRUE)
## [1]   0 100
psych::describe(PP$CNS_2)
##    vars   n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 74.3 21.71     79   76.59 19.27   6 100    94 -0.84     0.09 2.12
range(PP$CNS_2, na.rm=TRUE)
## [1]   6 100
psych::describe(PP$CNS_3)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 72.79 20.23     74   74.29 20.76   9 100    91 -0.53    -0.19 1.97
range(PP$CNS_3, na.rm=TRUE)
## [1]   9 100
psych::describe(PP$CNS_4)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 59.37 29.63     66   61.73 26.69   0 100   100 -0.68     -0.6 2.89
range(PP$CNS_4, na.rm=TRUE)
## [1]   0 100
psych::describe(PP$CNS_5R)
##    vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 105 42.27 28.85     35   40.22 29.65   2 102   100 0.56    -0.68 2.82
range(PP$CNS_5, na.rm=TRUE)
## [1]   0 100
#Connectedness to Nature Scale Histograms by Item (No reversed codes)
hist(PP$CNS_1, main = 'CNS #1: I often feel a sense of oneness with the natural world around me."')

hist(PP$CNS_2, main = 'CNS #2: I think of the natural world as a community to which I belong. "')

hist(PP$CNS_3, main = 'CNS #3: I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’. "')

hist(PP$CNS_4, main = 'CNS #4: My personal welfare is independent of the welfare of the natural world."')

hist(PP$CNS_5, main = 'CNS #5: When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature."')

#Cronbach's Alpha (4 and 5 reverse coded)
PP$CNS_Scale <- data.frame(PP$CNS_1, PP$CNS_2, PP$CNS_3, PP$CNS_4R, PP$CNS_5R)
PP$CNS_Score <- rowMeans(PP [, c("CNS_1", "CNS_2", "CNS_3", "CNS_4R", "CNS_5R")], na.rm=TRUE)
describe(PP$CNS_Scale)
## PP$CNS_Scale 
## 
##  5  Variables      115  Observations
## --------------------------------------------------------------------------------
## PP.CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      105       10       51    0.998    69.77    25.22     31.4     39.8 
##      .25      .50      .75      .90      .95 
##     53.0     74.0     86.0     99.6    100.0 
## 
## lowest :   0   3   9  11  24, highest:  91  96  97  99 100
## --------------------------------------------------------------------------------
## PP.CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      105       10       49    0.996     74.3    24.06       34       41 
##      .25      .50      .75      .90      .95 
##       63       79       90      100      100 
## 
## lowest :   6  18  24  30  32, highest:  93  95  97  98 100
## --------------------------------------------------------------------------------
## PP.CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      105       10       46    0.998    72.79    22.89     36.2     49.4 
##      .25      .50      .75      .90      .95 
##     62.0     74.0     89.0    100.0    100.0 
## 
## lowest :   9  27  28  33  36, highest:  93  94  95  99 100
## --------------------------------------------------------------------------------
## PP.CNS_4R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      105       10       57    0.999    42.63    33.18      3.4      9.8 
##      .25      .50      .75      .90      .95 
##     21.0     36.0     59.0     94.2    102.0 
## 
## lowest :   2   3   5   6   7, highest:  91  93  95 100 102
## --------------------------------------------------------------------------------
## PP.CNS_5R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      105       10       55    0.999    42.27    32.64      2.2      7.4 
##      .25      .50      .75      .90      .95 
##     22.0     35.0     59.0     88.0    101.6 
## 
## lowest :   2   3   7   8  10, highest:  92  93  94 100 102
## --------------------------------------------------------------------------------
psych::alpha(PP$CNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(PP$CNS_Scale): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.CNS_4R PP.CNS_5R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$CNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.24      0.32    0.49     0.087 0.48 0.12   60 12    -0.12
## 
##  lower alpha upper     95% confidence boundaries
## 0 0.24 0.47 
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r med.r
## PP.CNS_1      0.167     0.171    0.32     0.049 0.207    0.128  0.10 -0.12
## PP.CNS_2      0.045     0.067    0.32     0.018 0.072    0.150  0.14 -0.18
## PP.CNS_3      0.060     0.064    0.27     0.017 0.068    0.146  0.11 -0.12
## PP.CNS_4R     0.298     0.425    0.54     0.156 0.739    0.113  0.18  0.17
## PP.CNS_5R     0.390     0.496    0.56     0.197 0.984    0.099  0.15  0.21
## 
##  Item statistics 
##             n raw.r std.r  r.cor r.drop mean sd
## PP.CNS_1  105  0.49  0.61  0.566  0.143   70 23
## PP.CNS_2  105  0.59  0.68  0.599  0.279   74 22
## PP.CNS_3  105  0.57  0.68  0.664  0.278   73 20
## PP.CNS_4R 105  0.50  0.36  0.051  0.026   43 30
## PP.CNS_5R 105  0.40  0.27 -0.058 -0.067   42 29
#Correlation CNS Scale
cor.plot(PP$CNS_Scale, labels = c('1','2','3','4','5'), main = "Correlations Between Connectedness to Nature Scale Items")

##Climate Change Belief Scale

Climate change beliefs were measured on with 5 items a 1-7 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’). CCB Item 1: Climate change is happening. CCB Item 2: Climate change poses a risk to human health, safety, and prosperity. CCB Item 3: Human activity is largely responsible for recent climate change. CCB Item 4: Reducing greenhouse gas emissions will reduce global warming and climate change.

#Climate Change Belief Item Definitions
PP$CCBelief_1 <- as.numeric(as.character(PP$CCB_1_1))
PP$CCBelief_2 <- as.numeric(as.character(PP$CCB_1_3))
PP$CCBelief_3 <- as.numeric(as.character(PP$CCB_1_4))
PP$CCBelief_4 <- as.numeric(as.character(PP$CCB_1_5))

#Climate Change Belief Descriptives
psych::describe(PP$CCBelief_1)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 78.92 22.92     84   82.58 23.72   2 100    98 -1.27     1.18 2.24
range(PP$CCBelief_1, na.rm=TRUE)
## [1]   2 100
psych::describe(PP$CCBelief_2)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 105 77.18 24.45     85   80.61 22.24   2 100    98 -0.99     0.03 2.39
range(PP$CCBelief_2, na.rm=TRUE)
## [1]   2 100
psych::describe(PP$CCBelief_3)
##    vars   n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 105 74.82 24.36     80   77.91 25.2   0 100   100 -0.93     0.14 2.38
range(PP$CCBelief_3, na.rm=TRUE)
## [1]   0 100
psych::describe(PP$CCBelief_4)
##    vars   n mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 105 72.9 24.91     78   75.98 25.2   0 100   100 -0.92     0.22 2.43
range(PP$CCBelief_4, na.rm=TRUE)
## [1]   0 100
#Climate Change Belief Histograms
hist(PP$CCBelief_1, main = 'Climate Change Belief #1: Climate change is happening."')

hist(PP$CCBelief_2, main = 'Climate Change Belief #2:Climate change poses a risk to human health, safety, and prosperity."')

hist(PP$CCBelief_3, main = 'Climate Change Belief #3:Human activity is largely responsible for recent climate change."')

hist(PP$CCBelief_4, main = 'Climate Change Belief #4: Reducing greenhouse gas emissions will reduce global warming and climate change."')

PP$CCBelief_Score <- rowMeans(PP[, c('CCBelief_1', 'CCBelief_2', 'CCBelief_3','CCBelief_4')], na.rm=T)
describe(PP$CCBelief_Score)
## PP$CCBelief_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      105       10       79    0.996    75.96    22.91    40.00    49.75 
##      .25      .50      .75      .90      .95 
##    63.00    80.50    92.25   100.00   100.00 
## 
## lowest :   2.75  19.00  33.50  37.00  38.00, highest:  97.25  98.50  98.75  99.75 100.00
#Cronbach's Alpha
PP$CCB_Scale <- data.frame(PP$CCBelief_1, PP$CCBelief_2, PP$CCBelief_3, PP$CCBelief_4)
psych::alpha(PP$CCB_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$CCB_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.88      0.88    0.87      0.64 7.1 0.019   76 21     0.64
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.88 0.91 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.CCBelief_1      0.83      0.83    0.77      0.62 4.9    0.028 0.003  0.60
## PP.CCBelief_2      0.81      0.81    0.76      0.59 4.3    0.031 0.017  0.58
## PP.CCBelief_3      0.83      0.83    0.80      0.62 4.8    0.029 0.027  0.60
## PP.CCBelief_4      0.89      0.89    0.85      0.73 8.2    0.018 0.003  0.72
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## PP.CCBelief_1 105  0.87  0.87  0.84   0.76   79 23
## PP.CCBelief_2 105  0.90  0.90  0.87   0.81   77 24
## PP.CCBelief_3 105  0.87  0.87  0.81   0.76   75 24
## PP.CCBelief_4 105  0.78  0.77  0.65   0.61   73 25
#Correlation CCB Scale
cor.plot(PP$CCB_Scale, labels = c('1','2','3','4'), main = "Correlations Between Climate Change Belief Items")

##Individualism Scale ##Collectivism Scale

Individualism and collectivism were each measured with 4 items (for a total of 8 items) on a 1-7 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

Collectivism Items Individualism/Collectivism Item #3 (C): It is important to me to think of myself as a member of my religious, national, or ethnic group. Individualism/Collectivism Item #4 (C): Learning about the traditions, values, and beliefs of my family is important to me. Individualism/Collectivism Item #7 (C): In the end, a person feels closest to members of their own religious, national, or ethnic group. Individualism/Collectivism Item #8 (C): It is important to me to respect decisions made by my family.

Individualism Items Individualism/Collectivism Item #1 (I): It is important to me to develop my own personal style. Individualism/Collectivism Item #2 (I): It is better for me to follow my own ideas than to follow those of anyone else.
Individualism/Collectivism Item #5 (I): I enjoy being unique and different from others in many respects. Individualism/Collectivism Item #6 (I): My personal achievements and accomplishments are very important to who I am.

#Individualism and Collectivism Scale (Code adapted from J.Cole Collectivism Study)

#Individualism (Items 1,2,5,6)
PP$Ind_1 <- as.numeric(as.character(PP$Individualism_1_19))
PP$Ind_2 <- as.numeric(as.character(PP$Individualism_1_20))
PP$Ind_5 <- as.numeric(as.character(PP$Individualism_1_23))
PP$Ind_6 <- as.numeric(as.character(PP$Individualism_1_24))
PP$Individualism_Score <- rowMeans(PP[, c('Ind_1', 'Ind_2', 'Ind_5','Ind_6')], na.rm=T)

#Collectivism (Items 3,4,7,8)
PP$Ind_3 <- as.numeric(as.character(PP$Individualism_1_21))
PP$Ind_4 <- as.numeric(as.character(PP$Individualism_1_22))
PP$Ind_7 <- as.numeric(as.character(PP$Individualism_1_25))
PP$Ind_8 <- as.numeric(as.character(PP$Individualism_1_34))
PP$Collectivism_Score <- rowMeans(PP[, c('Ind_3', 'Ind_4', 'Ind_7','Ind_8')], na.rm=T)

#Individualism Alpha, Histogram, and Correlation Matrix (4 items)
psych::alpha(data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5,PP$Ind_6))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5, PP$Ind_6))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.77      0.77    0.72      0.46 3.3 0.035   73 16     0.44
## 
##  lower alpha upper     95% confidence boundaries
## 0.7 0.77 0.84 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## PP.Ind_1      0.70      0.71    0.62      0.44 2.4    0.047 7.7e-04  0.46
## PP.Ind_2      0.74      0.74    0.66      0.48 2.8    0.043 7.0e-03  0.46
## PP.Ind_5      0.68      0.68    0.58      0.41 2.1    0.052 1.3e-06  0.41
## PP.Ind_6      0.74      0.74    0.66      0.48 2.8    0.042 7.1e-03  0.46
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean sd
## PP.Ind_1 104  0.78  0.78  0.68   0.59   73 22
## PP.Ind_2 105  0.72  0.74  0.60   0.53   74 19
## PP.Ind_5 105  0.82  0.81  0.73   0.64   72 22
## PP.Ind_6 105  0.75  0.74  0.60   0.53   73 22
hist(PP$Individualism_Score , main = 'Individualism Score')

PP$IndScale <- data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5,PP$Ind_6)
psych::alpha(PP$IndScale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$IndScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.77      0.77    0.72      0.46 3.3 0.035   73 16     0.44
## 
##  lower alpha upper     95% confidence boundaries
## 0.7 0.77 0.84 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## PP.Ind_1      0.70      0.71    0.62      0.44 2.4    0.047 7.7e-04  0.46
## PP.Ind_2      0.74      0.74    0.66      0.48 2.8    0.043 7.0e-03  0.46
## PP.Ind_5      0.68      0.68    0.58      0.41 2.1    0.052 1.3e-06  0.41
## PP.Ind_6      0.74      0.74    0.66      0.48 2.8    0.042 7.1e-03  0.46
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean sd
## PP.Ind_1 104  0.78  0.78  0.68   0.59   73 22
## PP.Ind_2 105  0.72  0.74  0.60   0.53   74 19
## PP.Ind_5 105  0.82  0.81  0.73   0.64   72 22
## PP.Ind_6 105  0.75  0.74  0.60   0.53   73 22
cor.plot(PP$IndScale, labels = c('1','2','3','4'), main = "Correlations Between Individualism Items")

#Collectivism Alpha and Histogram (4 items)
psych::alpha(data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.75      0.76    0.71      0.44 3.1 0.038   65 20     0.41
## 
##  lower alpha upper     95% confidence boundaries
## 0.67 0.75 0.82 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## PP.Ind_3      0.71      0.72    0.64      0.46 2.5    0.047 0.00982  0.41
## PP.Ind_4      0.68      0.68    0.59      0.41 2.1    0.051 0.00080  0.41
## PP.Ind_7      0.70      0.72    0.64      0.46 2.5    0.048 0.00989  0.41
## PP.Ind_8      0.68      0.68    0.59      0.41 2.1    0.052 0.00079  0.41
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean sd
## PP.Ind_3 105  0.77  0.74  0.59   0.52   58 30
## PP.Ind_4 105  0.77  0.78  0.68   0.57   70 26
## PP.Ind_7 105  0.74  0.74  0.60   0.52   62 27
## PP.Ind_8 105  0.76  0.78  0.68   0.58   69 24
hist(PP$Collectivism_Score , main = 'Collectivism Score')

PP$CollScale <- data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7,PP$Ind_8)
psych::alpha(PP$CollScale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$CollScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.75      0.76    0.71      0.44 3.1 0.038   65 20     0.41
## 
##  lower alpha upper     95% confidence boundaries
## 0.67 0.75 0.82 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## PP.Ind_3      0.71      0.72    0.64      0.46 2.5    0.047 0.00982  0.41
## PP.Ind_4      0.68      0.68    0.59      0.41 2.1    0.051 0.00080  0.41
## PP.Ind_7      0.70      0.72    0.64      0.46 2.5    0.048 0.00989  0.41
## PP.Ind_8      0.68      0.68    0.59      0.41 2.1    0.052 0.00079  0.41
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean sd
## PP.Ind_3 105  0.77  0.74  0.59   0.52   58 30
## PP.Ind_4 105  0.77  0.78  0.68   0.57   70 26
## PP.Ind_7 105  0.74  0.74  0.60   0.52   62 27
## PP.Ind_8 105  0.76  0.78  0.68   0.58   69 24
cor.plot(PP$CollScale, labels = c('1','2','3','4'), main = "Correlations Between Collectivism Items")

#Systems/Holistic Thinking

ST Item #1: All the Earth’s systems, from the climate to the economy, are interconnected. ST Item #2: Everything is constantly changing. ST Item #3: The Earth, including all its inhabitants, is a living system. ST Item #4: Seemingly small choices we make today can ultimately have major consequences.

HT Item #1: Everything in the universe is somehow related to each other. HT Item #2: It is more desirable to take the middle ground than go to extremes. HT Item #3: Every phenomenon in the world moves in predictable directions. HT Item #4: The whole, rather than its parts, should be considered in order to understand a phenomenon.

Order of Items on Full Scale Systems Thinking (15 items full scale) ST Item #1 = #5 ST Item #2 = #6 ST Item #3 = #10 ST Item #4 = #13

Holistic Thinking (24 items full scale) HT Item #1 = #1 (Factor 1: Causality) HT Item #2 = #7 (Factor 2: Attitude Toward Contradictions) HT Item #3 (Reverse coded) = #13 (Factor 3: Perception of Change) HT Item #4 = #19 (Factor 4: Locus of Attention)

#Systems Thinking 
PP$ST_1 <- as.numeric(as.character(PP$SystemsHolistic_1))
PP$ST_2 <- as.numeric(as.character(PP$SystemsHolistic_2))
PP$ST_3 <- as.numeric(as.character(PP$SystemsHolistic_3))
PP$ST_4 <- as.numeric(as.character(PP$SystemsHolistic_4))
PP$ST_Score <- rowMeans(PP[, c('ST_1', 'ST_2', 'ST_3','ST_4')], na.rm=T)

#Systems Thinking Histograms
hist(PP$ST_1, main = 'All the Earth’s systems, from the climate to the economy, are interconnected.')

hist(PP$ST_2, main = 'Everything is constantly changing.')

hist(PP$ST_3, main = 'The Earth, including all its inhabitants, is a living system.')

hist(PP$ST_4, main = 'Seemingly small choices we make today can ultimately have major consequences."')

#Holistic Thinking
PP$HT_1 <- as.numeric(as.character(PP$SystemsHolistic_1))
PP$HT_2 <- as.numeric(as.character(PP$SystemsHolistic_2))
PP$HT_3 <- as.numeric(as.character(PP$SystemsHolistic_3))
PP$HT_4 <- as.numeric(as.character(PP$SystemsHolistic_4))
PP$HT_Score <- rowMeans(PP[, c('HT_1', 'HT_2', 'HT_3','HT_4')], na.rm=T)

#Holistic Recode #3
PP$HT_3R <- (102-PP$HT_3)

#Holistic Thinking Histograms (No reverse codes)
hist(PP$HT_1, main = 'Everything in the universe is somehow related to each other.')

hist(PP$HT_2, main = 'It is more desirable to take the middle ground than go to extremes.')

hist(PP$HT_3, main = 'Every phenomenon in the world moves in predictable directions.')

hist(PP$HT_4, main = 'The whole, rather than its parts, should be considered in order to understand a phenomenon.')

#Descriptives by Item 
describe(PP$ST_1)
## PP$ST_1 
##        n  missing distinct     Info     Mean      Gmd 
##      105       10        7    0.955    58.16    1.873 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      3     4    13    15    20    18    32
## Proportion 0.029 0.038 0.124 0.143 0.190 0.171 0.305
describe(PP$ST_2)
## PP$ST_2 
##        n  missing distinct     Info     Mean      Gmd 
##      105       10        7    0.923    58.64    1.545 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      1     1     8    13    20    21    41
## Proportion 0.010 0.010 0.076 0.124 0.190 0.200 0.390
describe(PP$ST_3)
## PP$ST_3 
##        n  missing distinct     Info     Mean      Gmd 
##      105       10        7    0.903    58.58    1.668 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      2     2     6    17    20    12    46
## Proportion 0.019 0.019 0.057 0.162 0.190 0.114 0.438
describe(PP$ST_4)
## PP$ST_4 
##        n  missing distinct     Info     Mean      Gmd 
##      105       10        7    0.946    58.24      1.9 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      2     8     8    16    18    17    36
## Proportion 0.019 0.076 0.076 0.152 0.171 0.162 0.343
describe(PP$HT_1)
## PP$HT_1 
##        n  missing distinct     Info     Mean      Gmd 
##      105       10        7    0.955    58.16    1.873 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      3     4    13    15    20    18    32
## Proportion 0.029 0.038 0.124 0.143 0.190 0.171 0.305
describe(PP$HT_2)
## PP$HT_2 
##        n  missing distinct     Info     Mean      Gmd 
##      105       10        7    0.923    58.64    1.545 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      1     1     8    13    20    21    41
## Proportion 0.010 0.010 0.076 0.124 0.190 0.200 0.390
describe(PP$HT_3R)
## PP$HT_3R 
##        n  missing distinct     Info     Mean      Gmd 
##      105       10        7    0.903    43.42    1.668 
## 
## lowest : 42 43 44 45 46, highest: 44 45 46 47 48
##                                                     
## Value         42    43    44    45    46    47    48
## Frequency     46    12    20    17     6     2     2
## Proportion 0.438 0.114 0.190 0.162 0.057 0.019 0.019
describe(PP$HT_4)
## PP$HT_4 
##        n  missing distinct     Info     Mean      Gmd 
##      105       10        7    0.946    58.24      1.9 
## 
## lowest : 54 55 56 57 58, highest: 56 57 58 59 60
##                                                     
## Value         54    55    56    57    58    59    60
## Frequency      2     8     8    16    18    17    36
## Proportion 0.019 0.076 0.076 0.152 0.171 0.162 0.343
#Systems Thinking Alpha, Histogram, and Correlation (4 items)
psych::alpha(data.frame(PP$ST_1, PP$ST_2, PP$ST_3,PP$ST_4))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$ST_1, PP$ST_2, PP$ST_3, PP$ST_4))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.88      0.88    0.86      0.65 7.6 0.019   58 1.4     0.67
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.88 0.92 
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## PP.ST_1      0.90      0.90    0.86      0.75 9.1    0.016 0.00037  0.75
## PP.ST_2      0.83      0.83    0.78      0.63 5.0    0.028 0.00955  0.61
## PP.ST_3      0.82      0.82    0.77      0.60 4.6    0.030 0.01658  0.54
## PP.ST_4      0.83      0.84    0.80      0.63 5.2    0.028 0.01602  0.61
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean  sd
## PP.ST_1 105  0.78  0.78  0.64   0.61   58 1.7
## PP.ST_2 105  0.87  0.88  0.85   0.78   59 1.4
## PP.ST_3 105  0.90  0.90  0.87   0.82   59 1.6
## PP.ST_4 105  0.88  0.88  0.83   0.77   58 1.7
## 
## Non missing response frequency for each item
##           54   55   56   57   58   59   60 miss
## PP.ST_1 0.03 0.04 0.12 0.14 0.19 0.17 0.30 0.09
## PP.ST_2 0.01 0.01 0.08 0.12 0.19 0.20 0.39 0.09
## PP.ST_3 0.02 0.02 0.06 0.16 0.19 0.11 0.44 0.09
## PP.ST_4 0.02 0.08 0.08 0.15 0.17 0.16 0.34 0.09
hist(PP$ST_Score , main = 'Systems Thinking Score')

