UIN Maulana Malik Ibrahim Malang Teknik Informatika

Pengertian Inflow dan Outflow uang kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

Ini adalah contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Sulawesi Tenggara menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path = "data1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 13
##    Keterangan ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Sela~`
##         <dbl> <lgl>    <dbl>            <dbl>             <dbl>            <dbl>
##  1         NA NA         NA               NA                NA               NA 
##  2       2011 NA      25056.            5671.             1563.           10593.
##  3       2012 NA      31011.            6635.             1885.           13702.
##  4       2013 NA      63774.           21646.             1520.           17770.
##  5       2014 NA      41607.            7374.             3000.           19384.
##  6       2015 NA      40309.            6286.             2593.           19583.
##  7       2016 NA      45737.            7266.             2665.           21043.
##  8       2017 NA      44126.            7044.             2806.           18803.
##  9       2018 NA      52672.            7781.             3701.           21894.
## 10       2019 NA      60202.            7809.             4042.           24749.
## 11       2020 NA      52812.            6324.             3052.           21551.
## 12       2021 NA      45714.            4671.             2453.           18335.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "data3.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Selatan`
##         <dbl>    <dbl>            <dbl>             <dbl>              <dbl>
##  1       2011   36449.            6606.             4017.              8967.
##  2       2012   43623.            6375.             4458.             11873.
##  3       2013   64181.           22740.             4544.             11485.
##  4       2014   48231.            7207.             5696.             15645.
##  5       2015   53153.            7202.             5310.             16236.
##  6       2016   53145.            7707.             4962.             15494.
##  7       2017   56297.            8421.             5226.             15159.
##  8       2018   60935.            7605.             5578.             16779.
##  9       2019   60723.            7367.             5531.             18089.
## 10       2020   64828.            7437.             4674.             20503.
## 11       2021   33806.            3050.             2763.             12017.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Sulawesi Tenggara setiap periode

plot(datainflow$Keterangan,datainflow$`Sulawesi Tenggara`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Sulawesi Tenggara setiap periode

plot(dataoutflow$Keterangan,dataoutflow$`Sulawesi Tenggara`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sulawesi Tenggara Setiap Periode

plot(datainflow$Keterangan,datainflow$`Sulawesi Tenggara`,type = "l", col= "steelblue")
lines(dataoutflow$Keterangan,dataoutflow$`Sulawesi Tenggara`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sulawesi Tenggara Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "data2.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "data4.xlsx")
## New names:
## * `` -> ...1
datainflowperbulan
## # A tibble: 128 x 13
##    ...1                ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>              <lgl>    <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00 NA       2584.             861.             167. 
##  2 2011-02-01 00:00:00 NA       1504.             353.              46.1
##  3 2011-03-01 00:00:00 NA       2032.             415.             133. 
##  4 2011-04-01 00:00:00 NA       1591.             342.              91.5
##  5 2011-05-01 00:00:00 NA       1704.             379.             106. 
##  6 2011-06-01 00:00:00 NA       1795.             413.              77.0
##  7 2011-07-01 00:00:00 NA       1863.             480.             113. 
##  8 2011-08-01 00:00:00 NA       1606.             415.              76.9
##  9 2011-09-01 00:00:00 NA       4967.             886.             446. 
## 10 2011-10-01 00:00:00 NA       1918.             423.             113. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    ...1                Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>                 <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00     966.             244.              83.5
##  2 2011-02-01 00:00:00     957.             260.             139. 
##  3 2011-03-01 00:00:00    1982.             352.             189. 
##  4 2011-04-01 00:00:00    2605.             460.             266. 
##  5 2011-05-01 00:00:00    2559.             474.             317. 
##  6 2011-06-01 00:00:00    2557.             459.             311. 
##  7 2011-07-01 00:00:00    3087.             622.             351. 
##  8 2011-08-01 00:00:00    6228.             985.             656. 
##  9 2011-09-01 00:00:00    1234.             212.             105. 
## 10 2011-10-01 00:00:00    2947.             545.             356. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
plot(datainflowperbulan$`Sulawesi Tenggara`, type = "l", col = "green")
lines(dataoutflowperbulan$`Sulawesi Tenggara`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

