UIN Maulana Malik Ibrahim Malang Teknik Informatika

Pengertian Inflow dan Outflow uang kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

Ini adalah contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Sulawesi Utara menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path = "data1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 13
##    Keterangan ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Sela~`
##         <dbl> <lgl>    <dbl>            <dbl>             <dbl>            <dbl>
##  1         NA NA         NA               NA                NA               NA 
##  2       2011 NA      25056.            5671.             1563.           10593.
##  3       2012 NA      31011.            6635.             1885.           13702.
##  4       2013 NA      63774.           21646.             1520.           17770.
##  5       2014 NA      41607.            7374.             3000.           19384.
##  6       2015 NA      40309.            6286.             2593.           19583.
##  7       2016 NA      45737.            7266.             2665.           21043.
##  8       2017 NA      44126.            7044.             2806.           18803.
##  9       2018 NA      52672.            7781.             3701.           21894.
## 10       2019 NA      60202.            7809.             4042.           24749.
## 11       2020 NA      52812.            6324.             3052.           21551.
## 12       2021 NA      45714.            4671.             2453.           18335.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "data3.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Selatan`
##         <dbl>    <dbl>            <dbl>             <dbl>              <dbl>
##  1       2011   36449.            6606.             4017.              8967.
##  2       2012   43623.            6375.             4458.             11873.
##  3       2013   64181.           22740.             4544.             11485.
##  4       2014   48231.            7207.             5696.             15645.
##  5       2015   53153.            7202.             5310.             16236.
##  6       2016   53145.            7707.             4962.             15494.
##  7       2017   56297.            8421.             5226.             15159.
##  8       2018   60935.            7605.             5578.             16779.
##  9       2019   60723.            7367.             5531.             18089.
## 10       2020   64828.            7437.             4674.             20503.
## 11       2021   33806.            3050.             2763.             12017.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Sulawesi Utara setiap periode

plot(datainflow$Keterangan,datainflow$`Sulawesi Utara`,type = "l", col= "red")

2.Visualisasi Prediksi Data outflow Uang Kartal Sulawesi Utara setiap periode

plot(dataoutflow$Keterangan,dataoutflow$`Sulawesi Utara`,type = "l", col= "green")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sulawesi Utara Setiap Periode

plot(datainflow$Keterangan,datainflow$`Sulawesi Utara`,type = "l", col= "red")
lines(dataoutflow$Keterangan,dataoutflow$`Sulawesi Utara`,col="green")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sulawesi Utara Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "data2.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "data4.xlsx")
## New names:
## * `` -> ...1
datainflowperbulan
## # A tibble: 128 x 13
##    ...1                ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>              <lgl>    <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00 NA       2584.             861.             167. 
##  2 2011-02-01 00:00:00 NA       1504.             353.              46.1
##  3 2011-03-01 00:00:00 NA       2032.             415.             133. 
##  4 2011-04-01 00:00:00 NA       1591.             342.              91.5
##  5 2011-05-01 00:00:00 NA       1704.             379.             106. 
##  6 2011-06-01 00:00:00 NA       1795.             413.              77.0
##  7 2011-07-01 00:00:00 NA       1863.             480.             113. 
##  8 2011-08-01 00:00:00 NA       1606.             415.              76.9
##  9 2011-09-01 00:00:00 NA       4967.             886.             446. 
## 10 2011-10-01 00:00:00 NA       1918.             423.             113. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    ...1                Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>                 <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00     966.             244.              83.5
##  2 2011-02-01 00:00:00     957.             260.             139. 
##  3 2011-03-01 00:00:00    1982.             352.             189. 
##  4 2011-04-01 00:00:00    2605.             460.             266. 
##  5 2011-05-01 00:00:00    2559.             474.             317. 
##  6 2011-06-01 00:00:00    2557.             459.             311. 
##  7 2011-07-01 00:00:00    3087.             622.             351. 
##  8 2011-08-01 00:00:00    6228.             985.             656. 
##  9 2011-09-01 00:00:00    1234.             212.             105. 
## 10 2011-10-01 00:00:00    2947.             545.             356. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
plot(datainflowperbulan$`Sulawesi Utara`, type = "l", col = "grey")
lines(dataoutflowperbulan$`Sulawesi Utara`,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("grey","blue"))

