UIN Maulana Malik Ibrahim Malang Teknik Informatika

Pengertian Inflow dan Outflow uang kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

Ini adalah contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Gorontalo menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path = "data1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 13
##    Keterangan ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Sela~`
##         <dbl> <lgl>    <dbl>            <dbl>             <dbl>            <dbl>
##  1         NA NA         NA               NA                NA               NA 
##  2       2011 NA      25056.            5671.             1563.           10593.
##  3       2012 NA      31011.            6635.             1885.           13702.
##  4       2013 NA      63774.           21646.             1520.           17770.
##  5       2014 NA      41607.            7374.             3000.           19384.
##  6       2015 NA      40309.            6286.             2593.           19583.
##  7       2016 NA      45737.            7266.             2665.           21043.
##  8       2017 NA      44126.            7044.             2806.           18803.
##  9       2018 NA      52672.            7781.             3701.           21894.
## 10       2019 NA      60202.            7809.             4042.           24749.
## 11       2020 NA      52812.            6324.             3052.           21551.
## 12       2021 NA      45714.            4671.             2453.           18335.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "data3.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Selatan`
##         <dbl>    <dbl>            <dbl>             <dbl>              <dbl>
##  1       2011   36449.            6606.             4017.              8967.
##  2       2012   43623.            6375.             4458.             11873.
##  3       2013   64181.           22740.             4544.             11485.
##  4       2014   48231.            7207.             5696.             15645.
##  5       2015   53153.            7202.             5310.             16236.
##  6       2016   53145.            7707.             4962.             15494.
##  7       2017   56297.            8421.             5226.             15159.
##  8       2018   60935.            7605.             5578.             16779.
##  9       2019   60723.            7367.             5531.             18089.
## 10       2020   64828.            7437.             4674.             20503.
## 11       2021   33806.            3050.             2763.             12017.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Gorontalo setiap periode

plot(datainflow$Keterangan,datainflow$`Gorontalo`,type = "l", col= "red")

2.Visualisasi Prediksi Data outflow Uang Kartal Gorontalo setiap periode

plot(dataoutflow$Keterangan,dataoutflow$`Gorontalo`,type = "l", col= "green")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Gorontalo Setiap Periode

plot(datainflow$Keterangan,datainflow$`Gorontalo`,type = "l", col= "red")
lines(dataoutflow$Keterangan,dataoutflow$`Gorontalo`,col="green")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Gorontalo Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "data2.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "data4.xlsx")
## New names:
## * `` -> ...1
datainflowperbulan
## # A tibble: 128 x 13
##    ...1                ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>              <lgl>    <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00 NA       2584.             861.             167. 
##  2 2011-02-01 00:00:00 NA       1504.             353.              46.1
##  3 2011-03-01 00:00:00 NA       2032.             415.             133. 
##  4 2011-04-01 00:00:00 NA       1591.             342.              91.5
##  5 2011-05-01 00:00:00 NA       1704.             379.             106. 
##  6 2011-06-01 00:00:00 NA       1795.             413.              77.0
##  7 2011-07-01 00:00:00 NA       1863.             480.             113. 
##  8 2011-08-01 00:00:00 NA       1606.             415.              76.9
##  9 2011-09-01 00:00:00 NA       4967.             886.             446. 
## 10 2011-10-01 00:00:00 NA       1918.             423.             113. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    ...1                Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>                 <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00     966.             244.              83.5
##  2 2011-02-01 00:00:00     957.             260.             139. 
##  3 2011-03-01 00:00:00    1982.             352.             189. 
##  4 2011-04-01 00:00:00    2605.             460.             266. 
##  5 2011-05-01 00:00:00    2559.             474.             317. 
##  6 2011-06-01 00:00:00    2557.             459.             311. 
##  7 2011-07-01 00:00:00    3087.             622.             351. 
##  8 2011-08-01 00:00:00    6228.             985.             656. 
##  9 2011-09-01 00:00:00    1234.             212.             105. 
## 10 2011-10-01 00:00:00    2947.             545.             356. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
plot(datainflowperbulan$`Gorontalo`, type = "l", col = "grey")
lines(dataoutflowperbulan$`Gorontalo`,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("grey","blue"))

Gorontalotimeseries <- datainflowperbulan$`Gorontalo`
plot.ts(Gorontalotimeseries , type = "l", col = "green")

logGorontalo <- log(datainflowperbulan$`Gorontalo`)
plot.ts(logGorontalo)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Gorontalo