PP$STScale <- data.frame(PP$ST_1, PP$ST_2, PP$ST_3, PP$ST_4)
cor.plot(PP$STScale, labels = c('1','2','3','4'), main = "Correlations Between Systems Thinking Items")

#Holistic Thinking Alpha, Histogram, and Correlation (4 items)
psych::alpha(data.frame(PP$HT_1, PP$HT_2, PP$HT_3R, PP$HT_4))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(PP$HT_1, PP$HT_2, PP$HT_3R, PP$HT_4)): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.HT_3R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$HT_1, PP$HT_2, PP$HT_3R, PP$HT_4))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean   sd median_r
##      -0.18     -0.24    0.52     -0.05 -0.19 0.12   55 0.75   -0.045
## 
##  lower alpha upper     95% confidence boundaries
## -0.42 -0.18 0.06 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r med.r
## PP.HT_1      -1.45     -1.50   0.293     -0.25 -0.60     0.32 0.754 -0.73
## PP.HT_2      -1.42     -1.73  -0.047     -0.27 -0.63     0.32 0.492 -0.61
## PP.HT_3R      0.82      0.82   0.774      0.60  4.58     0.03 0.017  0.54
## PP.HT_4      -1.95     -2.02  -0.070     -0.29 -0.67     0.40 0.496 -0.61
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## PP.HT_1  105  0.80  0.79  0.63   0.37   58 1.7
## PP.HT_2  105  0.80  0.82  0.88   0.47   59 1.4
## PP.HT_3R 105 -0.61 -0.60 -1.07  -0.82   43 1.6
## PP.HT_4  105  0.85  0.85  0.89   0.47   58 1.7
hist(PP$HT_Score , main = 'Holistic Thinking Score')

PP$HTScale <- data.frame(PP$HT_1,PP$HT_2, PP$HT_3R, PP$HT_4)
cor.plot(PP$HTScale, labels = c('1','2','3','4'), main = "Correlations Between Holistic Thinking Items")

#Cronbachs Alpha for Systems/Holistic Thinking full scale (8 items)
PP$STHTScale <- data.frame(PP$ST_1, PP$ST_2, PP$ST_3, PP$ST_4, PP$HT_1,PP$HT_2, PP$HT_3R, PP$HT_4)
psych::alpha(PP$STHTScale)
## Number of categories should be increased  in order to count frequencies.
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## In factor.stats, I could not find the RMSEA upper bound . Sorry about that
## Warning in psych::alpha(PP$STHTScale): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.HT_3R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$STHTScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.8       0.8     0.7      0.33 3.9 0.016   57  1     0.54
## 
##  lower alpha upper     95% confidence boundaries
## 0.77 0.8 0.83 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## PP.ST_1       0.74      0.74    0.66      0.29  2.9   0.0192 0.493  0.61
## PP.ST_2       0.74      0.72    0.66      0.27  2.6   0.0216 0.456  0.54
## PP.ST_3       0.74      0.74    0.67      0.29  2.8   0.0229 0.439  0.54
## PP.ST_4       0.72      0.72    0.65      0.27  2.6   0.0228 0.460  0.54
## PP.HT_1       0.74      0.74    0.66      0.29  2.9   0.0192 0.493  0.61
## PP.HT_2       0.74      0.72    0.66      0.27  2.6   0.0216 0.456  0.54
## PP.HT_3R      0.94      0.94    0.82      0.69 15.5   0.0098 0.027  0.73
## PP.HT_4       0.72      0.72    0.65      0.27  2.6   0.0228 0.460  0.54
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## PP.ST_1  105  0.81  0.80  0.73   0.72   58 1.7
## PP.ST_2  105  0.87  0.88  0.82   0.82   59 1.4
## PP.ST_3  105  0.82  0.82  0.75   0.74   59 1.6
## PP.ST_4  105  0.89  0.89  0.83   0.84   58 1.7
## PP.HT_1  105  0.81  0.80  0.73   0.72   58 1.7
## PP.HT_2  105  0.87  0.88  0.82   0.82   59 1.4
## PP.HT_3R 105 -0.82 -0.82 -1.22  -0.87   43 1.6
## PP.HT_4  105  0.89  0.89  0.83   0.84   58 1.7
#Correlation Matrix: Individualism and Collectivism Items (8)

cor.plot(PP$STHTScale, labels = c('1','2','3','4','5','6','7','8'), main = "Correlations Between Systems Thinking and Holistic Thinking Items")

##Naturalness Correlations with Individual Differences Measures

#Risk Perception

#Correlation - Risk Perception Scale, Naturalness Scale
  #1. GFFB 
  PP$Naturalness_Score_GFFB <- rowMeans(PP [, c("Nat_1_GFFB", "Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFFB <- data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)
  cor(PP$Risk_Scale_GFFB, PP$Naturalness_Score_GFFB, use="complete.obs")
##                      [,1]
## PP.Risk_1_GFFB -0.4554604
## PP.Risk_2_GFFB -0.5378713
  #2. GFPRB
  PP$Naturalness_Score_GFPRB <- rowMeans(PP [, c("Nat_1_GFPRB", "Nat_2R_GFPRB", "Nat_3R_GFPRB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFPRB <- data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB)
  cor(PP$Risk_Scale_GFPRB, PP$Naturalness_Score_GFPRB, use="complete.obs")
##                       [,1]
## PP.Risk_1_GFPRB -0.6658848
## PP.Risk_2_GFPRB -0.6283318
  #3. CBB
  PP$Naturalness_Score_CBB <- rowMeans(PP [, c("Nat_1_CBB", "Nat_2R_CBB", "Nat_3R_CBB")], na.rm=TRUE)
  PP$Naturalness_Scale_CBB <- data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)
  cor(PP$Risk_Scale_CBB, PP$Naturalness_Score_CBB, use="complete.obs")
##                     [,1]
## PP.Risk_1_CBB -0.3350653
## PP.Risk_2_CBB -0.1814106
  #4. PBPB
  PP$Naturalness_Score_PBPB <- rowMeans(PP [, c("Nat_1_PBPB", "Nat_2R_PBPB", "Nat_3R_PBPB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBPB <- data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)
  cor(PP$Risk_Scale_PBPB, PP$Naturalness_Score_PBPB, use="complete.obs")
##                      [,1]
## PP.Risk_1_PBPB -0.4220305
## PP.Risk_2_PBPB -0.4053683
  #5. PBFB
  PP$Naturalness_Score_PBFB <- rowMeans(PP [, c("Nat_1_PBFB", "Nat_2R_PBFB", "Nat_3R_PBFB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBFB <- data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)
  cor(PP$Risk_Scale_PBFB, PP$Naturalness_Score_PBFB, use="complete.obs")
##                      [,1]
## PP.Risk_1_PBFB -0.1396202
## PP.Risk_2_PBFB -0.1941809
  #6. VB
  PP$Naturalness_Score_VB <- rowMeans(PP [, c("Nat_1_VB", "Nat_2R_VB", "Nat_3R_VB")], na.rm=TRUE)
  PP$Naturalness_Scale_VB <- data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)
  cor(PP$Risk_Scale_VB, PP$Naturalness_Score_VB, use="complete.obs")
##                    [,1]
## PP.Risk_1_VB -0.3461254
## PP.Risk_2_VB -0.3375328

#ENVS/Naturalness Correlations

##Environmentalism 

#Correlation - Environmentalism Scale, Naturalness Scale
  #1. GFFB 
  PP$Naturalness_Score_GFFB <- rowMeans(PP [, c("Nat_1_GFFB", "Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFFB <- data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)
  cor(PP$ENVS_Score, PP$Naturalness_Score_GFFB, use="complete.obs")
## [1] -0.4200361
  plot(PP$ENVS_Score, PP$Naturalness_Score_GFFB, main="Correlation Between Environmentalism and GFFB Naturalness Scales",
   xlab="Environmentalism Scale", ylab="GFFB Naturalness Scale", pch=19)

  #2. GFPRB
  PP$Naturalness_Score_GFPRB <- rowMeans(PP [, c("Nat_1_GFPRB", "Nat_2R_GFPRB", "Nat_3R_GFPRB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFPRB <- data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB)
  cor(PP$ENVS_Score, PP$Naturalness_Score_GFPRB, use="complete.obs")
## [1] 0.1446164
  plot(PP$ENVS_Score, PP$Naturalness_Score_GFPRB, main="Correlation Between Environmentalism and GFPRB Naturalness Scales",
   xlab="Environmentalism Scale", ylab="GFPRB Naturalness Scale", pch=19)

  #3. CBB
  PP$Naturalness_Score_CBB <- rowMeans(PP [, c("Nat_1_CBB", "Nat_2R_CBB", "Nat_3R_CBB")], na.rm=TRUE)
  PP$Naturalness_Scale_CBB <- data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)
  cor(PP$ENVS_Score, PP$Naturalness_Score_CBB, use="complete.obs")
## [1] -0.0745823
  plot(PP$ENVS_Score, PP$Naturalness_Score_CBB, main="Correlation Between Environmentalism and CBB Naturalness Scales",
   xlab="Environmentalism Scale", ylab="CBB Naturalness Scale", pch=19)

  #4. PBPB
  PP$Naturalness_Score_PBPB <- rowMeans(PP [, c("Nat_1_PBPB", "Nat_2R_PBPB", "Nat_3R_PBPB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBPB <- data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)
  cor(PP$ENVS_Score, PP$Naturalness_Score_PBPB, use="complete.obs")
## [1] 0.05170914
  plot(PP$ENVS_Score, PP$Naturalness_Score_PBPB, main="Correlation Between Environmentalism and PBPB Naturalness Scales",
   xlab="Environmentalism Scale", ylab="PBPB Naturalness Scale", pch=19)

  #5. PBFB
  PP$Naturalness_Score_PBFB <- rowMeans(PP [, c("Nat_1_PBFB", "Nat_2R_PBFB", "Nat_3R_PBFB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBFB <- data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)
  cor(PP$ENVS_Score, PP$Naturalness_Score_PBFB, use="complete.obs")
## [1] -0.1774589
  plot(PP$ENVS_Score, PP$Naturalness_Score_PBFB, main="Correlation Between Environmentalism and PBFB Naturalness Scales",
   xlab="Environmentalism Scale", ylab="PBFB Naturalness Scale", pch=19)

  #6. VB
  PP$Naturalness_Score_VB <- rowMeans(PP [, c("Nat_1_VB", "Nat_2R_VB", "Nat_3R_VB")], na.rm=TRUE)
  PP$Naturalness_Scale_VB <- data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)
  cor(PP$ENVS_Score, PP$Naturalness_Score_VB, use="complete.obs")
## [1] -0.07424927
  plot(PP$ENVS_Score, PP$Naturalness_Score_VB, main="Correlation Between Environmentalism and VB Naturalness Scales",
   xlab="Environmentalism Scale", ylab="VB Naturalness Scale", pch=19)

#Naturalness Item 1, Environmentalism
  #1. GFFB 
  cor(PP$ENVS_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] 0.02937379
  plot(PP$ENVS_Score, PP$Nat_1_GFFB, main="Correlation Between GFFB Naturalness Item #1 and Environmentalism",
   xlab="Environmentalism Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #2. GFPRB
  cor(PP$ENVS_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] 0.02937379
  plot(PP$ENVS_Score, PP$Nat_1_GFFB, main="Correlation Between GFPRB Naturalness Item #1 and Environmentalism",
   xlab="Environmentalism Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #3. CBB
  cor(PP$ENVS_Score, PP$Nat_1_CBB, use="complete.obs")
## [1] 0.1641947
  plot(PP$ENVS_Score, PP$Nat_1_CBB, main="Correlation Between CCB Naturalness Item #1 and Environmentalism",
   xlab="Environmentalism Scale", ylab="CCB Naturalness Item #1", pch=19)

  #4. PBPB
  cor(PP$ENVS_Score, PP$Nat_1_PBPB, use="complete.obs")
## [1] 0.4933316
  plot(PP$ENVS_Score, PP$Nat_1_PBPB, main="Correlation Between PBPB Naturalness Item #1 and Environmentalism",
   xlab="Environmentalism Scale", ylab="PBPB Naturalness Item #1", pch=19)

  #5. PBFB
  cor(PP$ENVS_Score, PP$Nat_1_PBFB, use="complete.obs")
## [1] 0.3945425
  plot(PP$ENVS_Score, PP$Nat_1_PBFB, main="Correlation Between PBFB Naturalness Item #1 and Environmentalism",
   xlab="Environmentalism Scale", ylab="PBFB Naturalness Item #1", pch=19)

  #6. VB
  cor(PP$ENVS_Score, PP$Nat_1_VB, use="complete.obs")
## [1] 0.1214376
  plot(PP$ENVS_Score, PP$Nat_1_VB, main="Correlation Between VB Naturalness Item #1 and Environmentalism",
   xlab="Environmentalism Scale", ylab="VB Naturalness Item #1", pch=19)

#Naturalness Item 2, Environmentalism
  #1. GFFB 
  cor(PP$ENVS_Score, PP$Nat_2R_GFFB, use="complete.obs")
## [1] -0.485828
  plot(PP$ENVS_Score, PP$Nat_2R_GFFB, main="Correlation Between GFFB Naturalness Item #2 and Environmentalism",
   xlab="Environmentalism Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #2. GFPRB
  cor(PP$ENVS_Score, PP$Nat_2R_GFPRB, use="complete.obs")
## [1] 0.01566231
  plot(PP$ENVS_Score, PP$Nat_2R_GFPRB, main="Correlation Between GFPRB Naturalness Item #2 and Environmentalism",
   xlab="Environmentalism Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #3. CBB
  cor(PP$ENVS_Score, PP$Nat_2R_CBB, use="complete.obs")
## [1] 0.01668158
  plot(PP$ENVS_Score, PP$Nat_2R_CBB, main="Correlation Between CBB Naturalness Item #2 and Environmentalism",
   xlab="Environmentalism Scale", ylab="CBB Naturalness Item #2", pch=19)

  #4. PBPB
  cor(PP$ENVS_Score, PP$Nat_2R_PBPB, use="complete.obs")
## [1] -0.04933061
  plot(PP$ENVS_Score, PP$Nat_2R_PBPB, main="Correlation Between PBPB Naturalness Item #2 and Environmentalism",
   xlab="Environmentalism Scale", ylab="PBPB Naturalness Item #2", pch=19)

  #5. PBFB
  cor(PP$ENVS_Score, PP$Nat_2R_PBFB, use="complete.obs")
## [1] -0.3128651
  plot(PP$ENVS_Score, PP$Nat_2R_PBFB, main="Correlation Between PBFB Naturalness Item #2 and Environmentalism",
   xlab="Environmentalism Scale", ylab="PBFB Naturalness Item #2", pch=19)

  #6. VB
  cor(PP$ENVS_Score, PP$Nat_2R_VB, use="complete.obs")
## [1] -0.1110843
  plot(PP$ENVS_Score, PP$Nat_2R_VB, main="Correlation Between VB Naturalness Item #2 and Environmentalism",
   xlab="Environmentalism Scale", ylab="VB Naturalness Item #2", pch=19)

#Naturalness Item 3, Environmentalism
  #1. GFFB 
  cor(PP$ENVS_Score, PP$Nat_3R_GFFB, use="complete.obs")
## [1] -0.3178536
  plot(PP$ENVS_Score, PP$Nat_3R_GFFB, main="Correlation Between GFFB Naturalness Item #3 and Environmentalism",
   xlab="Environmentalism Scale", ylab="GFFB Naturalness Item #3", pch=19)

  #2. GFPRB
  cor(PP$ENVS_Score, PP$Nat_3R_GFPRB, use="complete.obs")
## [1] -0.1393938
  plot(PP$ENVS_Score, PP$Nat_3R_GFPRB, main="Correlation Between GFPRB Naturalness Item #3 and Environmentalism",
   xlab="Environmentalism Scale", ylab="GFPRB Naturalness Item #3", pch=19)

  #3. CBB
  cor(PP$ENVS_Score, PP$Nat_3R_CBB, use="complete.obs")
## [1] -0.3960431
  plot(PP$ENVS_Score, PP$Nat_3R_CBB, main="Correlation Between CCB Naturalness Item #3 and Environmentalism",
   xlab="Environmentalism Scale", ylab="CCB Naturalness Item #3", pch=19)

  #4. PBPB
  cor(PP$ENVS_Score, PP$Nat_3R_PBPB, use="complete.obs")
## [1] -0.3588735
  plot(PP$ENVS_Score, PP$Nat_3R_PBPB, main="Correlation Between PBPB Naturalness Item #3 and Environmentalism",
   xlab="Environmentalism Scale", ylab="PBPB Naturalness Item #3", pch=19)

  #5. PBFB
  cor(PP$ENVS_Score, PP$Nat_3R_PBFB, use="complete.obs")
## [1] -0.4991476
  plot(PP$ENVS_Score, PP$Nat_3R_PBFB, main="Correlation Between PBFB Naturalness Item #3 and Environmentalism",
   xlab="Environmentalism Scale", ylab="PBFB Naturalness Item #3", pch=19)

  #6. VB
  cor(PP$ENVS_Score, PP$Nat_3R_VB, use="complete.obs")
## [1] -0.1223758
  plot(PP$ENVS_Score, PP$Nat_3R_VB, main="Correlation Between VB Naturalness Item #3 and Environmentalism",
   xlab="Environmentalism Scale", ylab="VB Naturalness Item #3", pch=19)

#ATNS/Naturalness Correlations

#Aversion to Tampering with Nature 

#Correlation - Environmentalism Scale, Naturalness Scale
  #1. GFFB 
  PP$Naturalness_Score_GFFB <- rowMeans(PP [, c("Nat_1_GFFB", "Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFFB <- data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)
  cor(PP$ATNS_Score, PP$Naturalness_Score_GFFB, use="complete.obs")
## [1] 0.04290389
  plot(PP$ATNS_Score, PP$Naturalness_Score_GFFB, main="Correlation Between ATNS and GFFB Naturalness Scales",
   xlab="ATNS Scale", ylab="GFFB Naturalness Scale", pch=19)

  #2. GFPRB
  PP$Naturalness_Score_GFPRB <- rowMeans(PP [, c("Nat_1_GFPRB", "Nat_2R_GFPRB", "Nat_3R_GFPRB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFPRB <- data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB)
  cor(PP$ATNS_Score, PP$Naturalness_Score_GFPRB, use="complete.obs")
## [1] 0.1803018
  plot(PP$ATNS_Score, PP$Naturalness_Score_GFPRB, main="Correlation Between ATNS and GFPRB Naturalness Scales",
   xlab="ATNS Scale", ylab="GFPRB Naturalness Scale", pch=19)

  #3. CBB
  PP$Naturalness_Score_CBB <- rowMeans(PP [, c("Nat_1_CBB", "Nat_2R_CBB", "Nat_3R_CBB")], na.rm=TRUE)
  PP$Naturalness_Scale_CBB <- data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)
  cor(PP$ATNS_Score, PP$Naturalness_Score_CBB, use="complete.obs")
## [1] -0.3623529
  plot(PP$ATNS_Score, PP$Naturalness_Score_CBB, main="Correlation Between ATNS and CBB Naturalness Scales",
   xlab="ATNS Scale", ylab="CBB Naturalness Scale", pch=19)

  #4. PBPB
  PP$Naturalness_Score_PBPB <- rowMeans(PP [, c("Nat_1_PBPB", "Nat_2R_PBPB", "Nat_3R_PBPB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBPB <- data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)
  cor(PP$ATNS_Score, PP$Naturalness_Score_PBPB, use="complete.obs")
## [1] -0.068693
  plot(PP$ATNS_Score, PP$Naturalness_Score_PBPB, main="Correlation Between ATNS and PBPB Naturalness Scales",
   xlab="ATNS Scale", ylab="PBPB Naturalness Scale", pch=19)

  #5. PBFB
  PP$Naturalness_Score_PBFB <- rowMeans(PP [, c("Nat_1_PBFB", "Nat_2R_PBFB", "Nat_3R_PBFB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBFB <- data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)
  cor(PP$ATNS_Score, PP$Naturalness_Score_PBFB, use="complete.obs")
## [1] -0.1679238
  plot(PP$ATNS_Score, PP$Naturalness_Score_PBFB, main="Correlation Between ATNS and PBFB Naturalness Scales",
   xlab="ATNS Scale", ylab="PBFB Naturalness Scale", pch=19)

  #6. VB
  PP$Naturalness_Score_VB <- rowMeans(PP [, c("Nat_1_VB", "Nat_2R_VB", "Nat_3R_VB")], na.rm=TRUE)
  PP$Naturalness_Scale_VB <- data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)
  cor(PP$ATNS_Score, PP$Naturalness_Score_VB, use="complete.obs")
## [1] -0.06088496
  plot(PP$ATNS_Score, PP$Naturalness_Score_VB, main="Correlation Between ATNS and VB Naturalness Scales",
   xlab="ATNS Scale", ylab="VB Naturalness Scale", pch=19)

#Naturalness Item 1, Aversion to Tampering with Nature Scale
  #1. GFFB 
  cor(PP$ATNS_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] 0.00856362
  plot(PP$ATNS_Score, PP$Nat_1_GFFB, main="Correlation Between GFFB Naturalness Item #1 and ATNS",
   xlab="ATNS Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #2. GFPRB
  cor(PP$ATNS_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] 0.00856362
  plot(PP$ATNS_Score, PP$Nat_1_GFFB, main="Correlation Between GFPRB Naturalness Item #1 and ATNS",
   xlab="ATNS Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #3. CBB
  cor(PP$ATNS_Score, PP$Nat_1_CBB, use="complete.obs")
## [1] -0.2705848
  plot(PP$ATNS_Score, PP$Nat_1_CBB, main="Correlation Between CCB Naturalness Item #1 and ATNS",
   xlab="ATNS Scale", ylab="CCB Naturalness Item #1", pch=19)

  #4. PBPB
  cor(PP$ATNS_Score, PP$Nat_1_PBPB, use="complete.obs")
## [1] 0.1946937
  plot(PP$ATNS_Score, PP$Nat_1_PBPB, main="Correlation Between PBPB Naturalness Item #1 and ATNS",
   xlab="ATNS Scale", ylab="PBPB Naturalness Item #1", pch=19)