Sulawesitenggaratimeseries <- datainflowperbulan$`Sulawesi Barat`
plot.ts(Sulawesitenggaratimeseries , type = "l", col = "green")

logSulawesiTenggara <- log(datainflowperbulan$`Sulawesi Tenggara`)
plot.ts(logSulawesiTenggara)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Sulawesi Tenggara

SulawesiTenggarainflowtimeseries <- ts(datainflowperbulan$`Sulawesi Tenggara`, frequency=12, start=c(2011,1))
SulawesiTenggarainflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   17.46064   29.07231   77.95622   42.71456   43.41467   40.89543
## 2012  156.64694  120.34831   90.28786   24.40074   34.33966   36.44918
## 2013  869.33607  566.88049  554.55945  634.03951  683.15507  636.33399
## 2014  366.38827  225.27405  135.91558  194.93213  111.05742  147.93138
## 2015  428.76170  213.55862  296.39058  136.84080  149.80915  143.99229
## 2016  601.87371  345.83870  331.52097  222.14196  208.26145  148.86011
## 2017  571.93147  305.85325  365.48682  254.02307  244.40816  177.20922
## 2018  779.00940  327.74353  215.69921  179.84834  259.27769  584.58320
## 2019  853.90869  334.64408  251.31856  303.03695  279.92184  977.38046
## 2020  858.61880  388.90259  218.58032  168.97056  165.39020  496.32594
## 2021 1092.75184  403.63074  260.86608  174.81246  659.24168  286.11471
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   38.24892   36.34873  222.56268   44.96187   34.03192   31.76244
## 2012   60.30533  103.90681  175.78040   29.97181  112.26945   18.88082
## 2013  734.71012 1192.57059   82.99706   42.72064   67.48235   28.04933
## 2014   58.82318  491.83317  160.55754  192.03389  115.37769   55.55635
## 2015  395.63102  220.23850  137.63382  133.69577   69.54667   58.73375
## 2016  598.68937  206.45070  335.09777  240.08222  109.60234  142.48754
## 2017  689.80737  241.27598  322.97465  178.58539  164.75809  101.46082
## 2018  283.75064  238.99532  271.88902  227.20078  166.43951   97.72832
## 2019  237.18913  384.87681  246.14702  236.21812  176.44776  108.56877
## 2020  237.86643  276.69428  216.00085   94.11392  138.69549   92.48508
## 2021  139.96932  252.71567
SulawesiTenggaraoutflowtimeseries <- ts(dataoutflowperbulan$`Sulawesi Tenggara`, frequency=12, start=c(2011,1))
SulawesiTenggaraoutflowtimeseries
##              Jan         Feb         Mar         Apr         May         Jun
## 2011   62.454387    4.054187   46.868274  166.615713  258.589340  225.030821
## 2012  136.373728    6.833527   89.338626  185.990924  343.437969  307.764864
## 2013  137.409855  197.928453  239.198165  193.174364  247.780550  300.821058
## 2014   35.065775    8.708954  118.876568  298.102156  165.464251  367.636693
## 2015  107.959177   30.679383   91.090371  290.651096  306.314684  325.728078
## 2016  100.972989   54.667364  126.833802  132.693114  426.870704 1052.287353
## 2017   94.098294  139.071390  169.997116  343.718056  509.099936 1236.244837
## 2018  139.247004  158.972830  199.525024  397.642141  375.972851 1198.549784
## 2019   27.712205  150.411433  237.778014  787.672226  704.904071    1.657765
## 2020   56.560651   44.745958  214.460892  301.633039 1036.390058  116.632773
## 2021   14.993519   68.288670  166.351227  478.404140 1114.959645  169.129214
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  360.696194  562.880535   25.140146  198.739503  328.378569  649.379967
## 2012  326.976555  396.228222   38.022504  316.186298  223.365829  579.698256
## 2013  633.860577  525.398099  234.258905  368.635352  421.852838  738.458393
## 2014  876.240420   64.422462  318.810130  297.459923  346.701790  639.994697
## 2015  980.346908  315.234939  461.114512  414.662820  621.838883  770.173803
## 2016  347.688297  345.668199  350.619057  277.198066  535.937679  736.547932
## 2017  105.912719  444.853393  252.007548  307.806304  674.779543 1015.205778
## 2018  235.309352  347.372459  173.762112  404.925909  484.432297 1108.583322
## 2019  496.038062  264.453632  250.288484  503.787786  619.087376 1012.576804
## 2020  389.419055  379.005192  341.255959  564.143567  529.763136 1155.425503
## 2021  294.650115  200.408008
plot.ts(SulawesiTenggarainflowtimeseries)

plot.ts(SulawesiTenggaraoutflowtimeseries)

