UIN Maulana Malik Ibrahim Malang Teknik Informatika

Pengertian Inflow dan Outflow uang kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

Ini adalah contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Sulawesi Barat menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path = "data1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 13
##    Keterangan ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Sela~`
##         <dbl> <lgl>    <dbl>            <dbl>             <dbl>            <dbl>
##  1         NA NA         NA               NA                NA               NA 
##  2       2011 NA      25056.            5671.             1563.           10593.
##  3       2012 NA      31011.            6635.             1885.           13702.
##  4       2013 NA      63774.           21646.             1520.           17770.
##  5       2014 NA      41607.            7374.             3000.           19384.
##  6       2015 NA      40309.            6286.             2593.           19583.
##  7       2016 NA      45737.            7266.             2665.           21043.
##  8       2017 NA      44126.            7044.             2806.           18803.
##  9       2018 NA      52672.            7781.             3701.           21894.
## 10       2019 NA      60202.            7809.             4042.           24749.
## 11       2020 NA      52812.            6324.             3052.           21551.
## 12       2021 NA      45714.            4671.             2453.           18335.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "data3.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Selatan`
##         <dbl>    <dbl>            <dbl>             <dbl>              <dbl>
##  1       2011   36449.            6606.             4017.              8967.
##  2       2012   43623.            6375.             4458.             11873.
##  3       2013   64181.           22740.             4544.             11485.
##  4       2014   48231.            7207.             5696.             15645.
##  5       2015   53153.            7202.             5310.             16236.
##  6       2016   53145.            7707.             4962.             15494.
##  7       2017   56297.            8421.             5226.             15159.
##  8       2018   60935.            7605.             5578.             16779.
##  9       2019   60723.            7367.             5531.             18089.
## 10       2020   64828.            7437.             4674.             20503.
## 11       2021   33806.            3050.             2763.             12017.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Sulawesi Barat setiap periode

plot(datainflow$Keterangan,datainflow$`Sulawesi Barat`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Sulawesi Barat setiap periode

plot(dataoutflow$Keterangan,dataoutflow$`Sulawesi Barat`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sulawesi Barat Setiap Periode

plot(datainflow$Keterangan,datainflow$`Sulawesi Barat`,type = "l", col= "steelblue")
lines(dataoutflow$Keterangan,dataoutflow$`Sulawesi Barat`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sulawesi Barat Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "data2.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "data4.xlsx")
## New names:
## * `` -> ...1
datainflowperbulan
## # A tibble: 128 x 13
##    ...1                ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>              <lgl>    <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00 NA       2584.             861.             167. 
##  2 2011-02-01 00:00:00 NA       1504.             353.              46.1
##  3 2011-03-01 00:00:00 NA       2032.             415.             133. 
##  4 2011-04-01 00:00:00 NA       1591.             342.              91.5
##  5 2011-05-01 00:00:00 NA       1704.             379.             106. 
##  6 2011-06-01 00:00:00 NA       1795.             413.              77.0
##  7 2011-07-01 00:00:00 NA       1863.             480.             113. 
##  8 2011-08-01 00:00:00 NA       1606.             415.              76.9
##  9 2011-09-01 00:00:00 NA       4967.             886.             446. 
## 10 2011-10-01 00:00:00 NA       1918.             423.             113. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    ...1                Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>                 <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00     966.             244.              83.5
##  2 2011-02-01 00:00:00     957.             260.             139. 
##  3 2011-03-01 00:00:00    1982.             352.             189. 
##  4 2011-04-01 00:00:00    2605.             460.             266. 
##  5 2011-05-01 00:00:00    2559.             474.             317. 
##  6 2011-06-01 00:00:00    2557.             459.             311. 
##  7 2011-07-01 00:00:00    3087.             622.             351. 
##  8 2011-08-01 00:00:00    6228.             985.             656. 
##  9 2011-09-01 00:00:00    1234.             212.             105. 
## 10 2011-10-01 00:00:00    2947.             545.             356. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
plot(datainflowperbulan$`Sulawesi Barat`, type = "l", col = "green")
lines(dataoutflowperbulan$`Sulawesi Barat`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

Sulawesibarattimeseries <- datainflowperbulan$`Sulawesi Barat`
plot.ts(Sulawesibarattimeseries , type = "l", col = "green")

logSulawesiBarat <- log(datainflowperbulan$`Sulawesi Barat`)
plot.ts(logSulawesiBarat)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Sulawesi Barat