  #5. PBFB
  cor(PP$ATNS_Score, PP$Nat_1_PBFB, use="complete.obs")
## [1] -0.04538173
  plot(PP$ATNS_Score, PP$Nat_1_PBFB, main="Correlation Between PBFB Naturalness Item #1 and ATNS",
   xlab="ATNS Scale", ylab="PBFB Naturalness Item #1", pch=19)

  #6. VB
  cor(PP$ATNS_Score, PP$Nat_1_VB, use="complete.obs")
## [1] -0.004843287
  plot(PP$ATNS_Score, PP$Nat_1_VB, main="Correlation Between VB Naturalness Item #1 and ATNS",
   xlab="ATNS Scale", ylab="VB Naturalness Item #1", pch=19)

#Naturalness Item 2, Aversion to Tampering to Nature Scale
  #1. GFFB 
  cor(PP$ATNS_Score, PP$Nat_2R_GFFB, use="complete.obs")
## [1] -0.0227245
  plot(PP$ATNS_Score, PP$Nat_2R_GFFB, main="Correlation Between GFFB Naturalness Item #2 and ATNS Scale",
   xlab="ATNS Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #2. GFPRB
  cor(PP$ATNS_Score, PP$Nat_2R_GFPRB, use="complete.obs")
## [1] 0.02668842
  plot(PP$ATNS_Score, PP$Nat_2R_GFPRB, main="Correlation Between GFPRB Naturalness Item #2 and ATNS Scale",
   xlab="ATNS Scale Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #3. CBB
  cor(PP$ATNS_Score, PP$Nat_2R_CBB, use="complete.obs")
## [1] -0.2047382
  plot(PP$ATNS_Score, PP$Nat_2R_CBB, main="Correlation Between CBB Naturalness Item #2 and ATNS Scale",
   xlab="ATNS Scale", ylab="CBB Naturalness Item #2", pch=19)

  #4. PBPB
  cor(PP$ATNS_Score, PP$Nat_2R_PBPB, use="complete.obs")
## [1] -0.002176731
  plot(PP$ATNS_Score, PP$Nat_2R_PBPB, main="Correlation Between PBPB Naturalness Item #2 and ATNS Scale",
   xlab="ATNS Scale Scale", ylab="PBPB Naturalness Item #2", pch=19)

  #5. PBFB
  cor(PP$ATNS_Score, PP$Nat_2R_PBFB, use="complete.obs")
## [1] -0.1137831
  plot(PP$ATNS_Score, PP$Nat_2R_PBFB, main="Correlation Between PBFB Naturalness Item #2 and ATNS Scale",
   xlab="ATNS ScaleScale", ylab="PBFB Naturalness Item #2", pch=19)

  #6. VB
  cor(PP$ATNS_Score, PP$Nat_2R_VB, use="complete.obs")
## [1] 0.02831801
  plot(PP$ATNS_Score, PP$Nat_2R_VB, main="Correlation Between VB Naturalness Item #2 and ATNS Scale",
   xlab="ATNS Scale Scale", ylab="VB Naturalness Item #2", pch=19)

#Naturalness Item 3, Aversion to Tampering to Nature Scale
  #1. GFFB 
  cor(PP$ATNS_Score, PP$Nat_3R_GFFB, use="complete.obs")
## [1] 0.09348532
  plot(PP$ATNS_Score, PP$Nat_3R_GFFB, main="Correlation Between GFFB Naturalness Item #3 and ATNS",
   xlab="ATNS Scale", ylab="GFFB Naturalness Item #3", pch=19)

  #2. GFPRB
  cor(PP$ATNS_Score, PP$Nat_3R_GFPRB, use="complete.obs")
## [1] 0.01004065
  plot(PP$ATNS_Score, PP$Nat_3R_GFPRB, main="Correlation Between GFPRB Naturalness Item #3 and ATNS",
   xlab="ATNSm Scale", ylab="GFPRB Naturalness Item #3", pch=19)

  #3. CBB
  cor(PP$ATNS_Score, PP$Nat_3R_CBB, use="complete.obs")
## [1] -0.1630556
  plot(PP$ATNS_Score, PP$Nat_3R_CBB, main="Correlation Between CCB Naturalness Item #3 and ATNS",
   xlab="ATNS Scale", ylab="CCB Naturalness Item #3", pch=19)

  #4. PBPB
  cor(PP$ATNS_Score, PP$Nat_3R_PBPB, use="complete.obs")
## [1] -0.3356528
  plot(PP$ATNS_Score, PP$Nat_3R_PBPB, main="Correlation Between PBPB Naturalness Item #3 and ATNS",
   xlab= "ATNS Scale", ylab="PBPB Naturalness Item #3", pch=19)

  #5. PBFB
  cor(PP$ATNS_Score, PP$Nat_3R_PBFB, use="complete.obs")
## [1] -0.1743142
  plot(PP$ATNS_Score, PP$Nat_3R_PBFB, main="Correlation Between PBFB Naturalness Item #3 and ATNS",
   xlab="ATNS Scale", ylab="PBFB Naturalness Item #3", pch=19)

  #6. VB
  cor(PP$ATNS_Score, PP$Nat_3R_VB, use="complete.obs")
## [1] -0.1366569
  plot(PP$ATNS_Score, PP$Nat_3R_VB, main="Correlation Between VB Naturalness Item #3 and ATNS",
   xlab="ATNS Scale", ylab="VB Naturalness Item #3", pch=19)

#Connectedness to Nature/Naturalness Correlations

#Connectedness to Nature 

#Correlation - Connectedness to Nature Scale, Naturalness Scale
  #1. GFFB 
  PP$Naturalness_Score_GFFB <- rowMeans(PP [, c("Nat_1_GFFB", "Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFFB <- data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)
  cor(PP$CNS_Score, PP$Naturalness_Score_GFFB, use="complete.obs")
## [1] -0.1672483
  plot(PP$CNS_Score, PP$Naturalness_Score_GFFB, main="Correlation Between CNS and GFFB Naturalness Scales",
   xlab="CNS Scale", ylab="GFFB Naturalness Scale", pch=19)

  #2. GFPRB
  PP$Naturalness_Score_GFPRB <- rowMeans(PP [, c("Nat_1_GFPRB", "Nat_2R_GFPRB", "Nat_3R_GFPRB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFPRB <- data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB)
  cor(PP$CNS_Score, PP$Naturalness_Score_GFPRB, use="complete.obs")
## [1] 0.4851837
  plot(PP$CNS_Score, PP$Naturalness_Score_GFPRB, main="Correlation Between CNS and GFPRB Naturalness Scales",
   xlab="CNS Scale", ylab="GFPRB Naturalness Scale", pch=19)

  #3. CBB
  PP$Naturalness_Score_CBB <- rowMeans(PP [, c("Nat_1_CBB", "Nat_2R_CBB", "Nat_3R_CBB")], na.rm=TRUE)
  PP$Naturalness_Scale_CBB <- data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)
  cor(PP$CNS_Score, PP$Naturalness_Score_CBB, use="complete.obs")
## [1] -0.2194669
  plot(PP$CNS_Score, PP$Naturalness_Score_CBB, main="Correlation Between CNS and CBB Naturalness Scales",
   xlab="CNS Scale", ylab="CBB Naturalness Scale", pch=19)

  #4. PBPB
  PP$Naturalness_Score_PBPB <- rowMeans(PP [, c("Nat_1_PBPB", "Nat_2R_PBPB", "Nat_3R_PBPB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBPB <- data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)
  cor(PP$CNS_Score, PP$Naturalness_Score_PBPB, use="complete.obs")
## [1] 0.02988085
  plot(PP$CNS_Score, PP$Naturalness_Score_PBPB, main="Correlation Between CNS and PBPB Naturalness Scales",
   xlab="CNS Scale", ylab="PBPB Naturalness Scale", pch=19)

  #5. PBFB
  PP$Naturalness_Score_PBFB <- rowMeans(PP [, c("Nat_1_PBFB", "Nat_2R_PBFB", "Nat_3R_PBFB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBFB <- data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)
  cor(PP$CNS_Score, PP$Naturalness_Score_PBFB, use="complete.obs")
## [1] -0.1482298
  plot(PP$CNS_Score, PP$Naturalness_Score_PBFB, main="Correlation Between CNS and PBFB Naturalness Scales",
   xlab="CNS Scale", ylab="PBFB Naturalness Scale", pch=19)

  #6. VB
  PP$Naturalness_Score_VB <- rowMeans(PP [, c("Nat_1_VB", "Nat_2R_VB", "Nat_3R_VB")], na.rm=TRUE)
  PP$Naturalness_Scale_VB <- data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)
  cor(PP$CNS_Score, PP$Naturalness_Score_VB, use="complete.obs")
## [1] 0.1921644
  plot(PP$CNS_Score, PP$Naturalness_Score_VB, main="Correlation Between CNS and VB Naturalness Scales",
   xlab="CNS Scale", ylab="VB Naturalness Scale", pch=19)

#Naturalness Item 1, Connectedness to Nature Scale
  #1. GFFB 
  cor(PP$CNS_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] -0.3295726
  plot(PP$CNS_Score, PP$Nat_1_GFFB, main="Correlation Between GFFB Naturalness Item #1 and CNS",
   xlab="CNS Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #2. GFPRB
  cor(PP$CNS_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] -0.3295726
  plot(PP$CNS_Score, PP$Nat_1_GFFB, main="Correlation Between GFPRB Naturalness Item #1 and CNS",
   xlab="CNS Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #3. CBB
  cor(PP$CNS_Score, PP$Nat_1_CBB, use="complete.obs")
## [1] -0.05438292
  plot(PP$CNS_Score, PP$Nat_1_CBB, main="Correlation Between CCB Naturalness Item #1 and CNS",
   xlab="CNS Scale", ylab="CCB Naturalness Item #1", pch=19)

  #4. PBPB
  cor(PP$CNS_Score, PP$Nat_1_PBPB, use="complete.obs")
## [1] -0.03451881
  plot(PP$CNS_Score, PP$Nat_1_PBPB, main="Correlation Between PBPB Naturalness Item #1 and CNS",
   xlab="CNS Scale", ylab="PBPB Naturalness Item #1", pch=19)

  #5. PBFB
  cor(PP$CNS_Score, PP$Nat_1_PBFB, use="complete.obs")
## [1] -0.08040271
  plot(PP$CNS_Score, PP$Nat_1_PBFB, main="Correlation Between PBFB Naturalness Item #1 and CNS",
   xlab="CNS Scale", ylab="PBFB Naturalness Item #1", pch=19)

  #6. VB
  cor(PP$CNS_Score, PP$Nat_1_VB, use="complete.obs")
## [1] 0.1684939
  plot(PP$CNS_Score, PP$Nat_1_VB, main="Correlation Between VB Naturalness Item #1 and CNS",
   xlab="CNS Scale", ylab="VB Naturalness Item #1", pch=19)

#Naturalness Item 2, Connectedness to Nature Scale
  #1. GFFB 
  cor(PP$CNS_Score, PP$Nat_2R_GFFB, use="complete.obs")
## [1] -0.2022239
  plot(PP$CNS_Score, PP$Nat_2R_GFFB, main="Correlation Between GFFB Naturalness Item #2 and CNS Scale",
   xlab="CNS Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #2. GFPRB
  cor(PP$CNS_Score, PP$Nat_2R_GFPRB, use="complete.obs")
## [1] 0.3139805
  plot(PP$CNS_Score, PP$Nat_2R_GFPRB, main="Correlation Between GFPRB Naturalness Item #2 and CNS Scale",
   xlab="CNS Scale Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #3. CBB
  cor(PP$CNS_Score, PP$Nat_2R_CBB, use="complete.obs")
## [1] -0.240608
  plot(PP$CNS_Score, PP$Nat_2R_CBB, main="Correlation Between CBB Naturalness Item #2 and CNS Scale",
   xlab="CNS Scale", ylab="CBB Naturalness Item #2", pch=19)

  #4. PBPB
  cor(PP$CNS_Score, PP$Nat_2R_PBPB, use="complete.obs")
## [1] 0.2173622
  plot(PP$CNS_Score, PP$Nat_2R_PBPB, main="Correlation Between PBPB Naturalness Item #2 and CNS Scale",
   xlab="CNS Scale Scale", ylab="PBPB Naturalness Item #2", pch=19)

  #5. PBFB
  cor(PP$CNS_Score, PP$Nat_2R_PBFB, use="complete.obs")
## [1] -0.00752778
  plot(PP$CNS_Score, PP$Nat_2R_PBFB, main="Correlation Between PBFB Naturalness Item #2 and CNS Scale",
   xlab="CNS ScaleScale", ylab="PBFB Naturalness Item #2", pch=19)

  #6. VB
  cor(PP$CNS_Score, PP$Nat_2R_VB, use="complete.obs")
## [1] 0.1014578
  plot(PP$CNS_Score, PP$Nat_2R_VB, main="Correlation Between VB Naturalness Item #2 and CNS Scale",
   xlab="CNS Scale Scale", ylab="VB Naturalness Item #2", pch=19)

#Naturalness Item 3, Connectedness to Nature Scale
  #1. GFFB 
  cor(PP$CNS_Score, PP$Nat_3R_GFFB, use="complete.obs")
## [1] 0.2264537
  plot(PP$CNS_Score, PP$Nat_3R_GFFB, main="Correlation Between GFFB Naturalness Item #3 and CNS",
   xlab="CNS Scale", ylab="GFFB Naturalness Item #3", pch=19)

  #2. GFPRB
  cor(PP$CNS_Score, PP$Nat_3R_GFPRB, use="complete.obs")
## [1] 0.3539681
  plot(PP$CNS_Score, PP$Nat_3R_GFPRB, main="Correlation Between GFPRB Naturalness Item #3 and CNS",
   xlab="CNS Scale", ylab="GFPRB Naturalness Item #3", pch=19)

  #3. CBB
  cor(PP$CNS_Score, PP$Nat_3R_CBB, use="complete.obs")
## [1] -0.1113171
  plot(PP$CNS_Score, PP$Nat_3R_CBB, main="Correlation Between CCB Naturalness Item #3 and CNS",
   xlab="CNS Scale", ylab="CCB Naturalness Item #3", pch=19)

  #4. PBPB
  cor(PP$CNS_Score, PP$Nat_3R_PBPB, use="complete.obs")
## [1] -0.1747154
  plot(PP$CNS_Score, PP$Nat_3R_PBPB, main="Correlation Between PBPB Naturalness Item #3 and CNS",
   xlab= "CNS Scale", ylab="PBPB Naturalness Item #3", pch=19)

  #5. PBFB
  cor(PP$CNS_Score, PP$Nat_3R_PBFB, use="complete.obs")
## [1] -0.2055235
  plot(PP$CNS_Score, PP$Nat_3R_PBFB, main="Correlation Between PBFB Naturalness Item #3 and CNS",
   xlab="CNS Scale", ylab="PBFB Naturalness Item #3", pch=19)

  #6. VB
  cor(PP$CNS_Score, PP$Nat_3R_VB, use="complete.obs")
## [1] 0.09804819
  plot(PP$CNS_Score, PP$Nat_3R_VB, main="Correlation Between VB Naturalness Item #3 and CNS",
   xlab="CNS Scale", ylab="VB Naturalness Item #3", pch=19)

#Climate Change Belief/Naturalness Correlations

#Correlation - Climate Change Belief Scale, Naturalness Scale
  #1. GFFB 
  PP$Naturalness_Score_GFFB <- rowMeans(PP [, c("Nat_1_GFFB", "Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFFB <- data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)
  cor(PP$CCBelief_Score, PP$Naturalness_Score_GFFB, use="complete.obs")
## [1] -0.3027904
  plot(PP$CCBelief_Score, PP$Naturalness_Score_GFFB, main="Correlation Between CCB and GFFB Naturalness Scales",
   xlab="CCB Scale", ylab="GFFB Naturalness Scale", pch=19)

  #2. GFPRB
  PP$Naturalness_Score_GFPRB <- rowMeans(PP [, c("Nat_1_GFPRB", "Nat_2R_GFPRB", "Nat_3R_GFPRB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFPRB <- data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB)
  cor(PP$CCBelief_Score, PP$Naturalness_Score_GFPRB, use="complete.obs")
## [1] 0.2509665
  plot(PP$CCBelief_Score, PP$Naturalness_Score_GFPRB, main="Correlation Between CCB and GFPRB Naturalness Scales",
   xlab="CCB Scale", ylab="GFPRB Naturalness Scale", pch=19)

  #3. CBB
  PP$Naturalness_Score_CBB <- rowMeans(PP [, c("Nat_1_CBB", "Nat_2R_CBB", "Nat_3R_CBB")], na.rm=TRUE)
  PP$Naturalness_Scale_CBB <- data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)
  cor(PP$CCBelief_Score, PP$Naturalness_Score_CBB, use="complete.obs")
## [1] -0.2244636
  plot(PP$CCBelief_Score, PP$Naturalness_Score_CBB, main="Correlation Between CCB and CBB Naturalness Scales",
   xlab="CCB Scale", ylab="CBB Naturalness Scale", pch=19)

  #4. PBPB
  PP$Naturalness_Score_PBPB <- rowMeans(PP [, c("Nat_1_PBPB", "Nat_2R_PBPB", "Nat_3R_PBPB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBPB <- data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)
  cor(PP$CCBelief_Score, PP$Naturalness_Score_PBPB, use="complete.obs")
## [1] 0.1499602
  plot(PP$CCBelief_Score, PP$Naturalness_Score_PBPB, main="Correlation Between CCB and PBPB Naturalness Scales",
   xlab="CCB Scale", ylab="PBPB Naturalness Scale", pch=19)

  #5. PBFB
  PP$Naturalness_Score_PBFB <- rowMeans(PP [, c("Nat_1_PBFB", "Nat_2R_PBFB", "Nat_3R_PBFB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBFB <- data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)
  cor(PP$CCBelief_Score, PP$Naturalness_Score_PBFB, use="complete.obs")
## [1] -0.1405876
  plot(PP$CCBelief_Score, PP$Naturalness_Score_PBFB, main="Correlation Between CCB and PBFB Naturalness Scales",
   xlab="CCB Scale", ylab="PBFB Naturalness Scale", pch=19)

  #6. VB
  PP$Naturalness_Score_VB <- rowMeans(PP [, c("Nat_1_VB", "Nat_2R_VB", "Nat_3R_VB")], na.rm=TRUE)
  PP$Naturalness_Scale_VB <- data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)
  cor(PP$CCBelief_Score, PP$Naturalness_Score_VB, use="complete.obs")
## [1] -0.007751182
  plot(PP$CCBelief_Score, PP$Naturalness_Score_VB, main="Correlation Between CCB and VB Naturalness Scales",
   xlab="CCB Scale", ylab="VB Naturalness Scale", pch=19)

#Naturalness Item 1, Climate Change Belief
  #1. GFFB 
  cor(PP$CCBelief_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] -0.01870919
  plot(PP$CCBelief_Score, PP$Nat_1_GFFB, main="Correlation Between GFFB Naturalness Item #1 and CCB",
   xlab="CCB Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #2. GFPRB
  cor(PP$CCBelief_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] -0.01870919
  plot(PP$CCBelief_Score, PP$Nat_1_GFFB, main="Correlation Between GFPRB Naturalness Item #1 and CCB",
   xlab="CCB Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #3. CBB
  cor(PP$CCBelief_Score, PP$Nat_1_CBB, use="complete.obs")
## [1] -0.04686755
  plot(PP$CCBelief_Score, PP$Nat_1_CBB, main="Correlation Between CCB Naturalness Item #1 and CCB",
   xlab="CCB Scale", ylab="CCB Naturalness Item #1", pch=19)

  #4. PBPB
  cor(PP$CCBelief_Score, PP$Nat_1_PBPB, use="complete.obs")
## [1] 0.2658654
  plot(PP$CCBelief_Score, PP$Nat_1_PBPB, main="Correlation Between PBPB Naturalness Item #1 and CCB",
   xlab="CCB Scale", ylab="PBPB Naturalness Item #1", pch=19)

  #5. PBFB
  cor(PP$CCBelief_Score, PP$Nat_1_PBFB, use="complete.obs")
## [1] 0.2200274
  plot(PP$CCBelief_Score, PP$Nat_1_PBFB, main="Correlation Between PBFB Naturalness Item #1 and CCB",
   xlab="CCB Scale", ylab="PBFB Naturalness Item #1", pch=19)

  #6. VB
  cor(PP$CCBelief_Score, PP$Nat_1_VB, use="complete.obs")
## [1] 0.3349562
  plot(PP$CCBelief_Score, PP$Nat_1_VB, main="Correlation Between VB Naturalness Item #1 and CNS",
   xlab="CCB Scale", ylab="VB Naturalness Item #1", pch=19)

#Naturalness Item 2, Climate Change Belief Scale
  #1. GFFB 
  cor(PP$CCBelief_Score, PP$Nat_2R_GFFB, use="complete.obs")
## [1] -0.4210733
  plot(PP$CCBelief_Score, PP$Nat_2R_GFFB, main="Correlation Between GFFB Naturalness Item #2 and CCB Scale",
   xlab="CCB Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #2. GFPRB
  cor(PP$CCBelief_Score, PP$Nat_2R_GFPRB, use="complete.obs")
## [1] 0.1364657
  plot(PP$CCBelief_Score, PP$Nat_2R_GFPRB, main="Correlation Between GFPRB Naturalness Item #2 and CCB Scale",
   xlab="CCB Scale Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #3. CBB
  cor(PP$CCBelief_Score, PP$Nat_2R_CBB, use="complete.obs")
## [1] -0.09825971
  plot(PP$CCBelief_Score, PP$Nat_2R_CBB, main="Correlation Between CBB Naturalness Item #2 and CCB Scale",
   xlab="CCB Scale", ylab="CBB Naturalness Item #2", pch=19)

  #4. PBPB
  cor(PP$CCBelief_Score, PP$Nat_2R_PBPB, use="complete.obs")
## [1] 0.1943077
  plot(PP$CCBelief_Score, PP$Nat_2R_PBPB, main="Correlation Between PBPB Naturalness Item #2 and CCB Scale",
   xlab="CCB Scale Scale", ylab="PBPB Naturalness Item #2", pch=19)

  #5. PBFB
  cor(PP$CCBelief_Score, PP$Nat_2R_PBFB, use="complete.obs")
## [1] -0.1517014
  plot(PP$CCBelief_Score, PP$Nat_2R_PBFB, main="Correlation Between PBFB Naturalness Item #2 and CCCB Scale",
   xlab="CCB ScaleScale", ylab="PBFB Naturalness Item #2", pch=19)

