UIN Maulana Malik Ibrahim Malang Teknik Informatika

Pengertian Inflow dan Outflow uang kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

Ini adalah contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Sulawesi Tengah menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path = "data1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 13
##    Keterangan ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Sela~`
##         <dbl> <lgl>    <dbl>            <dbl>             <dbl>            <dbl>
##  1         NA NA         NA               NA                NA               NA 
##  2       2011 NA      25056.            5671.             1563.           10593.
##  3       2012 NA      31011.            6635.             1885.           13702.
##  4       2013 NA      63774.           21646.             1520.           17770.
##  5       2014 NA      41607.            7374.             3000.           19384.
##  6       2015 NA      40309.            6286.             2593.           19583.
##  7       2016 NA      45737.            7266.             2665.           21043.
##  8       2017 NA      44126.            7044.             2806.           18803.
##  9       2018 NA      52672.            7781.             3701.           21894.
## 10       2019 NA      60202.            7809.             4042.           24749.
## 11       2020 NA      52812.            6324.             3052.           21551.
## 12       2021 NA      45714.            4671.             2453.           18335.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "data3.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Selatan`
##         <dbl>    <dbl>            <dbl>             <dbl>              <dbl>
##  1       2011   36449.            6606.             4017.              8967.
##  2       2012   43623.            6375.             4458.             11873.
##  3       2013   64181.           22740.             4544.             11485.
##  4       2014   48231.            7207.             5696.             15645.
##  5       2015   53153.            7202.             5310.             16236.
##  6       2016   53145.            7707.             4962.             15494.
##  7       2017   56297.            8421.             5226.             15159.
##  8       2018   60935.            7605.             5578.             16779.
##  9       2019   60723.            7367.             5531.             18089.
## 10       2020   64828.            7437.             4674.             20503.
## 11       2021   33806.            3050.             2763.             12017.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Sulawesi Tengah setiap periode

plot(datainflow$Keterangan,datainflow$`Sulawesi Tengah`,type = "l", col= "red")

2.Visualisasi Prediksi Data outflow Uang Kartal Sulawesi Tengah setiap periode

plot(dataoutflow$Keterangan,dataoutflow$`Sulawesi Tengah`,type = "l", col= "green")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sulawesi Tengah Setiap Periode

plot(datainflow$Keterangan,datainflow$`Sulawesi Tengah`,type = "l", col= "red")
lines(dataoutflow$Keterangan,dataoutflow$`Sulawesi Tengah`,col="green")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sulawesi Tengah Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "data2.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "data4.xlsx")
## New names:
## * `` -> ...1
datainflowperbulan
## # A tibble: 128 x 13
##    ...1                ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>              <lgl>    <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00 NA       2584.             861.             167. 
##  2 2011-02-01 00:00:00 NA       1504.             353.              46.1
##  3 2011-03-01 00:00:00 NA       2032.             415.             133. 
##  4 2011-04-01 00:00:00 NA       1591.             342.              91.5
##  5 2011-05-01 00:00:00 NA       1704.             379.             106. 
##  6 2011-06-01 00:00:00 NA       1795.             413.              77.0
##  7 2011-07-01 00:00:00 NA       1863.             480.             113. 
##  8 2011-08-01 00:00:00 NA       1606.             415.              76.9
##  9 2011-09-01 00:00:00 NA       4967.             886.             446. 
## 10 2011-10-01 00:00:00 NA       1918.             423.             113. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    ...1                Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>                 <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00     966.             244.              83.5
##  2 2011-02-01 00:00:00     957.             260.             139. 
##  3 2011-03-01 00:00:00    1982.             352.             189. 
##  4 2011-04-01 00:00:00    2605.             460.             266. 
##  5 2011-05-01 00:00:00    2559.             474.             317. 
##  6 2011-06-01 00:00:00    2557.             459.             311. 
##  7 2011-07-01 00:00:00    3087.             622.             351. 
##  8 2011-08-01 00:00:00    6228.             985.             656. 
##  9 2011-09-01 00:00:00    1234.             212.             105. 
## 10 2011-10-01 00:00:00    2947.             545.             356. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
plot(datainflowperbulan$`Sulawesi Tengah`, type = "l", col = "grey")
lines(dataoutflowperbulan$`Sulawesi Tengah`,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("grey","blue"))