SulawesiUtaratimeseries <- datainflowperbulan$`Sulawesi Utara`
plot.ts(SulawesiUtaratimeseries , type = "l", col = "green")

logSulawesiUtara <- log(datainflowperbulan$`Sulawesi Utara`)
plot.ts(logSulawesiUtara)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Sulawesi Utara

SulawesiUtarainflowtimeseries <- ts(datainflowperbulan$`Sulawesi Utara`, frequency=12, start=c(2011,1))
SulawesiUtarainflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  860.7385  352.9041  414.9908  342.3528  379.4670  413.1758  480.2016
## 2012 1176.8558  523.6859  442.3320  376.7808  472.9361  436.3540  579.0293
## 2013 3866.5529 2045.1677 1591.0424 1538.8475 1729.1925 1664.8949 1412.6565
## 2014 1433.2824  607.4864  417.2395  601.4891  450.9658  559.0841  456.7986
## 2015 1564.4203  386.3612  372.0492  338.9239  391.7780  358.8130 1030.3345
## 2016 1649.7976  485.0502  353.9875  262.3391  473.8163  293.9829 1537.4737
## 2017 1651.3760  373.8373  375.4976  372.8282  351.9809  238.3377 1430.8788
## 2018 1926.1388  585.1342  399.4248  463.7705  539.3969 1045.9901  718.8949
## 2019 1813.8063  486.5071  417.5471  592.9503  570.9121 1551.6171  495.5567
## 2020 1772.6813  466.6830  289.3445  189.6372  298.2579  385.1628  247.9884
## 2021 1549.7558  488.7697  489.8684  310.2974  806.2857  510.1142  227.0602
##            Aug       Sep       Oct       Nov       Dec
## 2011  414.8234  885.8144  422.9711  410.7011  292.8600
## 2012  837.1944  494.6133  402.0490  522.3170  370.4932
## 2013 5765.6093  437.5279  548.3990  530.6355  515.6329
## 2014 1302.7009  474.9873  420.9767  297.4887  351.9993
## 2015  444.2401  318.2717  358.9832  318.9779  403.1356
## 2016  434.2419  484.8547  394.0971  412.3486  483.6072
## 2017  557.4328  518.0903  434.3193  432.6734  307.0269
## 2018  419.3425  385.3481  450.3463  421.3295  426.0345
## 2019  385.5376  344.5586  536.7020  351.7624  261.6977
## 2020  342.4577  391.1442  826.0752  861.1173  253.6835
## 2021  289.1124
SulawesiUtaraoutflowtimeseries <- ts(dataoutflowperbulan$`Sulawesi Utara`, frequency=12, start=c(2011,1))
SulawesiUtaraoutflowtimeseries
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  244.217165  260.045859  351.805036  460.367592  474.222931  459.370674
## 2012  196.144420  282.586694  434.090852  527.717470  497.397112  797.291166
## 2013  585.265646 1537.569958 2605.811168 1412.572360 2964.619679 2431.821671
## 2014   16.409412   46.219356  247.753169  680.609195  553.004630  606.698769
## 2015   69.519317  271.288630  349.798232  630.368545  377.198542  395.827936
## 2016   37.312641  316.976614  340.576821  391.748992  608.551484 1463.838638
## 2017   43.052058  295.869476  424.080221  526.101370  560.182861 1859.738396
## 2018  118.041675  335.185255  731.777026  326.048400  753.635600 1448.171635
## 2019   45.741979  292.563444  496.109307  877.391274 1722.133985  137.636006
## 2020   65.143403  219.552409  333.994797  604.235532  691.227480  126.770693
## 2021    8.451208  130.471043  272.150058  584.501716 1168.091066  380.867926
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  621.885006  985.119155  211.519479  545.324194  588.413447 1404.059346
## 2012  614.019626  975.948548  308.979313  365.883199  375.237139  999.750873
## 2013 5169.302578 3692.219093  329.271404  348.433562  411.462702 1251.274472
## 2014 1483.336097  326.598849  597.373574  514.414503  550.532571 1584.124973
## 2015 1474.582262  390.203861  500.558534  439.988713  709.381934 1593.502796
## 2016  692.891305  553.832599  543.825390  621.979022  609.849521 1526.020467
## 2017  238.870994  615.272440  513.858351  473.648557  949.443083 1920.808361
## 2018  233.748952  313.927111  243.826454  450.846092  565.334647 2084.264783
## 2019  597.609098  338.222218  257.648157  298.099294  559.586661 1744.697624
## 2020  425.908314  503.433905  403.172820 1254.260157 1098.606123 1710.624413
## 2021  262.606942  243.229178
plot.ts(SulawesiUtarainflowtimeseries)