  #6. VB
  cor(PP$CCBelief_Score, PP$Nat_2R_VB, use="complete.obs")
## [1] -0.07067231
  plot(PP$CCBelief_Score, PP$Nat_2R_VB, main="Correlation Between VB Naturalness Item #2 and CCB Scale",
   xlab="CCB Scale Scale", ylab="VB Naturalness Item #2", pch=19)

#Naturalness Item 3, Climate Change Belief Scale
  #1. GFFB 
  cor(PP$CCBelief_Score, PP$Nat_3R_GFFB, use="complete.obs")
## [1] -0.1177224
  plot(PP$CCBelief_Score, PP$Nat_3R_GFFB, main="Correlation Between GFFB Naturalness Item #3 and CCB",
   xlab="CCB Scale", ylab="GFFB Naturalness Item #3", pch=19)

  #2. GFPRB
  cor(PP$CCBelief_Score, PP$Nat_3R_GFPRB, use="complete.obs")
## [1] 0.01309672
  plot(PP$CCBelief_Score, PP$Nat_3R_GFPRB, main="Correlation Between GFPRB Naturalness Item #3 and CCB",
   xlab="CCB Scale", ylab="GFPRB Naturalness Item #3", pch=19)

  #3. CBB
  cor(PP$CCBelief_Score, PP$Nat_3R_CBB, use="complete.obs")
## [1] -0.2957607
  plot(PP$CCBelief_Score, PP$Nat_3R_CBB, main="Correlation Between CCB Naturalness Item #3 and CCB",
   xlab="CCB Scale", ylab="CCB Naturalness Item #3", pch=19)

  #4. PBPB
  cor(PP$CCBelief_Score, PP$Nat_3R_PBPB, use="complete.obs")
## [1] -0.230227
  plot(PP$CCBelief_Score, PP$Nat_3R_PBPB, main="Correlation Between PBPB Naturalness Item #3 and CCB",
   xlab= "CCB Scale", ylab="PBPB Naturalness Item #3", pch=19)

  #5. PBFB
  cor(PP$CCBelief_Score, PP$Nat_3R_PBFB, use="complete.obs")
## [1] -0.3891721
  plot(PP$CCBelief_Score, PP$Nat_3R_PBFB, main="Correlation Between PBFB Naturalness Item #3 and CCB",
   xlab="CCB Scale", ylab="PBFB Naturalness Item #3", pch=19)

  #6. VB
  cor(PP$CCBelief_Score, PP$Nat_3R_VB, use="complete.obs")
## [1] -0.2266098
  plot(PP$CCBelief_Score, PP$Nat_3R_VB, main="Correlation Between VB Naturalness Item #3 and CCB",
   xlab="CCB Scale", ylab="VB Naturalness Item #3", pch=19)

#Individualism/Naturalness Correlations

#Correlation - Individualism Scale, Naturalness Scale
  #1. GFFB 
  PP$Naturalness_Score_GFFB <- rowMeans(PP [, c("Nat_1_GFFB", "Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFFB <- data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)
  cor(PP$Individualism_Score, PP$Naturalness_Score_GFFB, use="complete.obs")
## [1] -0.2239533
  plot(PP$Individualism_Score, PP$Naturalness_Score_GFFB, main="Correlation Between Individualism and GFFB Naturalness Scales",
   xlab="Individualism Scale", ylab="GFFB Naturalness Scale", pch=19)

  #2. GFPRB
  PP$Naturalness_Score_GFPRB <- rowMeans(PP [, c("Nat_1_GFPRB", "Nat_2R_GFPRB", "Nat_3R_GFPRB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFPRB <- data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB)
  cor(PP$Individualism_Score, PP$Naturalness_Score_GFPRB, use="complete.obs")
## [1] 0.0550101
  plot(PP$Individualism_Score, PP$Naturalness_Score_GFPRB, main="Correlation Between Individualism and GFPRB Naturalness Scales",
   xlab="Individualism Scale", ylab="GFPRB Naturalness Scale", pch=19)

  #3. CBB
  PP$Naturalness_Score_CBB <- rowMeans(PP [, c("Nat_1_CBB", "Nat_2R_CBB", "Nat_3R_CBB")], na.rm=TRUE)
  PP$Naturalness_Scale_CBB <- data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)
  cor(PP$Individualism_Score, PP$Naturalness_Score_CBB, use="complete.obs")
## [1] -0.44175
  plot(PP$Individualism_Score, PP$Naturalness_Score_CBB, main="Correlation Between Individualism and CBB Naturalness Scales",
   xlab="Individualism Scale", ylab="CBB Naturalness Scale", pch=19)

  #4. PBPB
  PP$Naturalness_Score_PBPB <- rowMeans(PP [, c("Nat_1_PBPB", "Nat_2R_PBPB", "Nat_3R_PBPB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBPB <- data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)
  cor(PP$Individualism_Score, PP$Naturalness_Score_PBPB, use="complete.obs")
## [1] -0.01104635
  plot(PP$Individualism_Score, PP$Naturalness_Score_PBPB, main="Correlation Between Individualism and PBPB Naturalness Scales",
   xlab="Individualism Scale", ylab="PBPB Naturalness Scale", pch=19)

  #5. PBFB
  PP$Naturalness_Score_PBFB <- rowMeans(PP [, c("Nat_1_PBFB", "Nat_2R_PBFB", "Nat_3R_PBFB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBFB <- data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)
  cor(PP$Individualism_Score, PP$Naturalness_Score_PBFB, use="complete.obs")
## [1] -0.2881681
  plot(PP$Individualism_Score, PP$Naturalness_Score_PBFB, main="Correlation Between Individualism and PBFB Naturalness Scales",
   xlab="Individualism Scale", ylab="PBFB Naturalness Scale", pch=19)

  #6. VB
  PP$Naturalness_Score_VB <- rowMeans(PP [, c("Nat_1_VB", "Nat_2R_VB", "Nat_3R_VB")], na.rm=TRUE)
  PP$Naturalness_Scale_VB <- data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)
  cor(PP$Individualism_Score, PP$Naturalness_Score_VB, use="complete.obs")
## [1] -0.1552394
  plot(PP$Individualism_Score, PP$Naturalness_Score_VB, main="Correlation Between Individualism and VB Naturalness Scales",
   xlab="Individualism Scale", ylab="VB Naturalness Scale", pch=19)

#Naturalness Item 1, Individualism Scale
  #1. GFFB 
  cor(PP$Individualism_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] 0.2637115
  plot(PP$Individualism_Score, PP$Nat_1_GFFB, main="Correlation Between GFFB Naturalness Item #1 and Individualism Scale",
   xlab="IND Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #2. GFPRB
  cor(PP$Individualism_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] 0.2637115
  plot(PP$Individualism_Score, PP$Nat_1_GFFB, main="Correlation Between GFPRB Naturalness Item #1 and Individualism Scale",
   xlab="IND Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #3. CBB
  cor(PP$Individualism_Score, PP$Nat_1_CBB, use="complete.obs")
## [1] -0.1620996
  plot(PP$Individualism_Score, PP$Nat_1_CBB, main="Correlation Between CCB Naturalness Item #1 and Individualism Scale",
   xlab="IND Scale", ylab="CCB Naturalness Item #1", pch=19)

  #4. PBPB
  cor(PP$Individualism_Score, PP$Nat_1_PBPB, use="complete.obs")
## [1] 0.4393399
  plot(PP$Individualism_Score, PP$Nat_1_PBPB, main="Correlation Between PBPB Naturalness Item #1 and Individualism Scale",
   xlab="IND Scale", ylab="PBPB Naturalness Item #1", pch=19)

  #5. PBFB
  cor(PP$Individualism_Score, PP$Nat_1_PBFB, use="complete.obs")
## [1] 0.1266517
  plot(PP$Individualism_Score, PP$Nat_1_PBFB, main="Correlation Between PBFB Naturalness Item #1 and Individualism Scale",
   xlab="IND Scale", ylab="PBFB Naturalness Item #1", pch=19)

  #6. VB
  cor(PP$Individualism_Score, PP$Nat_1_VB, use="complete.obs")
## [1] 0.1323967
  plot(PP$Individualism_Score, PP$Nat_1_VB, main="Correlation Between VB Naturalness Item #1 and Individualism Scale",
   xlab="IND Scale", ylab="VB Naturalness Item #1", pch=19)

#Naturalness Item 2, Individualism Scale
  #1. GFFB 
  cor(PP$Individualism_Score, PP$Nat_2R_GFFB, use="complete.obs")
## [1] -0.2777159
  plot(PP$Individualism_Score, PP$Nat_2R_GFFB, main="Correlation Between GFFB Naturalness Item #2 and IND Scale",
   xlab="IND Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #2. GFPRB
  cor(PP$Individualism_Score, PP$Nat_2R_GFPRB, use="complete.obs")
## [1] -0.01073339
  plot(PP$Individualism_Score, PP$Nat_2R_GFPRB, main="Correlation Between GFPRB Naturalness Item #2 and IND Scale",
   xlab="IND Scale Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #3. CBB
  cor(PP$Individualism_Score, PP$Nat_2R_CBB, use="complete.obs")
## [1] -0.2956445
  plot(PP$Individualism_Score, PP$Nat_2R_CBB, main="Correlation Between CBB Naturalness Item #2 and IND Scale",
   xlab="IND Scale", ylab="CBB Naturalness Item #2", pch=19)

  #4. PBPB
  cor(PP$Individualism_Score, PP$Nat_2R_PBPB, use="complete.obs")
## [1] -0.1545008
  plot(PP$Individualism_Score, PP$Nat_2R_PBPB, main="Correlation Between PBPB Naturalness Item #2 and IND Scale",
   xlab="IND Scale", ylab="PBPB Naturalness Item #2", pch=19)

  #5. PBFB
  cor(PP$Individualism_Score, PP$Nat_2R_PBFB, use="complete.obs")
## [1] -0.2882167
  plot(PP$Individualism_Score, PP$Nat_2R_PBFB, main="Correlation Between PBFB Naturalness Item #2 and IND Scale",
   xlab="IND ScaleScale", ylab="PBFB Naturalness Item #2", pch=19)

  #6. VB
  cor(PP$Individualism_Score, PP$Nat_2R_VB, use="complete.obs")
## [1] -0.08929135
  plot(PP$Individualism_Score, PP$Nat_2R_VB, main="Correlation Between VB Naturalness Item #2 and IND Scale",
   xlab="IND Scale Scale", ylab="VB Naturalness Item #2", pch=19)

#Naturalness Item 3, Individualism Scale
  #1. GFFB 
  cor(PP$Individualism_Score, PP$Nat_3R_GFFB, use="complete.obs")
## [1] -0.4008802
  plot(PP$Individualism_Score, PP$Nat_3R_GFFB, main="Correlation Between GFFB Naturalness Item #3 and Individualism",
   xlab="IND Scale", ylab="GFFB Naturalness Item #3", pch=19)

  #2. GFPRB
  cor(PP$Individualism_Score, PP$Nat_3R_GFPRB, use="complete.obs")
## [1] -0.2987333
  plot(PP$Individualism_Score, PP$Nat_3R_GFPRB, main="Correlation Between GFPRB Naturalness Item #3 and Individualism",
   xlab="IND Scale", ylab="GFPRB Naturalness Item #3", pch=19)

  #3. CBB
  cor(PP$Individualism_Score, PP$Nat_3R_CBB, use="complete.obs")
## [1] -0.3706834
  plot(PP$Individualism_Score, PP$Nat_3R_CBB, main="Correlation Between CCB Naturalness Item #3 and Individualism",
   xlab="IND Scale", ylab="CCB Naturalness Item #3", pch=19)

  #4. PBPB
  cor(PP$Individualism_Score, PP$Nat_3R_PBPB, use="complete.obs")
## [1] -0.2933803
  plot(PP$Individualism_Score, PP$Nat_3R_PBPB, main="Correlation Between PBPB Naturalness Item #3 and Individualism",
   xlab= "IND Scale", ylab="PBPB Naturalness Item #3", pch=19)

  #5. PBFB
  cor(PP$Individualism_Score, PP$Nat_3R_PBFB, use="complete.obs")
## [1] -0.4405149
  plot(PP$Individualism_Score, PP$Nat_3R_PBFB, main="Correlation Between PBFB Naturalness Item #3 and Individualism",
   xlab="IND Scale", ylab="PBFB Naturalness Item #3", pch=19)

  #6. VB
  cor(PP$Individualism_Score, PP$Nat_3R_VB, use="complete.obs")
## [1] -0.3011725
  plot(PP$Individualism_Score, PP$Nat_3R_VB, main="Correlation Between VB Naturalness Item #3 and Individualism",
   xlab="IND Scale", ylab="VB Naturalness Item #3", pch=19)

#Collectivism/Naturalness Correlations

#Correlation - Collectivism Scale, Naturalness Scale
  #1. GFFB 
  PP$Naturalness_Score_GFFB <- rowMeans(PP [, c("Nat_1_GFFB", "Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFFB <- data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)
  cor(PP$Collectivism_Score, PP$Naturalness_Score_GFFB, use="complete.obs")
## [1] -0.1182927
  plot(PP$Collectivism_Score, PP$Naturalness_Score_GFFB, main="Correlation Between Collectivism and GFFB Naturalness Scales",
   xlab="Collectivism Scale", ylab="GFFB Naturalness Scale", pch=19)

  #2. GFPRB
  PP$Naturalness_Score_GFPRB <- rowMeans(PP [, c("Nat_1_GFPRB", "Nat_2R_GFPRB", "Nat_3R_GFPRB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFPRB <- data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB)
  cor(PP$Collectivism_Score, PP$Naturalness_Score_GFPRB, use="complete.obs")
## [1] -0.1438231
  plot(PP$Collectivism_Score, PP$Naturalness_Score_GFPRB, main="Correlation Between Collectivism and GFPRB Naturalness Scales",
   xlab="Collectivism Scale", ylab="GFPRB Naturalness Scale", pch=19)

  #3. CBB
  PP$Naturalness_Score_CBB <- rowMeans(PP [, c("Nat_1_CBB", "Nat_2R_CBB", "Nat_3R_CBB")], na.rm=TRUE)
  PP$Naturalness_Scale_CBB <- data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)
  cor(PP$Collectivism_Score, PP$Naturalness_Score_CBB, use="complete.obs")
## [1] -0.01211381
  plot(PP$Collectivism_Score, PP$Naturalness_Score_CBB, main="Correlation Between Collectivism and CBB Naturalness Scales",
   xlab="Collectivism Scale", ylab="CBB Naturalness Scale", pch=19)

  #4. PBPB
  PP$Naturalness_Score_PBPB <- rowMeans(PP [, c("Nat_1_PBPB", "Nat_2R_PBPB", "Nat_3R_PBPB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBPB <- data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)
  cor(PP$Collectivism_Score, PP$Naturalness_Score_PBPB, use="complete.obs")
## [1] 0.05511321
  plot(PP$Collectivism_Score, PP$Naturalness_Score_PBPB, main="Correlation Between Collectivism and PBPB Naturalness Scales",
   xlab="Collectivism Scale", ylab="PBPB Naturalness Scale", pch=19)

  #5. PBFB
  PP$Naturalness_Score_PBFB <- rowMeans(PP [, c("Nat_1_PBFB", "Nat_2R_PBFB", "Nat_3R_PBFB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBFB <- data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)
  cor(PP$Collectivism_Score, PP$Naturalness_Score_PBFB, use="complete.obs")
## [1] -0.07770604
  plot(PP$Collectivism_Score, PP$Naturalness_Score_PBFB, main="Correlation Between Collectivism and PBFB Naturalness Scales",
   xlab="Collectivism Scale", ylab="PBFB Naturalness Scale", pch=19)

  #6. VB
  PP$Naturalness_Score_VB <- rowMeans(PP [, c("Nat_1_VB", "Nat_2R_VB", "Nat_3R_VB")], na.rm=TRUE)
  PP$Naturalness_Scale_VB <- data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)
  cor(PP$Collectivism_Score, PP$Naturalness_Score_VB, use="complete.obs")
## [1] -0.2115697
  plot(PP$Collectivism_Score, PP$Naturalness_Score_VB, main="Correlation Between Collectivism and VB Naturalness Scales",
   xlab="Collectivism Scale", ylab="VB Naturalness Scale", pch=19)

#Naturalness Item 1, Collectivism Scale
  #1. GFFB 
  cor(PP$Collectivism_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] 0.4524201
  plot(PP$Collectivism_Score, PP$Nat_1_GFFB, main="Correlation Between GFFB Naturalness Item #1 and Collectivism Scale",
   xlab="Collectivism Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #2. GFPRB
  cor(PP$Collectivism_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] 0.4524201
  plot(PP$Collectivism_Score, PP$Nat_1_GFFB, main="Correlation Between GFPRB Naturalness Item #1 and Collectivism Scale",
   xlab="Collectivism Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #3. CBB
  cor(PP$Collectivism_Score, PP$Nat_1_CBB, use="complete.obs")
## [1] 0.200486
  plot(PP$Collectivism_Score, PP$Nat_1_CBB, main="Correlation Between CCB Naturalness Item #1 and Collectivism Scale",
   xlab="Collectivism Scale", ylab="CCB Naturalness Item #1", pch=19)

  #4. PBPB
  cor(PP$Collectivism_Score, PP$Nat_1_PBPB, use="complete.obs")
## [1] 0.4203608
  plot(PP$Collectivism_Score, PP$Nat_1_PBPB, main="Correlation Between PBPB Naturalness Item #1 and Collectivism Scale",
   xlab="Collectivism Scale", ylab="PBPB Naturalness Item #1", pch=19)

  #5. PBFB
  cor(PP$Collectivism_Score, PP$Nat_1_PBFB, use="complete.obs")
## [1] 0.08275208
  plot(PP$Collectivism_Score, PP$Nat_1_PBFB, main="Correlation Between PBFB Naturalness Item #1 and Collectivism Scale",
   xlab="Collectivism Scale", ylab="PBFB Naturalness Item #1", pch=19)

  #6. VB
  cor(PP$Collectivism_Score, PP$Nat_1_VB, use="complete.obs")
## [1] 0.03957689
  plot(PP$Collectivism_Score, PP$Nat_1_VB, main="Correlation Between VB Naturalness Item #1 and Collectivism Scale",
   xlab="Collectivism Scale", ylab="VB Naturalness Item #1", pch=19)

#Naturalness Item 2, Collectivism Scale
  #1. GFFB 
  cor(PP$Collectivism_Score, PP$Nat_2R_GFFB, use="complete.obs")
## [1] -0.2100618
  plot(PP$Collectivism_Score, PP$Nat_2R_GFFB, main="Correlation Between GFFB Naturalness Item #2 and Collectivism Scale",
   xlab="Collectivism Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #2. GFPRB
  cor(PP$Collectivism_Score, PP$Nat_2R_GFPRB, use="complete.obs")
## [1] -0.2729313
  plot(PP$Collectivism_Score, PP$Nat_2R_GFPRB, main="Correlation Between GFPRB Naturalness Item #2 and Collectivism Scale",
   xlab="Collectivism Scale Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #3. CBB
  cor(PP$Collectivism_Score, PP$Nat_2R_CBB, use="complete.obs")
## [1] 0.01861201
  plot(PP$Collectivism_Score, PP$Nat_2R_CBB, main="Correlation Between CBB Naturalness Item #2 and Collectivism Scale",
   xlab="Collectivism Scale", ylab="CBB Naturalness Item #2", pch=19)

  #4. PBPB
  cor(PP$Collectivism_Score, PP$Nat_2R_PBPB, use="complete.obs")
## [1] -0.2333794
  plot(PP$Collectivism_Score, PP$Nat_2R_PBPB, main="Correlation Between PBPB Naturalness Item #2 and Collectivism Scale",
   xlab="Collectivism Scale", ylab="PBPB Naturalness Item #2", pch=19)

  #5. PBFB
  cor(PP$Collectivism_Score, PP$Nat_2R_PBFB, use="complete.obs")
## [1] -0.1424306
  plot(PP$Collectivism_Score, PP$Nat_2R_PBFB, main="Correlation Between PBFB Naturalness Item #2 and Collectivism Scale",
   xlab="Collectivism ScaleScale", ylab="PBFB Naturalness Item #2", pch=19)

  #6. VB
  cor(PP$Collectivism_Score, PP$Nat_2R_VB, use="complete.obs")
## [1] -0.1124313
  plot(PP$Collectivism_Score, PP$Nat_2R_VB, main="Correlation Between VB Naturalness Item #2 and Collectivism Scale",
   xlab="Collectivism Scale Scale", ylab="VB Naturalness Item #2", pch=19)

#Naturalness Item 3, Individualism Scale
  #1. GFFB 
  cor(PP$Collectivism_Score, PP$Nat_3R_GFFB, use="complete.obs")
## [1] -0.4638958
  plot(PP$Collectivism_Score, PP$Nat_3R_GFFB, main="Correlation Between GFFB Naturalness Item #3 and Collectivism",
   xlab="Collectivism Scale", ylab="GFFB Naturalness Item #3", pch=19)

  #2. GFPRB
  cor(PP$Collectivism_Score, PP$Nat_3R_GFPRB, use="complete.obs")
## [1] -0.3506179
  plot(PP$Collectivism_Score, PP$Nat_3R_GFPRB, main="Correlation Between GFPRB Naturalness Item #3 and Collectivism",
   xlab="Collectivism Scale", ylab="GFPRB Naturalness Item #3", pch=19)

  #3. CBB
  cor(PP$Collectivism_Score, PP$Nat_3R_CBB, use="complete.obs")
## [1] -0.3156394
  plot(PP$Collectivism_Score, PP$Nat_3R_CBB, main="Correlation Between CCB Naturalness Item #3 and Collectivism",
   xlab="Collectivism Scale", ylab="CCB Naturalness Item #3", pch=19)

  #4. PBPB
  cor(PP$Collectivism_Score, PP$Nat_3R_PBPB, use="complete.obs")
## [1] -0.04757559
  plot(PP$Collectivism_Score, PP$Nat_3R_PBPB, main="Correlation Between PBPB Naturalness Item #3 and Collectivism",
   xlab= "Collectivism Scale", ylab="PBPB Naturalness Item #3", pch=19)

  #5. PBFB
  cor(PP$Collectivism_Score, PP$Nat_3R_PBFB, use="complete.obs")
## [1] -0.1069208
  plot(PP$Collectivism_Score, PP$Nat_3R_PBFB, main="Correlation Between PBFB Naturalness Item #3 and Collectivism",
   xlab="Collectivism Scale", ylab="PBFB Naturalness Item #3", pch=19)