SulawesiTengahtimeseries <- datainflowperbulan$`Sulawesi Tengah`
plot.ts(SulawesiTengahtimeseries , type = "l", col = "green")

logSulawesiTengah <- log(datainflowperbulan$`Sulawesi Tengah`)
plot.ts(logSulawesiTengah)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Sulawesi Tengah

SulawesiTengahinflowtimeseries <- ts(datainflowperbulan$`Sulawesi Tengah`, frequency=12, start=c(2011,1))
SulawesiTengahinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  167.26998   46.14598  133.41347   91.49704  105.98355   77.04844
## 2012  248.82399  172.28505  143.79868  103.60364  103.26596  132.61135
## 2013  319.55655  134.35793   68.99486   97.45267   68.34871   67.38469
## 2014  553.00370  194.23294  261.88003  218.51428  126.30500  128.39565
## 2015  566.04017  203.76501  235.78921   90.38058  131.05897   91.30496
## 2016  741.37684  269.47784  143.30129  112.94513   64.78936   83.73299
## 2017  654.07171  143.02319  204.10374  132.85430  125.83405   52.46426
## 2018  861.21263  234.21232  206.87087  182.57411  223.58674  673.64369
## 2019  816.78979  397.26963  291.72698  153.83717  183.97768  904.17065
## 2020 1077.50837  316.13860  219.91759   71.42271   78.69819  600.38224
## 2021  800.04493  352.14545  233.88792  147.24854  541.70387  115.18993
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  112.77641   76.91953  445.70102  113.01301  111.62657   81.54623
## 2012  190.51813  322.09493  138.02878   91.82040  160.95987   77.01847
## 2013   67.68421  229.46316  141.98064  160.64699   96.96520   67.60625
## 2014  110.04381  762.50091  204.35996  187.64927  147.31859  105.86965
## 2015  618.67821  232.53226   96.78322  123.08644  133.47048   70.41339
## 2016  605.51154  130.71891  203.60870   96.05308  121.71920   92.01940
## 2017  663.14823  236.76203  219.78909  168.89347  123.81309   81.67147
## 2018  391.59146  254.94142  264.99702  158.68451  166.02966   82.87243
## 2019  201.60482  294.47078  291.60007  239.21960  190.54611   77.17666
## 2020  138.66612  154.73949  224.44496   76.82091   68.87308   24.23890
## 2021   83.65763  179.32124
SulawesiTengahoutflowtimeseries <- ts(dataoutflowperbulan$`Sulawesi Tengah`, frequency=12, start=c(2011,1))
SulawesiTengahoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   83.52626  139.20889  189.01339  266.09811  316.50246  311.42269
## 2012   48.78968  173.68455  201.01544  448.80453  434.20940  541.68714
## 2013   62.31053  184.98441  199.45461  216.53300  346.60076  405.05813
## 2014  126.51288  336.77990  349.59949  286.80337  462.15133  504.86635
## 2015   63.43339  154.98554  210.97966  331.34238  491.36575  436.54248
## 2016   51.66787  122.01281  154.68674  248.33836  540.42497 1111.78429
## 2017   20.53858  177.66741  203.18767  305.75983  460.39274 1377.23447
## 2018   21.91652  117.74833  300.01911  358.78197  582.67537 1185.23212
## 2019   87.50441  157.62047  253.22245  516.36839 1388.74256  136.28136
## 2020  100.65534  176.27693  328.42979  403.43130  962.66225  107.25400
## 2021   93.35880  121.20598  299.44720  590.39948  844.79079  258.39079
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  351.32202  656.06484  105.28887  356.16598  518.52231  724.32784
## 2012  363.84048  558.95138  169.59933  490.16620  264.96123  762.17182
## 2013  672.49109  239.78137  357.32851  487.24861  494.76592  877.37009
## 2014 1097.49275   95.99591  551.07389  530.05262  587.82883  766.93840
## 2015 1173.56490  225.14058  406.80329  263.45876  535.89720 1016.26644
## 2016  261.57613  383.65763  322.55177  281.77009  550.43161  933.48129
## 2017   94.82192  338.85094  260.08472  368.41938  711.63039  907.88480
## 2018  175.43220  373.18549  263.24590  411.73780  523.05951 1264.98624
## 2019  380.71561  325.42171  242.57880  376.25458  525.40022 1141.18330
## 2020  366.26116  227.07939  410.22490  424.05307  279.96218  887.58567
## 2021  313.85120  241.47787
plot.ts(SulawesiTengahinflowtimeseries)