plot.ts(SulawesiUtaraoutflowtimeseries)

SulawesiUtaraintimeseriescomponents <- decompose(SulawesiUtarainflowtimeseries)
SulawesiUtaraintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
## 2012 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
## 2013 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
## 2014 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
## 2015 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
## 2016 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
## 2017 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
## 2018 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
## 2019 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
## 2020 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
## 2021 1130.30823  -63.71168 -201.87809 -192.66504 -136.43097    1.10959
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  136.49266  384.43243 -233.28270 -227.49029 -252.69188 -344.19227
## 2012  136.49266  384.43243 -233.28270 -227.49029 -252.69188 -344.19227
## 2013  136.49266  384.43243 -233.28270 -227.49029 -252.69188 -344.19227
## 2014  136.49266  384.43243 -233.28270 -227.49029 -252.69188 -344.19227
## 2015  136.49266  384.43243 -233.28270 -227.49029 -252.69188 -344.19227
## 2016  136.49266  384.43243 -233.28270 -227.49029 -252.69188 -344.19227
## 2017  136.49266  384.43243 -233.28270 -227.49029 -252.69188 -344.19227
## 2018  136.49266  384.43243 -233.28270 -227.49029 -252.69188 -344.19227
## 2019  136.49266  384.43243 -233.28270 -227.49029 -252.69188 -344.19227
## 2020  136.49266  384.43243 -233.28270 -227.49029 -252.69188 -344.19227
## 2021  136.49266  384.43243
SulawesiUtaraouttimeseriescomponents <- decompose(SulawesiUtaraoutflowtimeseries)
SulawesiUtaraouttimeseriescomponents$seasonal
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
## 2012 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
## 2013 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
## 2014 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
## 2015 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
## 2016 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
## 2017 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
## 2018 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
## 2019 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
## 2020 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
## 2021 -628.0147 -369.1064  -88.8158  -91.5628  208.4773  264.6787  410.6321
##            Aug       Sep       Oct       Nov       Dec
## 2011  126.4167 -351.1859 -211.0869 -103.9982  833.5658
## 2012  126.4167 -351.1859 -211.0869 -103.9982  833.5658
## 2013  126.4167 -351.1859 -211.0869 -103.9982  833.5658
## 2014  126.4167 -351.1859 -211.0869 -103.9982  833.5658
## 2015  126.4167 -351.1859 -211.0869 -103.9982  833.5658
## 2016  126.4167 -351.1859 -211.0869 -103.9982  833.5658
## 2017  126.4167 -351.1859 -211.0869 -103.9982  833.5658
## 2018  126.4167 -351.1859 -211.0869 -103.9982  833.5658
## 2019  126.4167 -351.1859 -211.0869 -103.9982  833.5658
## 2020  126.4167 -351.1859 -211.0869 -103.9982  833.5658
## 2021  126.4167
plot(SulawesiUtaraintimeseriescomponents$seasonal,type = "l", col = "yellow")
lines(SulawesiUtaraouttimeseriescomponents$seasonal,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(SulawesiUtaraintimeseriescomponents$trend,type = "l", col = "yellow")
lines(SulawesiUtaraouttimeseriescomponents$trend,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(SulawesiUtaraintimeseriescomponents$random ,type = "l", col = "yellow")
lines(SulawesiUtaraouttimeseriescomponents$random,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(SulawesiUtaraintimeseriescomponents$figure ,type = "l", col = "yellow")
lines(SulawesiUtaraouttimeseriescomponents$figure,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8