  #6. VB
  cor(PP$Collectivism_Score, PP$Nat_3R_VB, use="complete.obs")
## [1] -0.3010127
  plot(PP$Collectivism_Score, PP$Nat_3R_VB, main="Correlation Between VB Naturalness Item #3 and Collectivism",
   xlab="Collectivism Scale", ylab="VB Naturalness Item #3", pch=19)

#Systems Thinking/Naturalness Correlations

#Correlation - Systems Thinking, Naturalness Scale
  #1. GFFB 
  PP$Naturalness_Score_GFFB <- rowMeans(PP [, c("Nat_1_GFFB", "Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFFB <- data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)
  cor(PP$ST_Score, PP$Naturalness_Score_GFFB, use="complete.obs")
## [1] -0.1778856
  plot(PP$ST_Score, PP$Naturalness_Score_GFFB, main="Correlation Between Systems Thinking and GFFB Naturalness Scales",
   xlab="Systems Thinking Scale", ylab="GFFB Naturalness Scale", pch=19)

  #2. GFPRB
  PP$Naturalness_Score_GFPRB <- rowMeans(PP [, c("Nat_1_GFPRB", "Nat_2R_GFPRB", "Nat_3R_GFPRB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFPRB <- data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB)
  cor(PP$ST_Score, PP$Naturalness_Score_GFPRB, use="complete.obs")
## [1] 0.2974051
  plot(PP$ST_Score, PP$Naturalness_Score_GFPRB, main="Correlation Between Systems Thinking and GFPRB Naturalness Scales",
   xlab="Systems Thinking Scale", ylab="GFPRB Naturalness Scale", pch=19)

  #3. CBB
  PP$Naturalness_Score_CBB <- rowMeans(PP [, c("Nat_1_CBB", "Nat_2R_CBB", "Nat_3R_CBB")], na.rm=TRUE)
  PP$Naturalness_Scale_CBB <- data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)
  cor(PP$ST_Score, PP$Naturalness_Score_CBB, use="complete.obs")
## [1] -0.4926093
  plot(PP$ST_Score, PP$Naturalness_Score_CBB, main="Correlation Between Systems Thinking and CBB Naturalness Scales",
   xlab="Systems Thinking", ylab="CBB Naturalness Scale", pch=19)

  #4. PBPB
  PP$Naturalness_Score_PBPB <- rowMeans(PP [, c("Nat_1_PBPB", "Nat_2R_PBPB", "Nat_3R_PBPB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBPB <- data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)
  cor(PP$ST_Score, PP$Naturalness_Score_PBPB, use="complete.obs")
## [1] -0.01449606
  plot(PP$ST_Score, PP$Naturalness_Score_PBPB, main="Correlation Between Systems Thinking and PBPB Naturalness Scales",
   xlab="Systems Thinking", ylab="PBPB Naturalness Scale", pch=19)

  #5. PBFB
  PP$Naturalness_Score_PBFB <- rowMeans(PP [, c("Nat_1_PBFB", "Nat_2R_PBFB", "Nat_3R_PBFB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBFB <- data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)
  cor(PP$ST_Score, PP$Naturalness_Score_PBFB, use="complete.obs")
## [1] -0.3262814
  plot(PP$ST_Score, PP$Naturalness_Score_PBFB, main="Correlation Between Systems Thinking and PBFB Naturalness Scales",
   xlab="Systems Thinking", ylab="PBFB Naturalness Scale", pch=19)

  #6. VB
  PP$Naturalness_Score_VB <- rowMeans(PP [, c("Nat_1_VB", "Nat_2R_VB", "Nat_3R_VB")], na.rm=TRUE)
  PP$Naturalness_Scale_VB <- data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)
  cor(PP$ST_Score, PP$Naturalness_Score_VB, use="complete.obs")
## [1] -0.02588182
  plot(PP$ST_Score, PP$Naturalness_Score_VB, main="Correlation Between Systems Thinking and VB Naturalness Scales",
   xlab="Systems Thinking Scale", ylab="VB Naturalness Scale", pch=19)

#Naturalness Item 1, Systems Thinking Scale
  #1. GFFB 
  cor(PP$ST_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] -0.1273476
  plot(PP$ST_Score, PP$Nat_1_GFFB, main="Correlation Between GFFB Naturalness Item #1 and Systems Thinking Scale",
   xlab="Systems Thinking Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #2. GFPRB
  cor(PP$ST_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] -0.1273476
  plot(PP$ST_Score, PP$Nat_1_GFFB, main="Correlation Between GFPRB Naturalness Item #1 and Systems Thinking Scale",
   xlab="Systems Thinking Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #3. CBB
  cor(PP$ST_Score, PP$Nat_1_CBB, use="complete.obs")
## [1] -0.2591229
  plot(PP$ST_Score, PP$Nat_1_CBB, main="Correlation Between CCB Naturalness Item #1 and Systems Thinking Scale",
   xlab="Systems Thinking Scale", ylab="CCB Naturalness Item #1", pch=19)

  #4. PBPB
  cor(PP$ST_Score, PP$Nat_1_PBPB, use="complete.obs")
## [1] 0.1127269
  plot(PP$ST_Score, PP$Nat_1_PBPB, main="Correlation Between PBPB Naturalness Item #1 and Systems Thinking Scale",
   xlab="Systems Thinking Scale", ylab="PBPB Naturalness Item #1", pch=19)

  #5. PBFB
  cor(PP$ST_Score, PP$Nat_1_PBFB, use="complete.obs")
## [1] 0.1142938
  plot(PP$ST_Score, PP$Nat_1_PBFB, main="Correlation Between PBFB Naturalness Item #1 and Systems Thinking Scale",
   xlab="Systems Thinking Scale", ylab="PBFB Naturalness Item #1", pch=19)

  #6. VB
  cor(PP$ST_Score, PP$Nat_1_VB, use="complete.obs")
## [1] 0.04189862
  plot(PP$ST_Score, PP$Nat_1_VB, main="Correlation Between VB Naturalness Item #1 and Systems Thinking Scale",
   xlab="Systems Thinking Scale", ylab="VB Naturalness Item #1", pch=19)

#Naturalness Item 2, Systems Thinking Scale
  #1. GFFB 
  cor(PP$ST_Score, PP$Nat_2R_GFFB, use="complete.obs")
## [1] -0.14821
  plot(PP$ST_Score, PP$Nat_2R_GFFB, main="Correlation Between GFFB Naturalness Item #2 and Systems Thinking Scale",
   xlab="Systems Thinking Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #2. GFPRB
  cor(PP$ST_Score, PP$Nat_2R_GFPRB, use="complete.obs")
## [1] 0.2819284
  plot(PP$ST_Score, PP$Nat_2R_GFPRB, main="Correlation Between GFPRB Naturalness Item #2 and Systems Thinking Scale",
   xlab="Systems Thinking Scale Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #3. CBB
  cor(PP$ST_Score, PP$Nat_2R_CBB, use="complete.obs")
## [1] -0.3096436
  plot(PP$ST_Score, PP$Nat_2R_CBB, main="Correlation Between CBB Naturalness Item #2 and Systems Thinking Scale",
   xlab="Systems Thinking Scale", ylab="CBB Naturalness Item #2", pch=19)

  #4. PBPB
  cor(PP$ST_Score, PP$Nat_2R_PBPB, use="complete.obs")
## [1] 0.1490989
  plot(PP$ST_Score, PP$Nat_2R_PBPB, main="Correlation Between PBPB Naturalness Item #2 and Systems Thinking Scale",
   xlab="Systems Thinking Scale", ylab="PBPB Naturalness Item #2", pch=19)

  #5. PBFB
  cor(PP$ST_Score, PP$Nat_2R_PBFB, use="complete.obs")
## [1] -0.2690046
  plot(PP$ST_Score, PP$Nat_2R_PBFB, main="Correlation Between PBFB Naturalness Item #2 and Systems Thinking Scale",
   xlab="Systems Thinking ScaleScale", ylab="PBFB Naturalness Item #2", pch=19)

  #6. VB
  cor(PP$ST_Score, PP$Nat_2R_VB, use="complete.obs")
## [1] 0.05649654
  plot(PP$ST_Score, PP$Nat_2R_VB, main="Correlation Between VB Naturalness Item #2 and Systems Thinking Scale",
   xlab="Systems Thinking Scale Scale", ylab="VB Naturalness Item #2", pch=19)

#Naturalness Item 3, Systems Thinking Scale
  #1. GFFB 
  cor(PP$ST_Score, PP$Nat_3R_GFFB, use="complete.obs")
## [1] -0.05142814
  plot(PP$ST_Score, PP$Nat_3R_GFFB, main="Correlation Between GFFB Naturalness Item #3 and Systems Thinking",
   xlab="Systems Thinking Scale", ylab="GFFB Naturalness Item #3", pch=19)

  #2. GFPRB
  cor(PP$ST_Score, PP$Nat_3R_GFPRB, use="complete.obs")
## [1] -0.005062278
  plot(PP$ST_Score, PP$Nat_3R_GFPRB, main="Correlation Between GFPRB Naturalness Item #3 and Systems Thinking",
   xlab="Systems Thinking Scale", ylab="GFPRB Naturalness Item #3", pch=19)

  #3. CBB
  cor(PP$ST_Score, PP$Nat_3R_CBB, use="complete.obs")
## [1] -0.3313847
  plot(PP$ST_Score, PP$Nat_3R_CBB, main="Correlation Between CCB Naturalness Item #3 and Systems Thinking",
   xlab="Systems Thinking Scale", ylab="CCB Naturalness Item #3", pch=19)

  #4. PBPB
  cor(PP$ST_Score, PP$Nat_3R_PBPB, use="complete.obs")
## [1] -0.3314487
  plot(PP$ST_Score, PP$Nat_3R_PBPB, main="Correlation Between PBPB Naturalness Item #3 and Systems Thinking",
   xlab= "Systems Thinking Scale", ylab="PBPB Naturalness Item #3", pch=19)

  #5. PBFB
  cor(PP$ST_Score, PP$Nat_3R_PBFB, use="complete.obs")
## [1] -0.5256942
  plot(PP$ST_Score, PP$Nat_3R_PBFB, main="Correlation Between PBFB Naturalness Item #3 and Systems Thinking",
   xlab="Systems Thinking Scale", ylab="PBFB Naturalness Item #3", pch=19)

  #6. VB
  cor(PP$ST_Score, PP$Nat_3R_VB, use="complete.obs")
## [1] -0.1432221
  plot(PP$ST_Score, PP$Nat_3R_VB, main="Correlation Between VB Naturalness Item #3 and Systems Thinking",
   xlab="Systems Thinking Scale", ylab="VB Naturalness Item #3", pch=19)

#Holistic Thinking/Naturalness Correlations

#Correlation - Holistic Thinking, Naturalness Scale
  #1. GFFB 
  PP$Naturalness_Score_GFFB <- rowMeans(PP [, c("Nat_1_GFFB", "Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFFB <- data.frame(PP$Nat_1_GFFB, PP$Nat_2R_GFFB, PP$Nat_3R_GFFB)
  cor(PP$HT_Score, PP$Naturalness_Score_GFFB, use="complete.obs")
## [1] -0.1778856
  plot(PP$HT_Score, PP$Naturalness_Score_GFFB, main="Correlation Between Holistic Thinking and GFFB Naturalness Scales",
   xlab="Holistic Thinking Scale", ylab="GFFB Naturalness Scale", pch=19)

  #2. GFPRB
  PP$Naturalness_Score_GFPRB <- rowMeans(PP [, c("Nat_1_GFPRB", "Nat_2R_GFPRB", "Nat_3R_GFPRB")], na.rm=TRUE)
  PP$Naturalness_Scale_GFPRB <- data.frame(PP$Nat_1_GFPRB, PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB)
  cor(PP$HT_Score, PP$Naturalness_Score_GFPRB, use="complete.obs")
## [1] 0.2974051
  plot(PP$HT_Score, PP$Naturalness_Score_GFPRB, main="Correlation Between Holistic Thinking and GFPRB Naturalness Scales",
   xlab="Holistic Thinking Scale", ylab="GFPRB Naturalness Scale", pch=19)

  #3. CBB
  PP$Naturalness_Score_CBB <- rowMeans(PP [, c("Nat_1_CBB", "Nat_2R_CBB", "Nat_3R_CBB")], na.rm=TRUE)
  PP$Naturalness_Scale_CBB <- data.frame(PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB)
  cor(PP$HT_Score, PP$Naturalness_Score_CBB, use="complete.obs")
## [1] -0.4926093
  plot(PP$HT_Score, PP$Naturalness_Score_CBB, main="Correlation Between Holistic Thinking and CBB Naturalness Scales",
   xlab="Holistic Thinking", ylab="CBB Naturalness Scale", pch=19)

  #4. PBPB
  PP$Naturalness_Score_PBPB <- rowMeans(PP [, c("Nat_1_PBPB", "Nat_2R_PBPB", "Nat_3R_PBPB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBPB <- data.frame(PP$Nat_1_PBPB, PP$Nat_2R_PBPB, PP$Nat_3R_PBPB)
  cor(PP$HT_Score, PP$Naturalness_Score_PBPB, use="complete.obs")
## [1] -0.01449606
  plot(PP$HT_Score, PP$Naturalness_Score_PBPB, main="Correlation Between Holistic Thinking and PBPB Naturalness Scales",
   xlab="Holistic Thinking", ylab="PBPB Naturalness Scale", pch=19)

  #5. PBFB
  PP$Naturalness_Score_PBFB <- rowMeans(PP [, c("Nat_1_PBFB", "Nat_2R_PBFB", "Nat_3R_PBFB")], na.rm=TRUE)
  PP$Naturalness_Scale_PBFB <- data.frame(PP$Nat_1_PBFB, PP$Nat_2R_PBFB, PP$Nat_3R_PBFB)
  cor(PP$HT_Score, PP$Naturalness_Score_PBFB, use="complete.obs")
## [1] -0.3262814
  plot(PP$HT_Score, PP$Naturalness_Score_PBFB, main="Correlation Between Holistic Thinking and PBFB Naturalness Scales",
   xlab="Holistic Thinking", ylab="PBFB Naturalness Scale", pch=19)

  #6. VB
  PP$Naturalness_Score_VB <- rowMeans(PP [, c("Nat_1_VB", "Nat_2R_VB", "Nat_3R_VB")], na.rm=TRUE)
  PP$Naturalness_Scale_VB <- data.frame(PP$Nat_1_VB, PP$Nat_2R_VB, PP$Nat_3R_VB)
  cor(PP$HT_Score, PP$Naturalness_Score_VB, use="complete.obs")
## [1] -0.02588182
  plot(PP$HT_Score, PP$Naturalness_Score_VB, main="Correlation Between Holistic Thinking and VB Naturalness Scales",
   xlab="Holistic Thinking Scale", ylab="VB Naturalness Scale", pch=19)

#Naturalness Item 1, Holistic Thinking Scale
  #1. GFFB 
  cor(PP$HT_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] -0.1273476
  plot(PP$HT_Score, PP$Nat_1_GFFB, main="Correlation Between GFFB Naturalness Item #1 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #2. GFPRB
  cor(PP$HT_Score, PP$Nat_1_GFFB, use="complete.obs")
## [1] -0.1273476
  plot(PP$HT_Score, PP$Nat_1_GFFB, main="Correlation Between GFPRB Naturalness Item #1 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="GFFB Naturalness Item #1", pch=19)

  #3. CBB
  cor(PP$HT_Score, PP$Nat_1_CBB, use="complete.obs")
## [1] -0.2591229
  plot(PP$HT_Score, PP$Nat_1_CBB, main="Correlation Between CCB Naturalness Item #1 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="CCB Naturalness Item #1", pch=19)

  #4. PBPB
  cor(PP$HT_Score, PP$Nat_1_PBPB, use="complete.obs")
## [1] 0.1127269
  plot(PP$HT_Score, PP$Nat_1_PBPB, main="Correlation Between PBPB Naturalness Item #1 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="PBPB Naturalness Item #1", pch=19)

  #5. PBFB
  cor(PP$HT_Score, PP$Nat_1_PBFB, use="complete.obs")
## [1] 0.1142938
  plot(PP$HT_Score, PP$Nat_1_PBFB, main="Correlation Between PBFB Naturalness Item #1 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="PBFB Naturalness Item #1", pch=19)

  #6. VB
  cor(PP$HT_Score, PP$Nat_1_VB, use="complete.obs")
## [1] 0.04189862
  plot(PP$HT_Score, PP$Nat_1_VB, main="Correlation Between VB Naturalness Item #1 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="VB Naturalness Item #1", pch=19)

#Naturalness Item 2, Holistic Thinking Scale
  #1. GFFB 
  cor(PP$HT_Score, PP$Nat_2R_GFFB, use="complete.obs")
## [1] -0.14821
  plot(PP$HT_Score, PP$Nat_2R_GFFB, main="Correlation Between GFFB Naturalness Item #2 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #2. GFPRB
  cor(PP$HT_Score, PP$Nat_2R_GFPRB, use="complete.obs")
## [1] 0.2819284
  plot(PP$HT_Score, PP$Nat_2R_GFPRB, main="Correlation Between GFPRB Naturalness Item #2 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale Scale", ylab="GFFB Naturalness Item #2", pch=19)

  #3. CBB
  cor(PP$HT_Score, PP$Nat_2R_CBB, use="complete.obs")
## [1] -0.3096436
  plot(PP$HT_Score, PP$Nat_2R_CBB, main="Correlation Between CBB Naturalness Item #2 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="CBB Naturalness Item #2", pch=19)

  #4. PBPB
  cor(PP$HT_Score, PP$Nat_2R_PBPB, use="complete.obs")
## [1] 0.1490989
  plot(PP$HT_Score, PP$Nat_2R_PBPB, main="Correlation Between PBPB Naturalness Item #2 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="PBPB Naturalness Item #2", pch=19)

  #5. PBFB
  cor(PP$HT_Score, PP$Nat_2R_PBFB, use="complete.obs")
## [1] -0.2690046
  plot(PP$HT_Score, PP$Nat_2R_PBFB, main="Correlation Between PBFB Naturalness Item #2 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="PBFB Naturalness Item #2", pch=19)

  #6. VB
  cor(PP$HT_Score, PP$Nat_2R_VB, use="complete.obs")
## [1] 0.05649654
  plot(PP$HT_Score, PP$Nat_2R_VB, main="Correlation Between VB Naturalness Item #2 and Holistic Thinking Scale",
   xlab="Holistic Thinking Scale", ylab="VB Naturalness Item #2", pch=19)

#Naturalness Item 3, Holistic Thinking Scale
  #1. GFFB 
  cor(PP$HT_Score, PP$Nat_3R_GFFB, use="complete.obs")
## [1] -0.05142814
  plot(PP$HT_Score, PP$Nat_3R_GFFB, main="Correlation Between GFFB Naturalness Item #3 and Holistic Thinking",
   xlab="Holistic Thinking Scale", ylab="GFFB Naturalness Item #3", pch=19)

  #2. GFPRB
  cor(PP$HT_Score, PP$Nat_3R_GFPRB, use="complete.obs")
## [1] -0.005062278
  plot(PP$HT_Score, PP$Nat_3R_GFPRB, main="Correlation Between GFPRB Naturalness Item #3 and Holistic Thinking",
   xlab="Holistic Thinking Scale", ylab="GFPRB Naturalness Item #3", pch=19)

  #3. CBB
  cor(PP$HT_Score, PP$Nat_3R_CBB, use="complete.obs")
## [1] -0.3313847
  plot(PP$HT_Score, PP$Nat_3R_CBB, main="Correlation Between CCB Naturalness Item #3 and Holistic Thinking",
   xlab="Holistic Thinking Scale", ylab="CCB Naturalness Item #3", pch=19)

  #4. PBPB
  cor(PP$HT_Score, PP$Nat_3R_PBPB, use="complete.obs")
## [1] -0.3314487
  plot(PP$HT_Score, PP$Nat_3R_PBPB, main="Correlation Between PBPB Naturalness Item #3 and Holistic Thinking",
   xlab= "Systems Thinking Scale", ylab="PBPB Naturalness Item #3", pch=19)

  #5. PBFB
  cor(PP$HT_Score, PP$Nat_3R_PBFB, use="complete.obs")
## [1] -0.5256942
  plot(PP$HT_Score, PP$Nat_3R_PBFB, main="Correlation Between PBFB Naturalness Item #3 and Holistic Thinking",
   xlab="Holistic Thinking Scale", ylab="PBFB Naturalness Item #3", pch=19)

  #6. VB
  cor(PP$HT_Score, PP$Nat_3R_VB, use="complete.obs")
## [1] -0.1432221
  plot(PP$HT_Score, PP$Nat_3R_VB, main="Correlation Between VB Naturalness Item #3 and Holistic Thinking",
   xlab="Holistic Thinking Scale", ylab="VB Naturalness Item #3", pch=19)

#Correlations

#Naturalness aggregated variables consist of the first method participants saw on the survey (randomly assigned)
PP$Nat_1_Aggregated<- PP$Nat_1_Aggregated
PP$Nat_2_Aggregated <- (102-PP$Nat_2_Aggregated)
PP$Nat_3_Aggregated <- (102-PP$Nat_3_Aggregated)

PP$Nat_Score_Aggregated <- rowMeans(PP [, c("Nat_1_Aggregated", "Nat_2_Aggregated", "Nat_3_Aggregated")], na.rm=TRUE)
PP$NatAg_Scale <- data.frame(PP$Nat_1_Aggregated, PP$Nat_2_Aggregated, PP$Nat_3_Aggregated)

#Cronbach's alpha for aggregated naturalness scale
psych::alpha(data.frame(PP$Nat_1_Aggregated, PP$Nat_2_Aggregated, PP$Nat_3_Aggregated))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(PP$Nat_1_Aggregated, PP$Nat_2_Aggregated, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.Nat_1_Aggregated ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_Aggregated, PP$Nat_2_Aggregated, 
##     PP$Nat_3_Aggregated))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N ase mean sd median_r
##       0.37      0.37    0.42      0.16 0.58 0.1   50 20     0.14
## 
##  lower alpha upper     95% confidence boundaries
## 0.17 0.37 0.57 
## 
##  Reliability if an item is dropped:
##                     raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## PP.Nat_1_Aggregated      0.67      0.67    0.51      0.51  2.05    0.061    NA
## PP.Nat_2_Aggregated     -0.37     -0.37   -0.16     -0.16 -0.27    0.256    NA
## PP.Nat_3_Aggregated      0.24      0.24    0.14      0.14  0.31    0.142    NA
##                     med.r
## PP.Nat_1_Aggregated  0.51
## PP.Nat_2_Aggregated -0.16
## PP.Nat_3_Aggregated  0.14
## 
##  Item statistics 
##                       n raw.r std.r r.cor  r.drop mean sd
## PP.Nat_1_Aggregated 107  0.50  0.49  0.05 -0.0085   64 30
## PP.Nat_2_Aggregated 106  0.83  0.82  0.73  0.4899   45 30
## PP.Nat_3_Aggregated 107  0.67  0.68  0.51  0.2355   42 29
hist(PP$Nat_Score_Aggregated, main = 'Aggregated Naturalness Scale Score')