plot.ts(SulawesiTengahoutflowtimeseries)

SulawesiTengahintimeseriescomponents <- decompose(SulawesiTengahinflowtimeseries)
SulawesiTengahintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
## 2012  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
## 2013  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
## 2014  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
## 2015  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
## 2016  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
## 2017  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
## 2018  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
## 2019  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
## 2020  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
## 2021  426.802772    4.345354  -39.367330 -106.264181 -112.312018   69.065209
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   83.298159   38.878645   -9.199992  -91.391511 -102.895891 -160.959216
## 2012   83.298159   38.878645   -9.199992  -91.391511 -102.895891 -160.959216
## 2013   83.298159   38.878645   -9.199992  -91.391511 -102.895891 -160.959216
## 2014   83.298159   38.878645   -9.199992  -91.391511 -102.895891 -160.959216
## 2015   83.298159   38.878645   -9.199992  -91.391511 -102.895891 -160.959216
## 2016   83.298159   38.878645   -9.199992  -91.391511 -102.895891 -160.959216
## 2017   83.298159   38.878645   -9.199992  -91.391511 -102.895891 -160.959216
## 2018   83.298159   38.878645   -9.199992  -91.391511 -102.895891 -160.959216
## 2019   83.298159   38.878645   -9.199992  -91.391511 -102.895891 -160.959216
## 2020   83.298159   38.878645   -9.199992  -91.391511 -102.895891 -160.959216
## 2021   83.298159   38.878645
SulawesiTengahouttimeseriescomponents <- decompose(SulawesiTengahoutflowtimeseries)
SulawesiTengahouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
## 2012 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
## 2013 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
## 2014 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
## 2015 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
## 2016 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
## 2017 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
## 2018 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
## 2019 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
## 2020 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
## 2021 -357.51933 -251.00793 -181.07041  -81.06665  203.39706  218.93626
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   75.88177  -75.42309 -109.34314  -21.09983   75.66095  502.65436
## 2012   75.88177  -75.42309 -109.34314  -21.09983   75.66095  502.65436
## 2013   75.88177  -75.42309 -109.34314  -21.09983   75.66095  502.65436
## 2014   75.88177  -75.42309 -109.34314  -21.09983   75.66095  502.65436
## 2015   75.88177  -75.42309 -109.34314  -21.09983   75.66095  502.65436
## 2016   75.88177  -75.42309 -109.34314  -21.09983   75.66095  502.65436
## 2017   75.88177  -75.42309 -109.34314  -21.09983   75.66095  502.65436
## 2018   75.88177  -75.42309 -109.34314  -21.09983   75.66095  502.65436
## 2019   75.88177  -75.42309 -109.34314  -21.09983   75.66095  502.65436
## 2020   75.88177  -75.42309 -109.34314  -21.09983   75.66095  502.65436
## 2021   75.88177  -75.42309
plot(SulawesiTengahintimeseriescomponents$seasonal,type = "l", col = "yellow")
lines(SulawesiTengahouttimeseriescomponents$seasonal,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(SulawesiTengahintimeseriescomponents$trend,type = "l", col = "yellow")
lines(SulawesiTengahouttimeseriescomponents$trend,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(SulawesiTengahintimeseriescomponents$random ,type = "l", col = "yellow")
lines(SulawesiTengahouttimeseriescomponents$random,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(SulawesiTengahintimeseriescomponents$figure ,type = "l", col = "yellow")
lines(SulawesiTengahouttimeseriescomponents$figure,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8