SulawesiTenggaraintimeseriescomponents <- decompose(SulawesiTenggarainflowtimeseries)
SulawesiTenggaraintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
## 2012  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
## 2013  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
## 2014  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
## 2015  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
## 2016  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
## 2017  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
## 2018  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
## 2019  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
## 2020  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
## 2021  376.498239   40.517623   -6.304671  -44.449103  -43.229370   90.832189
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   69.903689   69.679585  -54.798207 -131.316379 -160.926049 -206.407545
## 2012   69.903689   69.679585  -54.798207 -131.316379 -160.926049 -206.407545
## 2013   69.903689   69.679585  -54.798207 -131.316379 -160.926049 -206.407545
## 2014   69.903689   69.679585  -54.798207 -131.316379 -160.926049 -206.407545
## 2015   69.903689   69.679585  -54.798207 -131.316379 -160.926049 -206.407545
## 2016   69.903689   69.679585  -54.798207 -131.316379 -160.926049 -206.407545
## 2017   69.903689   69.679585  -54.798207 -131.316379 -160.926049 -206.407545
## 2018   69.903689   69.679585  -54.798207 -131.316379 -160.926049 -206.407545
## 2019   69.903689   69.679585  -54.798207 -131.316379 -160.926049 -206.407545
## 2020   69.903689   69.679585  -54.798207 -131.316379 -160.926049 -206.407545
## 2021   69.903689   69.679585
SulawesiTenggaraouttimeseriescomponents <- decompose(SulawesiTenggaraoutflowtimeseries)
SulawesiTenggaraouttimeseriescomponents$seasonal
##               Jan          Feb          Mar          Apr          May
## 2011 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
## 2012 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
## 2013 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
## 2014 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
## 2015 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
## 2016 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
## 2017 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
## 2018 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
## 2019 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
## 2020 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
## 2021 -289.0699481 -286.2929776 -200.8995789  -43.5904816   85.4474922
##               Jun          Jul          Aug          Sep          Oct
## 2011  170.0710344  111.4663883    0.6993976 -120.0898692   -1.0602161
## 2012  170.0710344  111.4663883    0.6993976 -120.0898692   -1.0602161
## 2013  170.0710344  111.4663883    0.6993976 -120.0898692   -1.0602161
## 2014  170.0710344  111.4663883    0.6993976 -120.0898692   -1.0602161
## 2015  170.0710344  111.4663883    0.6993976 -120.0898692   -1.0602161
## 2016  170.0710344  111.4663883    0.6993976 -120.0898692   -1.0602161
## 2017  170.0710344  111.4663883    0.6993976 -120.0898692   -1.0602161
## 2018  170.0710344  111.4663883    0.6993976 -120.0898692   -1.0602161
## 2019  170.0710344  111.4663883    0.6993976 -120.0898692   -1.0602161
## 2020  170.0710344  111.4663883    0.6993976 -120.0898692   -1.0602161
## 2021  170.0710344  111.4663883    0.6993976                          
##               Nov          Dec
## 2011  107.3316969  465.9870621
## 2012  107.3316969  465.9870621
## 2013  107.3316969  465.9870621
## 2014  107.3316969  465.9870621
## 2015  107.3316969  465.9870621
## 2016  107.3316969  465.9870621
## 2017  107.3316969  465.9870621
## 2018  107.3316969  465.9870621
## 2019  107.3316969  465.9870621
## 2020  107.3316969  465.9870621
## 2021
plot(SulawesiTenggaraintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(SulawesiTenggaraouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SulawesiTenggaraintimeseriescomponents$trend,type = "l", col = "orange")
lines(SulawesiTenggaraouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SulawesiTenggaraintimeseriescomponents$random ,type = "l", col = "orange")
lines(SulawesiTenggaraouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SulawesiTenggaraintimeseriescomponents$figure ,type = "l", col = "orange")
lines(SulawesiTenggaraouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8