#Risk aggregated variables consist of the first method participants saw on the survey (randomly assigned)
PP$Risk_1_AG <- PP$Risk_1_Aggregated
PP$Risk_2_AG <- PP$Risk_2_Aggregated
PP$Risk_3_AG <- PP$Risk_3_Aggregated
PP$Risk_4_AG <- PP$Risk_4_Aggregated

PP$Risk_Score_Aggregated <- rowMeans(PP [, c("Risk_1_AG", "Risk_2_AG", "Risk_3_AG", "Risk_4_AG")], na.rm=TRUE)
PP$RiskAg_Scale <- data.frame(PP$Risk_1_AG, PP$Risk_2_AG, PP$Risk_3_AG, PP$Risk_4_AG)

psych::alpha(data.frame(PP$Risk_1_AG, PP$Risk_2_AG, PP$Risk_3_AG, PP$Risk_4_AG))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_AG, PP$Risk_2_AG, PP$Risk_3_AG, 
##     PP$Risk_4_AG))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.92      0.92    0.91      0.74  12 0.012   46 29     0.76
## 
##  lower alpha upper     95% confidence boundaries
## 0.9 0.92 0.94 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se   var.r med.r
## PP.Risk_1_AG      0.89      0.89    0.85      0.72  7.9    0.019 0.00654  0.74
## PP.Risk_2_AG      0.88      0.88    0.85      0.72  7.6    0.019 0.00589  0.72
## PP.Risk_3_AG      0.91      0.91    0.87      0.77 10.1    0.015 0.00057  0.78
## PP.Risk_4_AG      0.91      0.91    0.87      0.77  9.8    0.015 0.00139  0.78
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_AG 107  0.91  0.92  0.88   0.85   44 32
## PP.Risk_2_AG 107  0.92  0.92  0.89   0.86   45 32
## PP.Risk_3_AG 106  0.87  0.88  0.82   0.78   46 31
## PP.Risk_4_AG 107  0.89  0.88  0.83   0.79   48 34
hist(PP$Risk_Score_Aggregated, main = 'Aggregated Risk Scale Score')

#Understanding aggregated variable consist of the first method participants saw on the survey (randomly assigned)
PP$Understanding_1_AG <- PP$Understanding_1_Aggregated

#Familiarity aggregated variable consist of the first method participants saw on the survey (randomly assigned)
PP$Familiarity_1_AG <-PP$Familiarity_1_Aggregated

#Control aggregated variable consist of the first method participants saw on the survey (randomly assigned)
PP$Control_1_AG <-PP$Control_1_Aggregated

#Benefits aggregated variable consist of the first method participants saw on the survey (randomly assigned)
PP$Benefit_1_AG <-PP$Benefit_1_Aggregated
PP$Benefit_2_AG <-PP$Benefit_2_Aggregated
PP$Benefit_3_AG <-PP$Benefit_3_Aggregated

PP$Ben_Score_Aggregated <- rowMeans(PP [, c("Benefit_1_AG", "Benefit_2_AG", "Benefit_3_AG")], na.rm=TRUE)
PP$BenAg_Scale <- data.frame(PP$Benefit_1_AG, PP$Benefit_2_AG, PP$Benefit_3_AG)

psych::alpha(data.frame(PP$Benefit_1_AG, PP$Benefit_2_AG, PP$Benefit_3_AG))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Benefit_1_AG, PP$Benefit_2_AG, 
##     PP$Benefit_3_AG))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.93      0.93     0.9      0.81  13 0.012   64 26     0.81
## 
##  lower alpha upper     95% confidence boundaries
## 0.9 0.93 0.95 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## PP.Benefit_1_AG      0.86      0.86    0.76      0.76  6.3    0.026    NA  0.76
## PP.Benefit_2_AG      0.89      0.90    0.81      0.81  8.5    0.020    NA  0.81
## PP.Benefit_3_AG      0.92      0.92    0.85      0.85 11.7    0.015    NA  0.85
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_AG 89  0.95  0.95  0.92   0.89   64 27
## PP.Benefit_2_AG 89  0.93  0.93  0.89   0.85   64 28
## PP.Benefit_3_AG 89  0.92  0.92  0.84   0.81   64 28
hist(PP$Ben_Score_Aggregated, main = 'Aggregated Benefit Scale Score')

#Behavioral Intent aggregated variables consist of the first method participants saw on the survey (randomly assigned)
PP$BI_1_AG <-PP$Behav_Intent_1_Aggregated
PP$BI_2_AG <-PP$Behav_Intent_2_Aggregated
PP$BI_3_AG <-PP$Behav_Intent_3_Aggregated
PP$BI_4_AG <-PP$Behav_Intent_4_Aggregated

PP$BI_Score_Aggregated <- rowMeans(PP [, c("BI_1_AG", "BI_2_AG", "BI_3_AG", "BI_4_AG")], na.rm=TRUE)
PP$BIAg_Scale <- data.frame(PP$BI_1_AG, PP$BI_2_AG, PP$BI_3_AG, PP$BI_4_AG)

psych::alpha(data.frame(PP$Benefit_1_AG, PP$Benefit_2_AG, PP$Benefit_3_AG))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Benefit_1_AG, PP$Benefit_2_AG, 
##     PP$Benefit_3_AG))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.93      0.93     0.9      0.81  13 0.012   64 26     0.81
## 
##  lower alpha upper     95% confidence boundaries
## 0.9 0.93 0.95 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## PP.Benefit_1_AG      0.86      0.86    0.76      0.76  6.3    0.026    NA  0.76
## PP.Benefit_2_AG      0.89      0.90    0.81      0.81  8.5    0.020    NA  0.81
## PP.Benefit_3_AG      0.92      0.92    0.85      0.85 11.7    0.015    NA  0.85
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_AG 89  0.95  0.95  0.92   0.89   64 27
## PP.Benefit_2_AG 89  0.93  0.93  0.89   0.85   64 28
## PP.Benefit_3_AG 89  0.92  0.92  0.84   0.81   64 28
hist(PP$BI_Score_Aggregated, main = 'Aggregated Behavioral Intent Scale Score')

#Correlation Matrix Data Frame
PP$corrdatascales <- data.frame(PP$Nat_1_Aggregated, PP$Nat_2_Aggregated, PP$Nat_3_Aggregated, PP$Risk_1_AG, PP$Risk_2_AG, PP$Risk_3_AG,PP$Risk_4_AG, PP$Understanding_1_AG,PP$Familiarity_1_AG,PP$Control_1_AG, PP$Benefit_1_AG,PP$Benefit_2_AG, PP$Benefit_3_AG, PP$BI_1_AG, PP$BI_2_AG, PP$BI_3_AG, PP$BI_4_AG, PP$BI_2_AG, PP$ENVS_Score, PP$ATNS_Score, PP$CNS_Score,PP$CCBelief_Score, PP$Collectivism_Score, PP$Individualism_Score, PP$ST_Score, PP$HT_Score)