SulawesiBaratinflowtimeseries <- ts(datainflowperbulan$`Sulawesi Barat`, frequency=12, start=c(2011,1))
SulawesiBaratinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011         NA         NA         NA         NA         NA         NA
## 2012         NA         NA         NA         NA         NA         NA
## 2013         NA         NA         NA         NA         NA         NA
## 2014         NA         NA         NA         NA         NA         NA
## 2015         NA         NA         NA         NA         NA         NA
## 2016  77.595428  64.101689  18.748180  12.258352   8.705777  18.447796
## 2017 120.053332  79.685491  86.532548  54.133096  28.137053  49.040998
## 2018 127.244502  51.775206  57.938918  58.573614  41.243495  57.522559
## 2019  76.833814  29.953971  33.556790  30.108758  36.980986  62.625995
## 2020 122.384359  30.292156  15.326717  20.885047  18.402881  40.432542
## 2021  28.332570   9.319300  13.086396  31.672670 102.201162  27.274000
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011         NA         NA         NA         NA         NA         NA
## 2012         NA         NA         NA         NA         NA         NA
## 2013         NA         NA         NA         NA         NA         NA
## 2014         NA         NA         NA         NA         NA         NA
## 2015         NA         NA         NA  13.701551   6.191400  29.353053
## 2016  96.550392  49.820083  47.543647  59.958986  37.485351  44.899721
## 2017 129.267763  40.592610  43.896701  60.195531  33.448904  20.609082
## 2018  26.956823  37.810652  46.816296  44.682094  37.646507  18.233551
## 2019  38.654603  63.401570  55.206423  43.582463  46.267430  24.758847
## 2020  16.719525  17.667817  11.774420  11.720843  13.701609   9.442328
## 2021  35.099550  18.351060
SulawesiBaratoutflowtimeseries <- ts(dataoutflowperbulan$`Sulawesi Barat`, frequency=12, start=c(2011,1))
SulawesiBaratoutflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011        NA        NA        NA        NA        NA        NA        NA
## 2012        NA        NA        NA        NA        NA        NA        NA
## 2013        NA        NA        NA        NA        NA        NA        NA
## 2014        NA        NA        NA        NA        NA        NA        NA
## 2015        NA        NA        NA        NA        NA        NA        NA
## 2016  19.90250  17.32711  99.23076 138.83358 193.29539 371.53878  32.27097
## 2017  14.29429 115.92768 125.99148 212.53633 174.84550 440.90400 178.80223
## 2018 101.30289 150.83527 212.32664 336.47224 328.16741 534.88122 321.46516
## 2019  92.48808 146.63696 175.08767 339.97890 538.88879  61.22788 211.31975
## 2020 152.06847 163.32592 203.27818 227.28349 406.92020 166.04479 202.29854
## 2021  66.17178 119.53930 221.76242 342.99771 465.56940 276.96649 293.84955
##            Aug       Sep       Oct       Nov       Dec
## 2011        NA        NA        NA        NA        NA
## 2012        NA        NA        NA        NA        NA
## 2013        NA        NA        NA        NA        NA
## 2014        NA        NA        NA        NA        NA
## 2015        NA        NA  46.90420 177.36203 422.81740
## 2016 103.73641 167.54213  71.51592  90.11001 208.70877
## 2017 187.20346 105.87504 132.31761 271.81236 543.26785
## 2018 357.64045 149.54061 194.70929 225.27841 437.63070
## 2019 190.85261 152.56301 126.63727 226.12018 487.38639
## 2020 222.39968 163.24144 193.04839 350.95351 470.19210
## 2021 291.95972
plot.ts(SulawesiBaratinflowtimeseries)

plot.ts(SulawesiBaratoutflowtimeseries)

SulawesiBaratintimeseriescomponents <- decompose(SulawesiBaratinflowtimeseries)
SulawesiBaratintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
## 2012  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
## 2013  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
## 2014  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
## 2015  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
## 2016  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
## 2017  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
## 2018  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
## 2019  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
## 2020  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
## 2021  50.2469745  -3.7431838   0.3665722 -10.0657577 -18.6095718   0.4137056
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  17.0059952  -1.8982360  -2.2055834   0.6602980 -10.5986393 -21.5725736
## 2012  17.0059952  -1.8982360  -2.2055834   0.6602980 -10.5986393 -21.5725736
## 2013  17.0059952  -1.8982360  -2.2055834   0.6602980 -10.5986393 -21.5725736
## 2014  17.0059952  -1.8982360  -2.2055834   0.6602980 -10.5986393 -21.5725736
## 2015  17.0059952  -1.8982360  -2.2055834   0.6602980 -10.5986393 -21.5725736
## 2016  17.0059952  -1.8982360  -2.2055834   0.6602980 -10.5986393 -21.5725736
## 2017  17.0059952  -1.8982360  -2.2055834   0.6602980 -10.5986393 -21.5725736
## 2018  17.0059952  -1.8982360  -2.2055834   0.6602980 -10.5986393 -21.5725736
## 2019  17.0059952  -1.8982360  -2.2055834   0.6602980 -10.5986393 -21.5725736
## 2020  17.0059952  -1.8982360  -2.2055834   0.6602980 -10.5986393 -21.5725736
## 2021  17.0059952  -1.8982360
SulawesiBaratouttimeseriescomponents <- decompose(SulawesiBaratoutflowtimeseries)
SulawesiBaratouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
## 2012 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
## 2013 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
## 2014 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
## 2015 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
## 2016 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
## 2017 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
## 2018 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
## 2019 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
## 2020 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
## 2021 -143.463201  -93.223630  -45.911492   40.254380  114.992467   99.646958
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  -26.821416   -4.923568  -71.410509  -78.239725    6.999157  202.100578
## 2012  -26.821416   -4.923568  -71.410509  -78.239725    6.999157  202.100578
## 2013  -26.821416   -4.923568  -71.410509  -78.239725    6.999157  202.100578
## 2014  -26.821416   -4.923568  -71.410509  -78.239725    6.999157  202.100578
## 2015  -26.821416   -4.923568  -71.410509  -78.239725    6.999157  202.100578
## 2016  -26.821416   -4.923568  -71.410509  -78.239725    6.999157  202.100578
## 2017  -26.821416   -4.923568  -71.410509  -78.239725    6.999157  202.100578
## 2018  -26.821416   -4.923568  -71.410509  -78.239725    6.999157  202.100578
## 2019  -26.821416   -4.923568  -71.410509  -78.239725    6.999157  202.100578
## 2020  -26.821416   -4.923568  -71.410509  -78.239725    6.999157  202.100578
## 2021  -26.821416   -4.923568
plot(SulawesiBaratintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(SulawesiBaratouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SulawesiBaratintimeseriescomponents$trend,type = "l", col = "orange")
lines(SulawesiBaratouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SulawesiBaratintimeseriescomponents$random ,type = "l", col = "orange")
lines(SulawesiBaratouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SulawesiBaratintimeseriescomponents$figure ,type = "l", col = "orange")
lines(SulawesiBaratouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8