UIN Maulana Malik Ibrahim Malang Teknik Informatika

Pengertian Inflow dan Outflow uang kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

Ini adalah contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Sulawesi Selatan menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path = "data1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 13
##    Keterangan ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Sela~`
##         <dbl> <lgl>    <dbl>            <dbl>             <dbl>            <dbl>
##  1         NA NA         NA               NA                NA               NA 
##  2       2011 NA      25056.            5671.             1563.           10593.
##  3       2012 NA      31011.            6635.             1885.           13702.
##  4       2013 NA      63774.           21646.             1520.           17770.
##  5       2014 NA      41607.            7374.             3000.           19384.
##  6       2015 NA      40309.            6286.             2593.           19583.
##  7       2016 NA      45737.            7266.             2665.           21043.
##  8       2017 NA      44126.            7044.             2806.           18803.
##  9       2018 NA      52672.            7781.             3701.           21894.
## 10       2019 NA      60202.            7809.             4042.           24749.
## 11       2020 NA      52812.            6324.             3052.           21551.
## 12       2021 NA      45714.            4671.             2453.           18335.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "data3.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Selatan`
##         <dbl>    <dbl>            <dbl>             <dbl>              <dbl>
##  1       2011   36449.            6606.             4017.              8967.
##  2       2012   43623.            6375.             4458.             11873.
##  3       2013   64181.           22740.             4544.             11485.
##  4       2014   48231.            7207.             5696.             15645.
##  5       2015   53153.            7202.             5310.             16236.
##  6       2016   53145.            7707.             4962.             15494.
##  7       2017   56297.            8421.             5226.             15159.
##  8       2018   60935.            7605.             5578.             16779.
##  9       2019   60723.            7367.             5531.             18089.
## 10       2020   64828.            7437.             4674.             20503.
## 11       2021   33806.            3050.             2763.             12017.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Sulawesi Selatan setiap periode

plot(datainflow$Keterangan,datainflow$`Sulawesi Selatan`,type = "l", col= "red")

2.Visualisasi Prediksi Data outflow Uang Kartal Sulawesi Selatan setiap periode

plot(dataoutflow$Keterangan,dataoutflow$`Sulawesi Selatan`,type = "l", col= "green")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sulawesi Selatan Setiap Periode

plot(datainflow$Keterangan,datainflow$`Sulawesi Selatan`,type = "l", col= "red")
lines(dataoutflow$Keterangan,dataoutflow$`Sulawesi Selatan`,col="green")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sulawesi Selatan Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "data2.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "data4.xlsx")
## New names:
## * `` -> ...1
datainflowperbulan
## # A tibble: 128 x 13
##    ...1                ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>              <lgl>    <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00 NA       2584.             861.             167. 
##  2 2011-02-01 00:00:00 NA       1504.             353.              46.1
##  3 2011-03-01 00:00:00 NA       2032.             415.             133. 
##  4 2011-04-01 00:00:00 NA       1591.             342.              91.5
##  5 2011-05-01 00:00:00 NA       1704.             379.             106. 
##  6 2011-06-01 00:00:00 NA       1795.             413.              77.0
##  7 2011-07-01 00:00:00 NA       1863.             480.             113. 
##  8 2011-08-01 00:00:00 NA       1606.             415.              76.9
##  9 2011-09-01 00:00:00 NA       4967.             886.             446. 
## 10 2011-10-01 00:00:00 NA       1918.             423.             113. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    ...1                Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>                 <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00     966.             244.              83.5
##  2 2011-02-01 00:00:00     957.             260.             139. 
##  3 2011-03-01 00:00:00    1982.             352.             189. 
##  4 2011-04-01 00:00:00    2605.             460.             266. 
##  5 2011-05-01 00:00:00    2559.             474.             317. 
##  6 2011-06-01 00:00:00    2557.             459.             311. 
##  7 2011-07-01 00:00:00    3087.             622.             351. 
##  8 2011-08-01 00:00:00    6228.             985.             656. 
##  9 2011-09-01 00:00:00    1234.             212.             105. 
## 10 2011-10-01 00:00:00    2947.             545.             356. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
plot(datainflowperbulan$`Sulawesi Selatan`, type = "l", col = "grey")
lines(dataoutflowperbulan$`Sulawesi Selatan`,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("grey","blue"))

Sulawesiselatantimeseries <- datainflowperbulan$`Sulawesi Selatan`
plot.ts(Sulawesiselatantimeseries , type = "l", col = "green")

logSulawesiSelatan <- log(datainflowperbulan$`Sulawesi Selatan`)
plot.ts(logSulawesiSelatan)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Sulawesi Selatan