mydata.corscale = cor(PP$corrdatascales,use="complete.obs")
head(round(mydata.corscale,2))
##                     PP.Nat_1_Aggregated PP.Nat_2_Aggregated PP.Nat_3_Aggregated
## PP.Nat_1_Aggregated                1.00                0.18               -0.18
## PP.Nat_2_Aggregated                0.18                1.00                0.48
## PP.Nat_3_Aggregated               -0.18                0.48                1.00
## PP.Risk_1_AG                      -0.10               -0.51               -0.16
## PP.Risk_2_AG                       0.05               -0.45               -0.23
## PP.Risk_3_AG                       0.10               -0.46               -0.28
##                     PP.Risk_1_AG PP.Risk_2_AG PP.Risk_3_AG PP.Risk_4_AG
## PP.Nat_1_Aggregated        -0.10         0.05         0.10        -0.06
## PP.Nat_2_Aggregated        -0.51        -0.45        -0.46        -0.42
## PP.Nat_3_Aggregated        -0.16        -0.23        -0.28        -0.08
## PP.Risk_1_AG                1.00         0.77         0.70         0.77
## PP.Risk_2_AG                0.77         1.00         0.74         0.70
## PP.Risk_3_AG                0.70         0.74         1.00         0.57
##                     PP.Understanding_1_AG PP.Familiarity_1_AG PP.Control_1_AG
## PP.Nat_1_Aggregated                  0.10                0.52            0.32
## PP.Nat_2_Aggregated                  0.04                0.02           -0.16
## PP.Nat_3_Aggregated                  0.21               -0.11           -0.34
## PP.Risk_1_AG                        -0.04                0.10            0.04
## PP.Risk_2_AG                        -0.19                0.16            0.24
## PP.Risk_3_AG                         0.02                0.29            0.17
##                     PP.Benefit_1_AG PP.Benefit_2_AG PP.Benefit_3_AG PP.BI_1_AG
## PP.Nat_1_Aggregated            0.57            0.64            0.48       0.62
## PP.Nat_2_Aggregated            0.19            0.06            0.03       0.20
## PP.Nat_3_Aggregated           -0.34           -0.42           -0.45      -0.34
## PP.Risk_1_AG                  -0.32           -0.26           -0.21      -0.29
## PP.Risk_2_AG                  -0.11           -0.09           -0.12      -0.17
## PP.Risk_3_AG                  -0.10           -0.07           -0.09      -0.15
##                     PP.BI_2_AG PP.BI_3_AG PP.BI_4_AG PP.BI_2_AG.1 PP.ENVS_Score
## PP.Nat_1_Aggregated       0.58       0.62       0.64         0.58          0.32
## PP.Nat_2_Aggregated       0.17       0.18       0.15         0.17         -0.23
## PP.Nat_3_Aggregated      -0.24      -0.37      -0.38        -0.24         -0.45
## PP.Risk_1_AG             -0.24      -0.30      -0.31        -0.24          0.11
## PP.Risk_2_AG             -0.09      -0.13      -0.13        -0.09          0.16
## PP.Risk_3_AG             -0.06      -0.16      -0.13        -0.06          0.11
##                     PP.ATNS_Score PP.CNS_Score PP.CCBelief_Score
## PP.Nat_1_Aggregated          0.17         0.04              0.18
## PP.Nat_2_Aggregated          0.10         0.07             -0.05
## PP.Nat_3_Aggregated          0.04         0.09             -0.15
## PP.Risk_1_AG                 0.12        -0.14              0.14
## PP.Risk_2_AG                 0.05        -0.16              0.09
## PP.Risk_3_AG                 0.00        -0.19              0.13
##                     PP.Collectivism_Score PP.Individualism_Score PP.ST_Score
## PP.Nat_1_Aggregated                  0.22                   0.26        0.05
## PP.Nat_2_Aggregated                 -0.32                  -0.16       -0.03
## PP.Nat_3_Aggregated                 -0.34                  -0.44       -0.13
## PP.Risk_1_AG                         0.36                   0.13       -0.06
## PP.Risk_2_AG                         0.29                   0.08       -0.14
## PP.Risk_3_AG                         0.28                   0.01       -0.15
##                     PP.HT_Score
## PP.Nat_1_Aggregated        0.05
## PP.Nat_2_Aggregated       -0.03
## PP.Nat_3_Aggregated       -0.13
## PP.Risk_1_AG              -0.06
## PP.Risk_2_AG              -0.14
## PP.Risk_3_AG              -0.15
library("Hmisc")
mydata.rcorrscale = rcorr(as.matrix(PP$corrdatascale))
mydata.rcorrscale
##                        PP.Nat_1_Aggregated PP.Nat_2_Aggregated
## PP.Nat_1_Aggregated                   1.00                0.13
## PP.Nat_2_Aggregated                   0.13                1.00
## PP.Nat_3_Aggregated                  -0.16                0.50
## PP.Risk_1_AG                         -0.18               -0.47
## PP.Risk_2_AG                         -0.01               -0.44
## PP.Risk_3_AG                          0.01               -0.44
## PP.Risk_4_AG                         -0.12               -0.43
## PP.Understanding_1_AG                 0.15                0.03
## PP.Familiarity_1_AG                   0.55               -0.03
## PP.Control_1_AG                       0.36               -0.12
## PP.Benefit_1_AG                       0.58                0.19
## PP.Benefit_2_AG                       0.64                0.06
## PP.Benefit_3_AG                       0.49                0.04
## PP.BI_1_AG                            0.63                0.20
## PP.BI_2_AG                            0.59                0.17
## PP.BI_3_AG                            0.62                0.18
## PP.BI_4_AG                            0.64                0.16
## PP.BI_2_AG.1                          0.59                0.17
## PP.ENVS_Score                         0.30               -0.18
## PP.ATNS_Score                         0.15                0.08
## PP.CNS_Score                          0.05                0.12
## PP.CCBelief_Score                     0.22                0.00
## PP.Collectivism_Score                 0.14               -0.26
## PP.Individualism_Score                0.23               -0.19
## PP.ST_Score                           0.06                0.01
## PP.HT_Score                           0.06                0.01
##                        PP.Nat_3_Aggregated PP.Risk_1_AG PP.Risk_2_AG
## PP.Nat_1_Aggregated                  -0.16        -0.18        -0.01
## PP.Nat_2_Aggregated                   0.50        -0.47        -0.44
## PP.Nat_3_Aggregated                   1.00        -0.17        -0.21
## PP.Risk_1_AG                         -0.17         1.00         0.78
## PP.Risk_2_AG                         -0.21         0.78         1.00
## PP.Risk_3_AG                         -0.24         0.72         0.79
## PP.Risk_4_AG                         -0.11         0.79         0.74
## PP.Understanding_1_AG                 0.17        -0.10        -0.18
## PP.Familiarity_1_AG                  -0.09        -0.01         0.08
## PP.Control_1_AG                      -0.31        -0.06         0.10
## PP.Benefit_1_AG                      -0.33        -0.33        -0.12
## PP.Benefit_2_AG                      -0.41        -0.27        -0.10
## PP.Benefit_3_AG                      -0.44        -0.22        -0.13
## PP.BI_1_AG                           -0.33        -0.31        -0.18
## PP.BI_2_AG                           -0.23        -0.26        -0.11
## PP.BI_3_AG                           -0.37        -0.31        -0.14
## PP.BI_4_AG                           -0.37        -0.32        -0.14
## PP.BI_2_AG.1                         -0.23        -0.26        -0.11
## PP.ENVS_Score                        -0.41         0.08         0.13
## PP.ATNS_Score                         0.05         0.09         0.03
## PP.CNS_Score                          0.11        -0.17        -0.20
## PP.CCBelief_Score                    -0.15         0.02        -0.02
## PP.Collectivism_Score                -0.31         0.35         0.32
## PP.Individualism_Score               -0.46         0.11         0.08
## PP.ST_Score                          -0.13        -0.09        -0.18
## PP.HT_Score                          -0.13        -0.09        -0.18
##                        PP.Risk_3_AG PP.Risk_4_AG PP.Understanding_1_AG
## PP.Nat_1_Aggregated            0.01        -0.12                  0.15
## PP.Nat_2_Aggregated           -0.44        -0.43                  0.03
## PP.Nat_3_Aggregated           -0.24        -0.11                  0.17
## PP.Risk_1_AG                   0.72         0.79                 -0.10
## PP.Risk_2_AG                   0.79         0.74                 -0.18
## PP.Risk_3_AG                   1.00         0.64                 -0.01
## PP.Risk_4_AG                   0.64         1.00                 -0.08
## PP.Understanding_1_AG         -0.01        -0.08                  1.00
## PP.Familiarity_1_AG            0.18        -0.01                  0.04
## PP.Control_1_AG                0.04         0.03                 -0.14
## PP.Benefit_1_AG               -0.11        -0.29                 -0.03
## PP.Benefit_2_AG               -0.08        -0.19                  0.01
## PP.Benefit_3_AG               -0.10        -0.19                 -0.01
## PP.BI_1_AG                    -0.16        -0.28                  0.07
## PP.BI_2_AG                    -0.08        -0.21                  0.05
## PP.BI_3_AG                    -0.17        -0.31                  0.02
## PP.BI_4_AG                    -0.13        -0.28                  0.03
## PP.BI_2_AG.1                  -0.08        -0.21                  0.05
## PP.ENVS_Score                  0.09         0.13                  0.02
## PP.ATNS_Score                 -0.02         0.04                 -0.02
## PP.CNS_Score                  -0.24        -0.16                  0.16
## PP.CCBelief_Score              0.00         0.01                  0.00
## PP.Collectivism_Score          0.32         0.32                  0.00
## PP.Individualism_Score         0.03         0.04                  0.01
## PP.ST_Score                   -0.20        -0.19                 -0.08
## PP.HT_Score                   -0.20        -0.19                 -0.08
##                        PP.Familiarity_1_AG PP.Control_1_AG PP.Benefit_1_AG
## PP.Nat_1_Aggregated                   0.55            0.36            0.58
## PP.Nat_2_Aggregated                  -0.03           -0.12            0.19
## PP.Nat_3_Aggregated                  -0.09           -0.31           -0.33
## PP.Risk_1_AG                         -0.01           -0.06           -0.33
## PP.Risk_2_AG                          0.08            0.10           -0.12
## PP.Risk_3_AG                          0.18            0.04           -0.11
## PP.Risk_4_AG                         -0.01            0.03           -0.29
## PP.Understanding_1_AG                 0.04           -0.14           -0.03
## PP.Familiarity_1_AG                   1.00            0.33            0.39
## PP.Control_1_AG                       0.33            1.00            0.36
## PP.Benefit_1_AG                       0.39            0.36            1.00
## PP.Benefit_2_AG                       0.40            0.47            0.85
## PP.Benefit_3_AG                       0.34            0.33            0.81
## PP.BI_1_AG                            0.41            0.30            0.87
## PP.BI_2_AG                            0.53            0.41            0.79
## PP.BI_3_AG                            0.38            0.34            0.86
## PP.BI_4_AG                            0.38            0.37            0.88
## PP.BI_2_AG.1                          0.53            0.41            0.79
## PP.ENVS_Score                         0.15            0.35            0.37
## PP.ATNS_Score                         0.23            0.31            0.21
## PP.CNS_Score                          0.05            0.22            0.11
## PP.CCBelief_Score                     0.17            0.39            0.29
## PP.Collectivism_Score                -0.02            0.19            0.31
## PP.Individualism_Score                0.19            0.38            0.46
## PP.ST_Score                           0.04            0.25            0.17
## PP.HT_Score                           0.04            0.25            0.17
##                        PP.Benefit_2_AG PP.Benefit_3_AG PP.BI_1_AG PP.BI_2_AG
## PP.Nat_1_Aggregated               0.64            0.49       0.63       0.59
## PP.Nat_2_Aggregated               0.06            0.04       0.20       0.17
## PP.Nat_3_Aggregated              -0.41           -0.44      -0.33      -0.23
## PP.Risk_1_AG                     -0.27           -0.22      -0.31      -0.26
## PP.Risk_2_AG                     -0.10           -0.13      -0.18      -0.11
## PP.Risk_3_AG                     -0.08           -0.10      -0.16      -0.08
## PP.Risk_4_AG                     -0.19           -0.19      -0.28      -0.21
## PP.Understanding_1_AG             0.01           -0.01       0.07       0.05
## PP.Familiarity_1_AG               0.40            0.34       0.41       0.53
## PP.Control_1_AG                   0.47            0.33       0.30       0.41
## PP.Benefit_1_AG                   0.85            0.81       0.87       0.79
## PP.Benefit_2_AG                   1.00            0.76       0.86       0.77
## PP.Benefit_3_AG                   0.76            1.00       0.80       0.71
## PP.BI_1_AG                        0.86            0.80       1.00       0.88
## PP.BI_2_AG                        0.77            0.71       0.88       1.00
## PP.BI_3_AG                        0.85            0.83       0.93       0.83
## PP.BI_4_AG                        0.86            0.81       0.94       0.86
## PP.BI_2_AG.1                      0.77            0.71       0.88       1.00
## PP.ENVS_Score                     0.45            0.46       0.36       0.31
## PP.ATNS_Score                     0.19            0.19       0.15       0.24
## PP.CNS_Score                      0.18            0.19       0.11       0.18
## PP.CCBelief_Score                 0.32            0.28       0.22       0.26
## PP.Collectivism_Score             0.36            0.30       0.27       0.21
## PP.Individualism_Score            0.53            0.49       0.47       0.39
## PP.ST_Score                       0.22            0.14       0.10       0.11
## PP.HT_Score                       0.22            0.14       0.10       0.11
##                        PP.BI_3_AG PP.BI_4_AG PP.BI_2_AG.1 PP.ENVS_Score
## PP.Nat_1_Aggregated          0.62       0.64         0.59          0.30
## PP.Nat_2_Aggregated          0.18       0.16         0.17         -0.18
## PP.Nat_3_Aggregated         -0.37      -0.37        -0.23         -0.41
## PP.Risk_1_AG                -0.31      -0.32        -0.26          0.08
## PP.Risk_2_AG                -0.14      -0.14        -0.11          0.13
## PP.Risk_3_AG                -0.17      -0.13        -0.08          0.09
## PP.Risk_4_AG                -0.31      -0.28        -0.21          0.13
## PP.Understanding_1_AG        0.02       0.03         0.05          0.02
## PP.Familiarity_1_AG          0.38       0.38         0.53          0.15
## PP.Control_1_AG              0.34       0.37         0.41          0.35
## PP.Benefit_1_AG              0.86       0.88         0.79          0.37
## PP.Benefit_2_AG              0.85       0.86         0.77          0.45
## PP.Benefit_3_AG              0.83       0.81         0.71          0.46
## PP.BI_1_AG                   0.93       0.94         0.88          0.36
## PP.BI_2_AG                   0.83       0.86         1.00          0.31
## PP.BI_3_AG                   1.00       0.95         0.83          0.41
## PP.BI_4_AG                   0.95       1.00         0.86          0.42
## PP.BI_2_AG.1                 0.83       0.86         1.00          0.31
## PP.ENVS_Score                0.41       0.42         0.31          1.00
## PP.ATNS_Score                0.18       0.19         0.24          0.21
## PP.CNS_Score                 0.13       0.11         0.18          0.40
## PP.CCBelief_Score            0.25       0.22         0.26          0.58
## PP.Collectivism_Score        0.29       0.30         0.21          0.31
## PP.Individualism_Score       0.52       0.49         0.39          0.56
## PP.ST_Score                  0.17       0.12         0.11          0.36
## PP.HT_Score                  0.17       0.12         0.11          0.36
##                        PP.ATNS_Score PP.CNS_Score PP.CCBelief_Score
## PP.Nat_1_Aggregated             0.15         0.05              0.22
## PP.Nat_2_Aggregated             0.08         0.12              0.00
## PP.Nat_3_Aggregated             0.05         0.11             -0.15
## PP.Risk_1_AG                    0.09        -0.17              0.02
## PP.Risk_2_AG                    0.03        -0.20             -0.02
## PP.Risk_3_AG                   -0.02        -0.24              0.00
## PP.Risk_4_AG                    0.04        -0.16              0.01
## PP.Understanding_1_AG          -0.02         0.16              0.00
## PP.Familiarity_1_AG             0.23         0.05              0.17
## PP.Control_1_AG                 0.31         0.22              0.39
## PP.Benefit_1_AG                 0.21         0.11              0.29
## PP.Benefit_2_AG                 0.19         0.18              0.32
## PP.Benefit_3_AG                 0.19         0.19              0.28
## PP.BI_1_AG                      0.15         0.11              0.22
## PP.BI_2_AG                      0.24         0.18              0.26
## PP.BI_3_AG                      0.18         0.13              0.25
## PP.BI_4_AG                      0.19         0.11              0.22
## PP.BI_2_AG.1                    0.24         0.18              0.26
## PP.ENVS_Score                   0.21         0.40              0.58
## PP.ATNS_Score                   1.00         0.38              0.35
## PP.CNS_Score                    0.38         1.00              0.47
## PP.CCBelief_Score               0.35         0.47              1.00
## PP.Collectivism_Score           0.13        -0.14              0.23
## PP.Individualism_Score          0.33         0.23              0.46
## PP.ST_Score                     0.27         0.39              0.49
## PP.HT_Score                     0.27         0.39              0.49
##                        PP.Collectivism_Score PP.Individualism_Score PP.ST_Score
## PP.Nat_1_Aggregated                     0.14                   0.23        0.06
## PP.Nat_2_Aggregated                    -0.26                  -0.19        0.01
## PP.Nat_3_Aggregated                    -0.31                  -0.46       -0.13
## PP.Risk_1_AG                            0.35                   0.11       -0.09
## PP.Risk_2_AG                            0.32                   0.08       -0.18
## PP.Risk_3_AG                            0.32                   0.03       -0.20
## PP.Risk_4_AG                            0.32                   0.04       -0.19
## PP.Understanding_1_AG                   0.00                   0.01       -0.08
## PP.Familiarity_1_AG                    -0.02                   0.19        0.04
## PP.Control_1_AG                         0.19                   0.38        0.25
## PP.Benefit_1_AG                         0.31                   0.46        0.17
## PP.Benefit_2_AG                         0.36                   0.53        0.22
## PP.Benefit_3_AG                         0.30                   0.49        0.14
## PP.BI_1_AG                              0.27                   0.47        0.10
## PP.BI_2_AG                              0.21                   0.39        0.11
## PP.BI_3_AG                              0.29                   0.52        0.17
## PP.BI_4_AG                              0.30                   0.49        0.12
## PP.BI_2_AG.1                            0.21                   0.39        0.11
## PP.ENVS_Score                           0.31                   0.56        0.36
## PP.ATNS_Score                           0.13                   0.33        0.27
## PP.CNS_Score                           -0.14                   0.23        0.39
## PP.CCBelief_Score                       0.23                   0.46        0.49
## PP.Collectivism_Score                   1.00                   0.51        0.18
## PP.Individualism_Score                  0.51                   1.00        0.45
## PP.ST_Score                             0.18                   0.45        1.00
## PP.HT_Score                             0.18                   0.45        1.00
##                        PP.HT_Score
## PP.Nat_1_Aggregated           0.06
## PP.Nat_2_Aggregated           0.01
## PP.Nat_3_Aggregated          -0.13
## PP.Risk_1_AG                 -0.09
## PP.Risk_2_AG                 -0.18
## PP.Risk_3_AG                 -0.20
## PP.Risk_4_AG                 -0.19
## PP.Understanding_1_AG        -0.08
## PP.Familiarity_1_AG           0.04
## PP.Control_1_AG               0.25
## PP.Benefit_1_AG               0.17
## PP.Benefit_2_AG               0.22
## PP.Benefit_3_AG               0.14
## PP.BI_1_AG                    0.10
## PP.BI_2_AG                    0.11
## PP.BI_3_AG                    0.17
## PP.BI_4_AG                    0.12
## PP.BI_2_AG.1                  0.11
## PP.ENVS_Score                 0.36
## PP.ATNS_Score                 0.27
## PP.CNS_Score                  0.39
## PP.CCBelief_Score             0.49
## PP.Collectivism_Score         0.18
## PP.Individualism_Score        0.45
## PP.ST_Score                   1.00
## PP.HT_Score                   1.00
## 
## n
##                        PP.Nat_1_Aggregated PP.Nat_2_Aggregated
## PP.Nat_1_Aggregated                    107                 106
## PP.Nat_2_Aggregated                    106                 106
## PP.Nat_3_Aggregated                    107                 106
## PP.Risk_1_AG                           107                 106
## PP.Risk_2_AG                           107                 106
## PP.Risk_3_AG                           106                 105
## PP.Risk_4_AG                           107                 106
## PP.Understanding_1_AG                  104                 103
## PP.Familiarity_1_AG                    107                 106
## PP.Control_1_AG                        107                 106
## PP.Benefit_1_AG                         89                  89
## PP.Benefit_2_AG                         89                  89
## PP.Benefit_3_AG                         89                  89
## PP.BI_1_AG                              89                  89
## PP.BI_2_AG                              89                  89
## PP.BI_3_AG                              89                  89
## PP.BI_4_AG                              89                  89
## PP.BI_2_AG.1                            89                  89
## PP.ENVS_Score                          105                 104
## PP.ATNS_Score                          105                 104
## PP.CNS_Score                           105                 104
## PP.CCBelief_Score                      105                 104
## PP.Collectivism_Score                  105                 104
## PP.Individualism_Score                 105                 104
## PP.ST_Score                            105                 104
## PP.HT_Score                            105                 104
##                        PP.Nat_3_Aggregated PP.Risk_1_AG PP.Risk_2_AG
## PP.Nat_1_Aggregated                    107          107          107
## PP.Nat_2_Aggregated                    106          106          106
## PP.Nat_3_Aggregated                    107          107          107
## PP.Risk_1_AG                           107          107          107
## PP.Risk_2_AG                           107          107          107
## PP.Risk_3_AG                           106          106          106
## PP.Risk_4_AG                           107          107          107
## PP.Understanding_1_AG                  104          104          104
## PP.Familiarity_1_AG                    107          107          107
## PP.Control_1_AG                        107          107          107
## PP.Benefit_1_AG                         89           89           89
## PP.Benefit_2_AG                         89           89           89
## PP.Benefit_3_AG                         89           89           89
## PP.BI_1_AG                              89           89           89
## PP.BI_2_AG                              89           89           89
## PP.BI_3_AG                              89           89           89
## PP.BI_4_AG                              89           89           89
## PP.BI_2_AG.1                            89           89           89
## PP.ENVS_Score                          105          105          105
## PP.ATNS_Score                          105          105          105
## PP.CNS_Score                           105          105          105
## PP.CCBelief_Score                      105          105          105
## PP.Collectivism_Score                  105          105          105
## PP.Individualism_Score                 105          105          105
## PP.ST_Score                            105          105          105
## PP.HT_Score                            105          105          105
##                        PP.Risk_3_AG PP.Risk_4_AG PP.Understanding_1_AG
## PP.Nat_1_Aggregated             106          107                   104
## PP.Nat_2_Aggregated             105          106                   103
## PP.Nat_3_Aggregated             106          107                   104
## PP.Risk_1_AG                    106          107                   104
## PP.Risk_2_AG                    106          107                   104
## PP.Risk_3_AG                    106          106                   104
## PP.Risk_4_AG                    106          107                   104
## PP.Understanding_1_AG           104          104                   107
## PP.Familiarity_1_AG             106          107                   104
## PP.Control_1_AG                 106          107                   104
## PP.Benefit_1_AG                  88           89                    88
## PP.Benefit_2_AG                  88           89                    88
## PP.Benefit_3_AG                  88           89                    88
## PP.BI_1_AG                       88           89                    88
## PP.BI_2_AG                       88           89                    88
## PP.BI_3_AG                       88           89                    88
## PP.BI_4_AG                       88           89                    88
## PP.BI_2_AG.1                     88           89                    88
## PP.ENVS_Score                   104          105                   102
## PP.ATNS_Score                   104          105                   102
## PP.CNS_Score                    104          105                   102
## PP.CCBelief_Score               104          105                   102
## PP.Collectivism_Score           104          105                   102
## PP.Individualism_Score          104          105                   102
## PP.ST_Score                     104          105                   102
## PP.HT_Score                     104          105                   102
##                        PP.Familiarity_1_AG PP.Control_1_AG PP.Benefit_1_AG
## PP.Nat_1_Aggregated                    107             107              89
## PP.Nat_2_Aggregated                    106             106              89
## PP.Nat_3_Aggregated                    107             107              89
## PP.Risk_1_AG                           107             107              89
## PP.Risk_2_AG                           107             107              89
## PP.Risk_3_AG                           106             106              88
## PP.Risk_4_AG                           107             107              89
## PP.Understanding_1_AG                  104             104              88
## PP.Familiarity_1_AG                    107             107              89
## PP.Control_1_AG                        107             107              89
## PP.Benefit_1_AG                         89              89              89
## PP.Benefit_2_AG                         89              89              89
## PP.Benefit_3_AG                         89              89              89
## PP.BI_1_AG                              89              89              89
## PP.BI_2_AG                              89              89              89
## PP.BI_3_AG                              89              89              89
## PP.BI_4_AG                              89              89              89
## PP.BI_2_AG.1                            89              89              89
## PP.ENVS_Score                          105             105              87
## PP.ATNS_Score                          105             105              87
## PP.CNS_Score                           105             105              87
## PP.CCBelief_Score                      105             105              87
## PP.Collectivism_Score                  105             105              87
## PP.Individualism_Score                 105             105              87
## PP.ST_Score                            105             105              87
## PP.HT_Score                            105             105              87
##                        PP.Benefit_2_AG PP.Benefit_3_AG PP.BI_1_AG PP.BI_2_AG
## PP.Nat_1_Aggregated                 89              89         89         89
## PP.Nat_2_Aggregated                 89              89         89         89
## PP.Nat_3_Aggregated                 89              89         89         89
## PP.Risk_1_AG                        89              89         89         89
## PP.Risk_2_AG                        89              89         89         89
## PP.Risk_3_AG                        88              88         88         88
## PP.Risk_4_AG                        89              89         89         89
## PP.Understanding_1_AG               88              88         88         88
## PP.Familiarity_1_AG                 89              89         89         89
## PP.Control_1_AG                     89              89         89         89
## PP.Benefit_1_AG                     89              89         89         89
## PP.Benefit_2_AG                     89              89         89         89
## PP.Benefit_3_AG                     89              89         89         89
## PP.BI_1_AG                          89              89         89         89
## PP.BI_2_AG                          89              89         89         89
## PP.BI_3_AG                          89              89         89         89
## PP.BI_4_AG                          89              89         89         89
## PP.BI_2_AG.1                        89              89         89         89
## PP.ENVS_Score                       87              87         87         87
## PP.ATNS_Score                       87              87         87         87
## PP.CNS_Score                        87              87         87         87
## PP.CCBelief_Score                   87              87         87         87
## PP.Collectivism_Score               87              87         87         87
## PP.Individualism_Score              87              87         87         87
## PP.ST_Score                         87              87         87         87
## PP.HT_Score                         87              87         87         87
##                        PP.BI_3_AG PP.BI_4_AG PP.BI_2_AG.1 PP.ENVS_Score
## PP.Nat_1_Aggregated            89         89           89           105
## PP.Nat_2_Aggregated            89         89           89           104
## PP.Nat_3_Aggregated            89         89           89           105
## PP.Risk_1_AG                   89         89           89           105
## PP.Risk_2_AG                   89         89           89           105
## PP.Risk_3_AG                   88         88           88           104
## PP.Risk_4_AG                   89         89           89           105
## PP.Understanding_1_AG          88         88           88           102
## PP.Familiarity_1_AG            89         89           89           105
## PP.Control_1_AG                89         89           89           105
## PP.Benefit_1_AG                89         89           89            87
## PP.Benefit_2_AG                89         89           89            87
## PP.Benefit_3_AG                89         89           89            87
## PP.BI_1_AG                     89         89           89            87
## PP.BI_2_AG                     89         89           89            87
## PP.BI_3_AG                     89         89           89            87
## PP.BI_4_AG                     89         89           89            87
## PP.BI_2_AG.1                   89         89           89            87
## PP.ENVS_Score                  87         87           87           105
## PP.ATNS_Score                  87         87           87           105
## PP.CNS_Score                   87         87           87           105
## PP.CCBelief_Score              87         87           87           105
## PP.Collectivism_Score          87         87           87           105
## PP.Individualism_Score         87         87           87           105
## PP.ST_Score                    87         87           87           105
## PP.HT_Score                    87         87           87           105
##                        PP.ATNS_Score PP.CNS_Score PP.CCBelief_Score
## PP.Nat_1_Aggregated              105          105               105
## PP.Nat_2_Aggregated              104          104               104
## PP.Nat_3_Aggregated              105          105               105
## PP.Risk_1_AG                     105          105               105
## PP.Risk_2_AG                     105          105               105
## PP.Risk_3_AG                     104          104               104
## PP.Risk_4_AG                     105          105               105
## PP.Understanding_1_AG            102          102               102
## PP.Familiarity_1_AG              105          105               105
## PP.Control_1_AG                  105          105               105
## PP.Benefit_1_AG                   87           87                87
## PP.Benefit_2_AG                   87           87                87
## PP.Benefit_3_AG                   87           87                87
## PP.BI_1_AG                        87           87                87
## PP.BI_2_AG                        87           87                87
## PP.BI_3_AG                        87           87                87
## PP.BI_4_AG                        87           87                87
## PP.BI_2_AG.1                      87           87                87
## PP.ENVS_Score                    105          105               105
## PP.ATNS_Score                    105          105               105
## PP.CNS_Score                     105          105               105
## PP.CCBelief_Score                105          105               105
## PP.Collectivism_Score            105          105               105
## PP.Individualism_Score           105          105               105
## PP.ST_Score                      105          105               105
## PP.HT_Score                      105          105               105
##                        PP.Collectivism_Score PP.Individualism_Score PP.ST_Score
## PP.Nat_1_Aggregated                      105                    105         105
## PP.Nat_2_Aggregated                      104                    104         104
## PP.Nat_3_Aggregated                      105                    105         105
## PP.Risk_1_AG                             105                    105         105
## PP.Risk_2_AG                             105                    105         105
## PP.Risk_3_AG                             104                    104         104
## PP.Risk_4_AG                             105                    105         105
## PP.Understanding_1_AG                    102                    102         102
## PP.Familiarity_1_AG                      105                    105         105
## PP.Control_1_AG                          105                    105         105
## PP.Benefit_1_AG                           87                     87          87
## PP.Benefit_2_AG                           87                     87          87
## PP.Benefit_3_AG                           87                     87          87
## PP.BI_1_AG                                87                     87          87
## PP.BI_2_AG                                87                     87          87
## PP.BI_3_AG                                87                     87          87
## PP.BI_4_AG                                87                     87          87
## PP.BI_2_AG.1                              87                     87          87
## PP.ENVS_Score                            105                    105         105
## PP.ATNS_Score                            105                    105         105
## PP.CNS_Score                             105                    105         105
## PP.CCBelief_Score                        105                    105         105
## PP.Collectivism_Score                    105                    105         105
## PP.Individualism_Score                   105                    105         105
## PP.ST_Score                              105                    105         105
## PP.HT_Score                              105                    105         105
##                        PP.HT_Score
## PP.Nat_1_Aggregated            105
## PP.Nat_2_Aggregated            104
## PP.Nat_3_Aggregated            105
## PP.Risk_1_AG                   105
## PP.Risk_2_AG                   105
## PP.Risk_3_AG                   104
## PP.Risk_4_AG                   105
## PP.Understanding_1_AG          102
## PP.Familiarity_1_AG            105
## PP.Control_1_AG                105
## PP.Benefit_1_AG                 87
## PP.Benefit_2_AG                 87
## PP.Benefit_3_AG                 87
## PP.BI_1_AG                      87
## PP.BI_2_AG                      87
## PP.BI_3_AG                      87
## PP.BI_4_AG                      87
## PP.BI_2_AG.1                    87
## PP.ENVS_Score                  105
## PP.ATNS_Score                  105
## PP.CNS_Score                   105
## PP.CCBelief_Score              105
## PP.Collectivism_Score          105
## PP.Individualism_Score         105
## PP.ST_Score                    105
## PP.HT_Score                    105
## 
## P
##                        PP.Nat_1_Aggregated PP.Nat_2_Aggregated
## PP.Nat_1_Aggregated                        0.1677             
## PP.Nat_2_Aggregated    0.1677                                 
## PP.Nat_3_Aggregated    0.1055              0.0000             
## PP.Risk_1_AG           0.0617              0.0000             
## PP.Risk_2_AG           0.8788              0.0000             
## PP.Risk_3_AG           0.8798              0.0000             
## PP.Risk_4_AG           0.2246              0.0000             
## PP.Understanding_1_AG  0.1197              0.8020             
## PP.Familiarity_1_AG    0.0000              0.7817             
## PP.Control_1_AG        0.0001              0.2383             
## PP.Benefit_1_AG        0.0000              0.0724             
## PP.Benefit_2_AG        0.0000              0.5682             
## PP.Benefit_3_AG        0.0000              0.7280             
## PP.BI_1_AG             0.0000              0.0546             
## PP.BI_2_AG             0.0000              0.1071             
## PP.BI_3_AG             0.0000              0.0856             
## PP.BI_4_AG             0.0000              0.1373             
## PP.BI_2_AG.1           0.0000              0.1071             
## PP.ENVS_Score          0.0018              0.0645             
## PP.ATNS_Score          0.1260              0.4028             
## PP.CNS_Score           0.5971              0.2359             
## PP.CCBelief_Score      0.0254              0.9913             
## PP.Collectivism_Score  0.1476              0.0077             
## PP.Individualism_Score 0.0170              0.0515             
## PP.ST_Score            0.5466              0.9302             
## PP.HT_Score            0.5466              0.9302             
##                        PP.Nat_3_Aggregated PP.Risk_1_AG PP.Risk_2_AG
## PP.Nat_1_Aggregated    0.1055              0.0617       0.8788      
## PP.Nat_2_Aggregated    0.0000              0.0000       0.0000      
## PP.Nat_3_Aggregated                        0.0783       0.0308      
## PP.Risk_1_AG           0.0783                           0.0000      
## PP.Risk_2_AG           0.0308              0.0000                   
## PP.Risk_3_AG           0.0134              0.0000       0.0000      
## PP.Risk_4_AG           0.2462              0.0000       0.0000      
## PP.Understanding_1_AG  0.0812              0.3264       0.0648      
## PP.Familiarity_1_AG    0.3342              0.9395       0.4382      
## PP.Control_1_AG        0.0011              0.5650       0.2983      
## PP.Benefit_1_AG        0.0016              0.0018       0.2666      
## PP.Benefit_2_AG        0.0000              0.0107       0.3502      
## PP.Benefit_3_AG        0.0000              0.0348       0.2406      
## PP.BI_1_AG             0.0017              0.0036       0.0962      
## PP.BI_2_AG             0.0285              0.0129       0.3200      
## PP.BI_3_AG             0.0004              0.0029       0.2055      
## PP.BI_4_AG             0.0004              0.0020       0.2021      
## PP.BI_2_AG.1           0.0285              0.0129       0.3200      
## PP.ENVS_Score          0.0000              0.4001       0.1754      
## PP.ATNS_Score          0.5913              0.3592       0.7531      
## PP.CNS_Score           0.2536              0.0869       0.0382      
## PP.CCBelief_Score      0.1208              0.8373       0.8161      
## PP.Collectivism_Score  0.0011              0.0002       0.0008      
## PP.Individualism_Score 0.0000              0.2762       0.3923      
## PP.ST_Score            0.1795              0.3703       0.0627      
## PP.HT_Score            0.1795              0.3703       0.0627      
##                        PP.Risk_3_AG PP.Risk_4_AG PP.Understanding_1_AG
## PP.Nat_1_Aggregated    0.8798       0.2246       0.1197               
## PP.Nat_2_Aggregated    0.0000       0.0000       0.8020               
## PP.Nat_3_Aggregated    0.0134       0.2462       0.0812               
## PP.Risk_1_AG           0.0000       0.0000       0.3264               
## PP.Risk_2_AG           0.0000       0.0000       0.0648               
## PP.Risk_3_AG                        0.0000       0.9196               
## PP.Risk_4_AG           0.0000                    0.4317               
## PP.Understanding_1_AG  0.9196       0.4317                            
## PP.Familiarity_1_AG    0.0727       0.9467       0.7066               
## PP.Control_1_AG        0.6671       0.7724       0.1598               
## PP.Benefit_1_AG        0.3064       0.0061       0.7821               
## PP.Benefit_2_AG        0.4456       0.0815       0.9503               
## PP.Benefit_3_AG        0.3738       0.0701       0.9267               
## PP.BI_1_AG             0.1443       0.0075       0.5075               
## PP.BI_2_AG             0.4757       0.0526       0.6378               
## PP.BI_3_AG             0.1184       0.0035       0.8337               
## PP.BI_4_AG             0.2105       0.0072       0.7686               
## PP.BI_2_AG.1           0.4757       0.0526       0.6378               
## PP.ENVS_Score          0.3672       0.1768       0.8316               
## PP.ATNS_Score          0.8755       0.7019       0.8419               
## PP.CNS_Score           0.0144       0.1135       0.1079               
## PP.CCBelief_Score      0.9610       0.9326       0.9770               
## PP.Collectivism_Score  0.0011       0.0009       0.9723               
## PP.Individualism_Score 0.7970       0.7084       0.8993               
## PP.ST_Score            0.0430       0.0508       0.4092               
## PP.HT_Score            0.0430       0.0508       0.4092               
##                        PP.Familiarity_1_AG PP.Control_1_AG PP.Benefit_1_AG
## PP.Nat_1_Aggregated    0.0000              0.0001          0.0000         
## PP.Nat_2_Aggregated    0.7817              0.2383          0.0724         
## PP.Nat_3_Aggregated    0.3342              0.0011          0.0016         
## PP.Risk_1_AG           0.9395              0.5650          0.0018         
## PP.Risk_2_AG           0.4382              0.2983          0.2666         
## PP.Risk_3_AG           0.0727              0.6671          0.3064         
## PP.Risk_4_AG           0.9467              0.7724          0.0061         
## PP.Understanding_1_AG  0.7066              0.1598          0.7821         
## PP.Familiarity_1_AG                        0.0005          0.0002         
## PP.Control_1_AG        0.0005                              0.0006         
## PP.Benefit_1_AG        0.0002              0.0006                         
## PP.Benefit_2_AG        0.0001              0.0000          0.0000         
## PP.Benefit_3_AG        0.0012              0.0018          0.0000         
## PP.BI_1_AG             0.0000              0.0042          0.0000         
## PP.BI_2_AG             0.0000              0.0000          0.0000         
## PP.BI_3_AG             0.0002              0.0011          0.0000         
## PP.BI_4_AG             0.0003              0.0004          0.0000         
## PP.BI_2_AG.1           0.0000              0.0000          0.0000         
## PP.ENVS_Score          0.1386              0.0002          0.0003         
## PP.ATNS_Score          0.0164              0.0015          0.0494         
## PP.CNS_Score           0.6209              0.0220          0.3186         
## PP.CCBelief_Score      0.0879              0.0000          0.0059         
## PP.Collectivism_Score  0.8489              0.0572          0.0034         
## PP.Individualism_Score 0.0475              0.0000          0.0000         
## PP.ST_Score            0.6670              0.0102          0.1063         
## PP.HT_Score            0.6670              0.0102          0.1063         
##                        PP.Benefit_2_AG PP.Benefit_3_AG PP.BI_1_AG PP.BI_2_AG
## PP.Nat_1_Aggregated    0.0000          0.0000          0.0000     0.0000    
## PP.Nat_2_Aggregated    0.5682          0.7280          0.0546     0.1071    
## PP.Nat_3_Aggregated    0.0000          0.0000          0.0017     0.0285    
## PP.Risk_1_AG           0.0107          0.0348          0.0036     0.0129    
## PP.Risk_2_AG           0.3502          0.2406          0.0962     0.3200    
## PP.Risk_3_AG           0.4456          0.3738          0.1443     0.4757    
## PP.Risk_4_AG           0.0815          0.0701          0.0075     0.0526    
## PP.Understanding_1_AG  0.9503          0.9267          0.5075     0.6378    
## PP.Familiarity_1_AG    0.0001          0.0012          0.0000     0.0000    
## PP.Control_1_AG        0.0000          0.0018          0.0042     0.0000    
## PP.Benefit_1_AG        0.0000          0.0000          0.0000     0.0000    
## PP.Benefit_2_AG                        0.0000          0.0000     0.0000    
## PP.Benefit_3_AG        0.0000                          0.0000     0.0000    
## PP.BI_1_AG             0.0000          0.0000                     0.0000    
## PP.BI_2_AG             0.0000          0.0000          0.0000               
## PP.BI_3_AG             0.0000          0.0000          0.0000     0.0000    
## PP.BI_4_AG             0.0000          0.0000          0.0000     0.0000    
## PP.BI_2_AG.1           0.0000          0.0000          0.0000     0.0000    
## PP.ENVS_Score          0.0000          0.0000          0.0006     0.0032    
## PP.ATNS_Score          0.0777          0.0792          0.1710     0.0276    
## PP.CNS_Score           0.0867          0.0757          0.3049     0.1028    
## PP.CCBelief_Score      0.0027          0.0088          0.0452     0.0153    
## PP.Collectivism_Score  0.0006          0.0043          0.0103     0.0469    
## PP.Individualism_Score 0.0000          0.0000          0.0000     0.0002    
## PP.ST_Score            0.0387          0.1873          0.3747     0.3245    
## PP.HT_Score            0.0387          0.1873          0.3747     0.3245    
##                        PP.BI_3_AG PP.BI_4_AG PP.BI_2_AG.1 PP.ENVS_Score
## PP.Nat_1_Aggregated    0.0000     0.0000     0.0000       0.0018       
## PP.Nat_2_Aggregated    0.0856     0.1373     0.1071       0.0645       
## PP.Nat_3_Aggregated    0.0004     0.0004     0.0285       0.0000       
## PP.Risk_1_AG           0.0029     0.0020     0.0129       0.4001       
## PP.Risk_2_AG           0.2055     0.2021     0.3200       0.1754       
## PP.Risk_3_AG           0.1184     0.2105     0.4757       0.3672       
## PP.Risk_4_AG           0.0035     0.0072     0.0526       0.1768       
## PP.Understanding_1_AG  0.8337     0.7686     0.6378       0.8316       
## PP.Familiarity_1_AG    0.0002     0.0003     0.0000       0.1386       
## PP.Control_1_AG        0.0011     0.0004     0.0000       0.0002       
## PP.Benefit_1_AG        0.0000     0.0000     0.0000       0.0003       
## PP.Benefit_2_AG        0.0000     0.0000     0.0000       0.0000       
## PP.Benefit_3_AG        0.0000     0.0000     0.0000       0.0000       
## PP.BI_1_AG             0.0000     0.0000     0.0000       0.0006       
## PP.BI_2_AG             0.0000     0.0000     0.0000       0.0032       
## PP.BI_3_AG                        0.0000     0.0000       0.0000       
## PP.BI_4_AG             0.0000                0.0000       0.0000       
## PP.BI_2_AG.1           0.0000     0.0000                  0.0032       
## PP.ENVS_Score          0.0000     0.0000     0.0032                    
## PP.ATNS_Score          0.1036     0.0807     0.0276       0.0307       
## PP.CNS_Score           0.2147     0.3219     0.1028       0.0000       
## PP.CCBelief_Score      0.0197     0.0410     0.0153       0.0000       
## PP.Collectivism_Score  0.0063     0.0044     0.0469       0.0013       
## PP.Individualism_Score 0.0000     0.0000     0.0002       0.0000       
## PP.ST_Score            0.1074     0.2539     0.3245       0.0002       
## PP.HT_Score            0.1074     0.2539     0.3245       0.0002       
##                        PP.ATNS_Score PP.CNS_Score PP.CCBelief_Score
## PP.Nat_1_Aggregated    0.1260        0.5971       0.0254           
## PP.Nat_2_Aggregated    0.4028        0.2359       0.9913           
## PP.Nat_3_Aggregated    0.5913        0.2536       0.1208           
## PP.Risk_1_AG           0.3592        0.0869       0.8373           
## PP.Risk_2_AG           0.7531        0.0382       0.8161           
## PP.Risk_3_AG           0.8755        0.0144       0.9610           
## PP.Risk_4_AG           0.7019        0.1135       0.9326           
## PP.Understanding_1_AG  0.8419        0.1079       0.9770           
## PP.Familiarity_1_AG    0.0164        0.6209       0.0879           
## PP.Control_1_AG        0.0015        0.0220       0.0000           
## PP.Benefit_1_AG        0.0494        0.3186       0.0059           
## PP.Benefit_2_AG        0.0777        0.0867       0.0027           
## PP.Benefit_3_AG        0.0792        0.0757       0.0088           
## PP.BI_1_AG             0.1710        0.3049       0.0452           
## PP.BI_2_AG             0.0276        0.1028       0.0153           
## PP.BI_3_AG             0.1036        0.2147       0.0197           
## PP.BI_4_AG             0.0807        0.3219       0.0410           
## PP.BI_2_AG.1           0.0276        0.1028       0.0153           
## PP.ENVS_Score          0.0307        0.0000       0.0000           
## PP.ATNS_Score                        0.0000       0.0003           
## PP.CNS_Score           0.0000                     0.0000           
## PP.CCBelief_Score      0.0003        0.0000                        
## PP.Collectivism_Score  0.1933        0.1418       0.0204           
## PP.Individualism_Score 0.0007        0.0181       0.0000           
## PP.ST_Score            0.0052        0.0000       0.0000           
## PP.HT_Score            0.0052        0.0000       0.0000           
##                        PP.Collectivism_Score PP.Individualism_Score PP.ST_Score
## PP.Nat_1_Aggregated    0.1476                0.0170                 0.5466     
## PP.Nat_2_Aggregated    0.0077                0.0515                 0.9302     
## PP.Nat_3_Aggregated    0.0011                0.0000                 0.1795     
## PP.Risk_1_AG           0.0002                0.2762                 0.3703     
## PP.Risk_2_AG           0.0008                0.3923                 0.0627     
## PP.Risk_3_AG           0.0011                0.7970                 0.0430     
## PP.Risk_4_AG           0.0009                0.7084                 0.0508     
## PP.Understanding_1_AG  0.9723                0.8993                 0.4092     
## PP.Familiarity_1_AG    0.8489                0.0475                 0.6670     
## PP.Control_1_AG        0.0572                0.0000                 0.0102     
## PP.Benefit_1_AG        0.0034                0.0000                 0.1063     
## PP.Benefit_2_AG        0.0006                0.0000                 0.0387     
## PP.Benefit_3_AG        0.0043                0.0000                 0.1873     
## PP.BI_1_AG             0.0103                0.0000                 0.3747     
## PP.BI_2_AG             0.0469                0.0002                 0.3245     
## PP.BI_3_AG             0.0063                0.0000                 0.1074     
## PP.BI_4_AG             0.0044                0.0000                 0.2539     
## PP.BI_2_AG.1           0.0469                0.0002                 0.3245     
## PP.ENVS_Score          0.0013                0.0000                 0.0002     
## PP.ATNS_Score          0.1933                0.0007                 0.0052     
## PP.CNS_Score           0.1418                0.0181                 0.0000     
## PP.CCBelief_Score      0.0204                0.0000                 0.0000     
## PP.Collectivism_Score                        0.0000                 0.0633     
## PP.Individualism_Score 0.0000                                       0.0000     
## PP.ST_Score            0.0633                0.0000                            
## PP.HT_Score            0.0633                0.0000                 0.0000     
##                        PP.HT_Score
## PP.Nat_1_Aggregated    0.5466     
## PP.Nat_2_Aggregated    0.9302     
## PP.Nat_3_Aggregated    0.1795     
## PP.Risk_1_AG           0.3703     
## PP.Risk_2_AG           0.0627     
## PP.Risk_3_AG           0.0430     
## PP.Risk_4_AG           0.0508     
## PP.Understanding_1_AG  0.4092     
## PP.Familiarity_1_AG    0.6670     
## PP.Control_1_AG        0.0102     
## PP.Benefit_1_AG        0.1063     
## PP.Benefit_2_AG        0.0387     
## PP.Benefit_3_AG        0.1873     
## PP.BI_1_AG             0.3747     
## PP.BI_2_AG             0.3245     
## PP.BI_3_AG             0.1074     
## PP.BI_4_AG             0.2539     
## PP.BI_2_AG.1           0.3245     
## PP.ENVS_Score          0.0002     
## PP.ATNS_Score          0.0052     
## PP.CNS_Score           0.0000     
## PP.CCBelief_Score      0.0000     
## PP.Collectivism_Score  0.0633     
## PP.Individualism_Score 0.0000     
## PP.ST_Score            0.0000     
## PP.HT_Score
library(corrplot)
## corrplot 0.92 loaded
corrplot(mydata.corscale, method="color")