Gorontaloinflowtimeseries <- ts(datainflowperbulan$`Gorontalo`, frequency=12, start=c(2011,1))
Gorontaloinflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011        NA        NA        NA        NA        NA        NA        NA
## 2012        NA        NA        NA        NA        NA        NA        NA
## 2013        NA        NA        NA        NA        NA        NA        NA
## 2014        NA        NA        NA        NA        NA        NA        NA
## 2015        NA        NA        NA        NA        NA        NA        NA
## 2016        NA        NA        NA        NA        NA        NA        NA
## 2017        NA        NA        NA        NA        NA        NA        NA
## 2018        NA        NA        NA        NA        NA 363.96884 308.59300
## 2019 315.39492  99.86948  59.92529 116.25330 131.83335 449.41120 205.30602
## 2020 475.48479 148.29931 118.65741 111.77349 197.56291 257.79680 183.28000
## 2021 531.77920 115.75515 103.51660 114.97692 508.82020 185.82336 122.99964
##            Aug       Sep       Oct       Nov       Dec
## 2011        NA        NA        NA        NA        NA
## 2012        NA        NA        NA        NA        NA
## 2013        NA        NA        NA        NA        NA
## 2014        NA        NA        NA        NA        NA
## 2015        NA        NA        NA        NA        NA
## 2016        NA        NA        NA        NA        NA
## 2017        NA        NA        NA        NA        NA
## 2018  97.99315  60.36057  90.46237 121.68511  44.55530
## 2019 144.82253  81.42395 127.72298 133.27950 117.42572
## 2020 179.70448 149.52429 125.16276 175.90879 103.93751
## 2021  86.41267
Gorontalooutflowtimeseries <- ts(dataoutflowperbulan$`Gorontalo`, frequency=12, start=c(2011,1))
Gorontalooutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011         NA         NA         NA         NA         NA         NA
## 2012         NA         NA         NA         NA         NA         NA
## 2013         NA         NA         NA         NA         NA         NA
## 2014         NA         NA         NA         NA         NA         NA
## 2015         NA         NA         NA         NA         NA         NA
## 2016         NA         NA         NA         NA         NA         NA
## 2017         NA         NA         NA         NA         NA         NA
## 2018         NA         NA         NA         NA         NA 417.250174
## 2019   2.912239  68.440611 203.897987 319.561389 598.558179   8.668225
## 2020  30.047071 150.389916 217.802882 221.803520 413.276028  29.184300
## 2021   3.165417  87.416155 251.058011 319.642871 545.983514  64.195415
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011         NA         NA         NA         NA         NA         NA
## 2012         NA         NA         NA         NA         NA         NA
## 2013         NA         NA         NA         NA         NA         NA
## 2014         NA         NA         NA         NA         NA         NA
## 2015         NA         NA         NA         NA         NA         NA
## 2016         NA         NA         NA         NA         NA         NA
## 2017         NA         NA         NA         NA         NA         NA
## 2018  16.083437 117.195856  79.278672  71.280672  22.652846 203.212534
## 2019 117.410600  44.348755 150.013896  86.298130  92.811908 258.125606
## 2020 170.884251 171.084087 252.290005 246.858686 135.567549 343.019459
## 2021 163.078600  59.657002
plot.ts(Gorontaloinflowtimeseries)

plot.ts(Gorontalooutflowtimeseries)

Gorontalointimeseriescomponents <- decompose(Gorontaloinflowtimeseries)
Gorontalointimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
## 2012 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
## 2013 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
## 2014 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
## 2015 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
## 2016 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
## 2017 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
## 2018 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
## 2019 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
## 2020 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
## 2021 265.220733 -51.619066 -75.930442 -53.788896  -4.956746 181.582333
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  16.526207 -20.342255 -68.370743 -58.283553 -37.959580 -92.077991
## 2012  16.526207 -20.342255 -68.370743 -58.283553 -37.959580 -92.077991
## 2013  16.526207 -20.342255 -68.370743 -58.283553 -37.959580 -92.077991
## 2014  16.526207 -20.342255 -68.370743 -58.283553 -37.959580 -92.077991
## 2015  16.526207 -20.342255 -68.370743 -58.283553 -37.959580 -92.077991
## 2016  16.526207 -20.342255 -68.370743 -58.283553 -37.959580 -92.077991
## 2017  16.526207 -20.342255 -68.370743 -58.283553 -37.959580 -92.077991
## 2018  16.526207 -20.342255 -68.370743 -58.283553 -37.959580 -92.077991
## 2019  16.526207 -20.342255 -68.370743 -58.283553 -37.959580 -92.077991
## 2020  16.526207 -20.342255 -68.370743 -58.283553 -37.959580 -92.077991
## 2021  16.526207 -20.342255
Gorontaloouttimeseriescomponents <- decompose(Gorontalooutflowtimeseries)
Gorontaloouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
## 2012 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
## 2013 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
## 2014 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
## 2015 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
## 2016 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
## 2017 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
## 2018 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
## 2019 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
## 2020 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
## 2021 -161.32502  -72.52681   50.26838  102.83812  332.06250 -160.19337
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  -37.89013  -74.72173   17.33598  -18.22176  -69.51684   91.89067
## 2012  -37.89013  -74.72173   17.33598  -18.22176  -69.51684   91.89067
## 2013  -37.89013  -74.72173   17.33598  -18.22176  -69.51684   91.89067
## 2014  -37.89013  -74.72173   17.33598  -18.22176  -69.51684   91.89067
## 2015  -37.89013  -74.72173   17.33598  -18.22176  -69.51684   91.89067
## 2016  -37.89013  -74.72173   17.33598  -18.22176  -69.51684   91.89067
## 2017  -37.89013  -74.72173   17.33598  -18.22176  -69.51684   91.89067
## 2018  -37.89013  -74.72173   17.33598  -18.22176  -69.51684   91.89067
## 2019  -37.89013  -74.72173   17.33598  -18.22176  -69.51684   91.89067
## 2020  -37.89013  -74.72173   17.33598  -18.22176  -69.51684   91.89067
## 2021  -37.89013  -74.72173
plot(Gorontalointimeseriescomponents$seasonal,type = "l", col = "yellow")
lines(Gorontaloouttimeseriescomponents$seasonal,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(Gorontalointimeseriescomponents$trend,type = "l", col = "yellow")
lines(Gorontaloouttimeseriescomponents$trend,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(Gorontalointimeseriescomponents$random ,type = "l", col = "yellow")
lines(Gorontaloouttimeseriescomponents$random,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(Gorontalointimeseriescomponents$figure ,type = "l", col = "yellow")
lines(Gorontaloouttimeseriescomponents$figure,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8