SulawesiSelataninflowtimeseries <- ts(datainflowperbulan$`Sulawesi Selatan`, frequency=12, start=c(2011,1))
SulawesiSelataninflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  737.2701  681.9942  910.0269  634.0787  697.3718  768.1180  742.7741
## 2012 1825.5671 1188.5240  857.6867  740.7358 1106.8802  906.3162 1168.7513
## 2013 2351.4793 1368.2980 1094.8123 1243.7820 1322.5633 1087.1937 1253.6472
## 2014 2732.2070 1503.5450 1039.9472 1315.0485 1264.3109 1572.9139 1109.0895
## 2015 3352.9496 1704.0220 1150.3860 1310.9590 1026.3442 1495.2299 2945.2499
## 2016 3002.2932 2041.5394 1291.9515 1111.7549 1267.5116 1264.3756 3935.5280
## 2017 2902.7937 1344.6431  876.9484 1336.9740 1605.1893  581.3572 3638.3386
## 2018 3539.6905 1393.2126  874.1457 1285.0432 1451.2186 3097.2785 2757.6692
## 2019 3493.4415 1808.0409 1188.0854 1464.0796 1705.3327 4474.1179 2360.2352
## 2020 4119.1319 2311.2332 1720.2440  809.5786 1135.8491 2606.6298 1359.0222
## 2021 4336.9419 2411.6856 1839.7368 1679.5252 2757.1762 2221.8949 1541.3612
##            Aug       Sep       Oct       Nov       Dec
## 2011  647.3934 2324.1407  832.8167 1026.7175  590.7962
## 2012 1699.7772 1068.5728  988.4976 1354.5523  795.6488
## 2013 3010.8676  959.0225 1722.4662 1467.0511  888.6079
## 2014 3359.5185 1096.1824 1921.2403 1384.3146 1086.1001
## 2015 1477.0931 1288.5123 1604.9752 1340.7632  886.6034
## 2016 1231.0532 1397.8638 1635.0335 1628.3034 1236.0943
## 2017 1290.0620 1258.9023 1858.8599 1402.9977  706.0825
## 2018 1147.0689 1380.6095 2200.5911 1950.7287  816.4931
## 2019 1448.0190 1832.4393 2337.3045 1729.5425  908.7993
## 2020 1327.9169 1718.9034 1249.1544 2010.3617 1182.8652
## 2021 1547.1478
SulawesiSelatanoutflowtimeseries <- ts(dataoutflowperbulan$`Sulawesi Selatan`, frequency=12, start=c(2011,1))
SulawesiSelatanoutflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  308.8302  237.8154  704.9791  738.6864  573.7936  593.2387  697.0496
## 2012  510.4450  454.6563  931.5922 1184.4716  912.5994 1076.4658 1011.8941
## 2013  154.0943  456.5932  538.6588  450.5097  726.9099  762.7118 1715.5574
## 2014  571.5631  669.3362 1082.1114 1236.1172 1142.5821  978.4584 3281.9684
## 2015  449.8504  624.7593 1184.9137 1558.5959 1136.3951 1374.2081 3073.0906
## 2016  343.9866  641.9787  824.1808 1442.7011 1391.4076 3169.4211 1467.6018
## 2017  488.8822  582.9862 1170.1978  862.8797  878.1953 3410.4420  721.6211
## 2018  163.1490  578.0414 1446.4317 1365.6673 1504.9645 3092.2174  880.0667
## 2019  343.7722  509.6206 1602.1095 2025.2509 4346.8133  141.9142 1323.0795
## 2020  414.5397 1016.5017 1727.2575 1794.6297 3671.4842  634.0485 1261.8806
## 2021  237.7465  809.6438 1897.2916 2804.0416 2712.6154  972.5763 1553.6345
##            Aug       Sep       Oct       Nov       Dec
## 2011 2067.3531  489.8115  724.9256  731.3198 1099.4002
## 2012 1894.6604  681.6072  968.0655  616.1420 1630.0031
## 2013  975.9749 1480.8559 1165.7191 1060.4188 1996.6188
## 2014  833.3638 1668.2002  909.6691 1107.7162 2163.5076
## 2015 1402.7793 1483.1910  848.9114 1283.1252 1815.9132
## 2016 1009.3475 1233.0616  893.9218 1163.5838 1912.4182
## 2017 1746.5581 1122.7270  800.9915 1375.4004 1997.9313
## 2018 1660.2147 1270.9735 1219.2608 1317.6617 2280.1121
## 2019 1607.7889 1145.5304  909.9568 1620.9901 2511.9732
## 2020 1815.4617 1463.4415 2319.1946 1609.1700 2775.8378
## 2021 1029.6811
plot.ts(SulawesiSelataninflowtimeseries)

plot.ts(SulawesiSelatanoutflowtimeseries)

SulawesiSelatanintimeseriescomponents <- decompose(SulawesiSelataninflowtimeseries)
SulawesiSelatanintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2012 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2013 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2014 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2015 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2016 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2017 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2018 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2019 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2020 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2021 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2012  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2013  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2014  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2015  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2016  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2017  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2018  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2019  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2020  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2021  535.054604   49.695394
SulawesiSelatanouttimeseriescomponents <- decompose(SulawesiSelatanoutflowtimeseries)
SulawesiSelatanouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2012 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2013 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2014 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2015 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2016 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2017 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2018 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2019 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2020 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2021 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2012  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2013  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2014  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2015  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2016  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2017  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2018  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2019  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2020  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2021  290.34538  246.22820
plot(SulawesiSelatanintimeseriescomponents$seasonal,type = "l", col = "yellow")
lines(SulawesiSelatanouttimeseriescomponents$seasonal,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(SulawesiSelatanintimeseriescomponents$trend,type = "l", col = "yellow")
lines(SulawesiSelatanouttimeseriescomponents$trend,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(SulawesiSelatanintimeseriescomponents$random ,type = "l", col = "yellow")
lines(SulawesiSelatanouttimeseriescomponents$random,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(SulawesiSelatanintimeseriescomponents$figure ,type = "l", col = "yellow")
lines(SulawesiSelatanouttimeseriescomponents$figure,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8