corrplot(mydata.corscale, addCoef.col = 1,  number.cex = 0.3, method = 'number')

#Predictions - Risk/Naturalness by Burger Type

  #1. GFFB
  m.a1 <- lm(Risk_Score_GFFB ~ Naturalness_Score_GFFB, data = PP)
  mcSummary(m.a1)
## lm(formula = Risk_Score_GFFB ~ Naturalness_Score_GFFB, data = PP)
## 
## Omnibus ANOVA
##                  SS df        MS EtaSq      F p
## Model      15567.78  1 15567.779 0.289 20.779 0
## Error      38209.27 51   749.201               
## Corr Total 53777.05 52  1034.174               
## 
##    RMSE AdjEtaSq
##  27.372    0.276
## 
## Coefficients
##                           Est  StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept)            90.314 10.052  8.985 60483.97 0.613  NA 70.135 110.493 0
## Naturalness_Score_GFFB -0.828  0.182 -4.558 15567.78 0.289  NA -1.192  -0.463 0
  m.c1 <- lm(Risk_Score_GFFB ~ 1, data = PP) 
  mcSummary(m.c1)
## lm(formula = Risk_Score_GFFB ~ 1, data = PP)
## 
## Omnibus ANOVA
##                  SS df       MS EtaSq F p
## Model          0.00  0      Inf     0    
## Error      53777.05 52 1034.174          
## Corr Total 53777.05 52 1034.174          
## 
##    RMSE AdjEtaSq
##  32.159        0
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 47.821 4.417 10.826 121201.7 0.693  NA 38.957  56.685 0
  modelCompare(m.c1, m.a1)
## SSE (Compact) =  53777.05 
## SSE (Augmented) =  38209.27 
## Delta R-Squared =  0.2894874 
## Partial Eta-Squared (PRE) =  0.2894874 
## F(1,51) = 20.77917, p = 3.251169e-05
  #2. GFPRB
  m.a2 <- lm(Risk_Score_GFPRB ~ Naturalness_Score_GFPRB, data = PP)
  mcSummary(m.a2)
## lm(formula = Risk_Score_GFPRB ~ Naturalness_Score_GFPRB, data = PP)
## 
## Omnibus ANOVA
##                  SS df        MS EtaSq      F p
## Model      23449.39  1 23449.391 0.456 42.675 0
## Error      28023.91 51   549.488               
## Corr Total 51473.30 52   989.871               
## 
##    RMSE AdjEtaSq
##  23.441    0.445
## 
## Coefficients
##                             Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)             106.978 9.768 10.952 65911.06 0.702  NA 87.369 126.588
## Naturalness_Score_GFPRB  -1.006 0.154 -6.533 23449.39 0.456  NA -1.315  -0.697
##                         p
## (Intercept)             0
## Naturalness_Score_GFPRB 0
  m.c2 <- lm(Risk_Score_GFPRB ~ 1, data = PP) 
  mcSummary(m.c2)
## lm(formula = Risk_Score_GFPRB ~ 1, data = PP)
## 
## Omnibus ANOVA
##                 SS df      MS EtaSq F p
## Model          0.0  0     Inf     0    
## Error      51473.3 52 989.871          
## Corr Total 51473.3 52 989.871          
## 
##    RMSE AdjEtaSq
##  31.462        0
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 46.736 4.322 10.814 115764.7 0.692  NA 38.064  55.408 0
  modelCompare(m.c2, m.a2)
## SSE (Compact) =  51473.3 
## SSE (Augmented) =  28023.91 
## Delta R-Squared =  0.4555641 
## Partial Eta-Squared (PRE) =  0.4555641 
## F(1,51) = 42.67495, p = 2.979068e-08
  #3. CBB
  m.a3 <- lm(Risk_Score_CBB ~ Naturalness_Score_CBB, data = PP)
  mcSummary(m.a3)
## lm(formula = Risk_Score_CBB ~ Naturalness_Score_CBB, data = PP)
## 
## Omnibus ANOVA
##                   SS df       MS EtaSq     F     p
## Model       2876.748  1 2876.748 0.077 3.524 0.067
## Error      34287.450 42  816.368                  
## Corr Total 37164.199 43  864.284                  
## 
##    RMSE AdjEtaSq
##  28.572    0.055
## 
## Coefficients
##                          Est StErr      t    SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)           69.072 9.719  7.107 41228.589 0.546  NA 49.457  88.686
## Naturalness_Score_CBB -0.469 0.250 -1.877  2876.748 0.077  NA -0.973   0.035
##                           p
## (Intercept)           0.000
## Naturalness_Score_CBB 0.067
  m.c3 <- lm(Risk_Score_CBB ~ 1, data = PP) 
  mcSummary(m.c3)
## lm(formula = Risk_Score_CBB ~ 1, data = PP)
## 
## Omnibus ANOVA
##                 SS df      MS EtaSq F p
## Model          0.0  0     Inf     0    
## Error      37164.2 43 864.284          
## Corr Total 37164.2 43 864.284          
## 
##    RMSE AdjEtaSq
##  29.399        0
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 52.716 4.432 11.894 122274.6 0.767  NA 43.778  61.654 0
  modelCompare(m.c3, m.a3)
## SSE (Compact) =  37164.2 
## SSE (Augmented) =  34287.45 
## Delta R-Squared =  0.07740644 
## Partial Eta-Squared (PRE) =  0.07740644 
## F(1,42) = 3.523838, p = 0.06744953
  #4. PBPB
  m.a4 <- lm(Risk_Score_PBPB ~ Naturalness_Score_PBPB, data = PP)
  mcSummary(m.a4)
## lm(formula = Risk_Score_PBPB ~ Naturalness_Score_PBPB, data = PP)
## 
## Omnibus ANOVA
##                  SS df       MS EtaSq      F     p
## Model       8885.36  1 8885.360 0.184 10.815 0.002
## Error      39436.82 48  821.600                   
## Corr Total 48322.18 49  986.167                   
## 
##    RMSE AdjEtaSq
##  28.664    0.167
## 
## Coefficients
##                           Est  StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)            87.098 13.405  6.498 34687.43 0.468  NA 60.146 114.049
## Naturalness_Score_PBPB -0.822  0.250 -3.289  8885.36 0.184  NA -1.325  -0.319
##                            p
## (Intercept)            0.000
## Naturalness_Score_PBPB 0.002
  m.c4 <- lm(Risk_Score_PBPB ~ 1, data = PP) 
  mcSummary(m.c4)
## lm(formula = Risk_Score_PBPB ~ 1, data = PP)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      48322.18 49 986.167          
## Corr Total 48322.18 49 986.167          
## 
##    RMSE AdjEtaSq
##  31.403        0
## 
## Coefficients
##               Est StErr      t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 45.08 4.441 10.151 101610.3 0.678  NA 36.155  54.005 0
  modelCompare(m.c4, m.a4)
## SSE (Compact) =  48322.18 
## SSE (Augmented) =  39436.82 
## Delta R-Squared =  0.1838775 
## Partial Eta-Squared (PRE) =  0.1838775 
## F(1,48) = 10.8147, p = 0.001889587
  #5. PBFB
  m.a5 <- lm(Risk_Score_PBFB ~ Naturalness_Score_PBFB, data = PP)
  mcSummary(m.a5)
## lm(formula = Risk_Score_PBFB ~ Naturalness_Score_PBFB, data = PP)
## 
## Omnibus ANOVA
##                   SS df       MS EtaSq     F     p
## Model       1496.651  1 1496.651 0.032 1.893 0.174
## Error      45856.333 58  790.626                  
## Corr Total 47352.983 59  802.593                  
## 
##    RMSE AdjEtaSq
##  28.118    0.015
## 
## Coefficients
##                           Est  StErr      t    SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)            61.453 10.215  6.016 28616.656 0.384  NA 41.006  81.900
## Naturalness_Score_PBFB -0.312  0.227 -1.376  1496.651 0.032  NA -0.767   0.142
##                            p
## (Intercept)            0.000
## Naturalness_Score_PBFB 0.174
  m.c5 <- lm(Risk_Score_PBFB ~ 1, data = PP) 
  mcSummary(m.c5)
## lm(formula = Risk_Score_PBFB ~ 1, data = PP)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      47352.98 59 802.593          
## Corr Total 47352.98 59 802.593          
## 
##   RMSE AdjEtaSq
##  28.33        0
## 
## Coefficients
##                Est StErr      t SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 48.317 3.657 13.211 140070 0.747  NA 40.998  55.635 0
  modelCompare(m.c5, m.a5)
## SSE (Compact) =  47352.98 
## SSE (Augmented) =  45856.33 
## Delta R-Squared =  0.03160626 
## Partial Eta-Squared (PRE) =  0.03160626 
## F(1,58) = 1.892993, p = 0.1741546
  #6. VB
  m.a6 <- lm(Risk_Score_VB ~ Naturalness_Score_VB, data = PP)
  mcSummary(m.a6)
## lm(formula = Risk_Score_VB ~ Naturalness_Score_VB, data = PP)
## 
## Omnibus ANOVA
##                   SS df       MS EtaSq     F     p
## Model       6766.344  1 6766.344 0.135 8.416 0.005
## Error      43416.044 54  804.001                  
## Corr Total 50182.388 55  912.407                  
## 
##    RMSE AdjEtaSq
##  28.355    0.119
## 
## Coefficients
##                         Est  StErr      t    SSR(3) EtaSq tol CI_2.5 CI_97.5
## (Intercept)          68.995 11.798  5.848 27494.062 0.388  NA 45.340  92.649
## Naturalness_Score_VB -0.645  0.222 -2.901  6766.344 0.135  NA -1.091  -0.199
##                          p
## (Intercept)          0.000
## Naturalness_Score_VB 0.005
  m.c6 <- lm(Risk_Score_VB ~ 1, data = PP) 
  mcSummary(m.c6)
## lm(formula = Risk_Score_VB ~ 1, data = PP)
## 
## Omnibus ANOVA
##                  SS df      MS EtaSq F p
## Model          0.00  0     Inf     0    
## Error      50182.39 55 912.407          
## Corr Total 50182.39 55 912.407          
## 
##    RMSE AdjEtaSq
##  30.206        0
## 
## Coefficients
##               Est StErr     t   SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 36.58 4.036 9.062 74934.86 0.599  NA 28.491   44.67 0
  modelCompare(m.c6, m.a6)
## SSE (Compact) =  50182.39 
## SSE (Augmented) =  43416.04 
## Delta R-Squared =  0.134835 
## Partial Eta-Squared (PRE) =  0.134835 
## F(1,54) = 8.415843, p = 0.005371584