UIN Maulana Malik Ibrahim Malang Teknik Informatika

Pengertian Inflow dan Outflow uang kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

Ini adalah contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Papua menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path = "data1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 13
##    Keterangan ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Sela~`
##         <dbl> <lgl>    <dbl>            <dbl>             <dbl>            <dbl>
##  1         NA NA         NA               NA                NA               NA 
##  2       2011 NA      25056.            5671.             1563.           10593.
##  3       2012 NA      31011.            6635.             1885.           13702.
##  4       2013 NA      63774.           21646.             1520.           17770.
##  5       2014 NA      41607.            7374.             3000.           19384.
##  6       2015 NA      40309.            6286.             2593.           19583.
##  7       2016 NA      45737.            7266.             2665.           21043.
##  8       2017 NA      44126.            7044.             2806.           18803.
##  9       2018 NA      52672.            7781.             3701.           21894.
## 10       2019 NA      60202.            7809.             4042.           24749.
## 11       2020 NA      52812.            6324.             3052.           21551.
## 12       2021 NA      45714.            4671.             2453.           18335.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "data3.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Selatan`
##         <dbl>    <dbl>            <dbl>             <dbl>              <dbl>
##  1       2011   36449.            6606.             4017.              8967.
##  2       2012   43623.            6375.             4458.             11873.
##  3       2013   64181.           22740.             4544.             11485.
##  4       2014   48231.            7207.             5696.             15645.
##  5       2015   53153.            7202.             5310.             16236.
##  6       2016   53145.            7707.             4962.             15494.
##  7       2017   56297.            8421.             5226.             15159.
##  8       2018   60935.            7605.             5578.             16779.
##  9       2019   60723.            7367.             5531.             18089.
## 10       2020   64828.            7437.             4674.             20503.
## 11       2021   33806.            3050.             2763.             12017.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Papua setiap periode

plot(datainflow$Keterangan,datainflow$`Papua`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Papua setiap periode

plot(dataoutflow$Keterangan,dataoutflow$`Papua`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Papua Setiap Periode

plot(datainflow$Keterangan,datainflow$`Papua`,type = "l", col= "steelblue")
lines(dataoutflow$Keterangan,dataoutflow$`Papua`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Papua Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "data2.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "data4.xlsx")
## New names:
## * `` -> ...1
datainflowperbulan
## # A tibble: 128 x 13
##    ...1                ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>              <lgl>    <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00 NA       2584.             861.             167. 
##  2 2011-02-01 00:00:00 NA       1504.             353.              46.1
##  3 2011-03-01 00:00:00 NA       2032.             415.             133. 
##  4 2011-04-01 00:00:00 NA       1591.             342.              91.5
##  5 2011-05-01 00:00:00 NA       1704.             379.             106. 
##  6 2011-06-01 00:00:00 NA       1795.             413.              77.0
##  7 2011-07-01 00:00:00 NA       1863.             480.             113. 
##  8 2011-08-01 00:00:00 NA       1606.             415.              76.9
##  9 2011-09-01 00:00:00 NA       4967.             886.             446. 
## 10 2011-10-01 00:00:00 NA       1918.             423.             113. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    ...1                Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>                 <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00     966.             244.              83.5
##  2 2011-02-01 00:00:00     957.             260.             139. 
##  3 2011-03-01 00:00:00    1982.             352.             189. 
##  4 2011-04-01 00:00:00    2605.             460.             266. 
##  5 2011-05-01 00:00:00    2559.             474.             317. 
##  6 2011-06-01 00:00:00    2557.             459.             311. 
##  7 2011-07-01 00:00:00    3087.             622.             351. 
##  8 2011-08-01 00:00:00    6228.             985.             656. 
##  9 2011-09-01 00:00:00    1234.             212.             105. 
## 10 2011-10-01 00:00:00    2947.             545.             356. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
plot(datainflowperbulan$`Papua`, type = "l", col = "green")
lines(dataoutflowperbulan$`Papua`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

Papuatimeseries <- datainflowperbulan$`Papua`
plot.ts(Papuatimeseries , type = "l", col = "green")

logPapua <- log(datainflowperbulan$`Papua`)
plot.ts(logPapua)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Papua

Papuainflowtimeseries <- ts(datainflowperbulan$`Papua`, frequency=12, start=c(2011,1))
Papuainflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  565.66438  300.52046  346.44322  343.88180  350.90360  336.02216
## 2012 1041.10646  699.00645  431.27912  451.47403  411.92150  316.52884
## 2013  148.56037   87.83191   35.12840   65.44961   38.76113   27.06003
## 2014 1800.58228  691.50944  321.08274  435.54429  339.99470  372.52000
## 2015 1687.71441  558.74194  447.99982  299.40325  273.25056  329.25464
## 2016 1462.78264  706.39532  289.35896  302.57791  333.84066  273.65554
## 2017 1487.21729  513.29471  351.36627  260.78437  323.16760  210.51053
## 2018 2025.87905  970.97606  503.87721  327.80040  410.85671 1033.35815
## 2019 2564.67247  944.51987  511.25994  560.69923  398.13134 1281.87838
## 2020 3209.57783 1031.99799  747.73632  402.81940  289.24240  610.81981
## 2021 3082.59633 1285.49586  712.54210  590.49444 1066.73763  589.82785
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  365.97157  308.25466  684.63260  386.32396  373.60392  347.89896
## 2012  469.28970  563.08380  469.92275  463.36544  389.60006  340.23491
## 2013   55.03773  181.67326  419.30186  358.73256  312.75946  400.79232
## 2014  227.38995  870.11880  391.76106  446.03917  397.41237  499.74344
## 2015  791.82008  430.33950  311.03578  334.50556  353.44281  281.47648
## 2016  744.37572  391.35350  359.54963  393.09652  360.48854  673.91699
## 2017  693.78588  439.33375  420.73043  503.65721  438.14056  710.97774
## 2018  671.18044  566.35274  453.05823  355.81881  412.64172  343.91175
## 2019  474.75518  444.49676  393.81552  567.95385  604.27640  512.38837
## 2020  511.37277  529.06073  653.42735  392.08801  676.22814  501.94251
## 2021  538.62563  642.73471
Papuaoutflowtimeseries <- ts(dataoutflowperbulan$`Papua`, frequency=12, start=c(2011,1))
Papuaoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  194.45568  229.89395  517.75286  693.61396  619.42368  735.05358
## 2012  158.64358  310.71038  537.04424  732.22198  795.95676  845.36837
## 2013   11.19840   63.83006  104.29619  115.90542  136.30296  189.17291
## 2014  173.99063  234.36432  468.82481  827.06580  442.06816  570.11261
## 2015  259.11474  217.74892  428.26705  587.57749  530.00101  770.33618
## 2016   77.82153  189.66181  307.97176  549.89514  663.34684 1846.27228
## 2017   56.73061  252.21600  182.24380  419.81005  599.97626 1497.01271
## 2018  152.21118  245.91574  449.86655  465.89474 1243.78640 1949.18643
## 2019   18.18296   76.29977  197.22944  810.89287  771.66864   45.53769
## 2020  232.44632  318.43406  628.13975  577.12000  990.03835  656.90805
## 2021   71.29951  167.39857  452.20032  864.02049 1364.86348  799.90861
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  660.10737 1298.85207  320.75220  830.83112  918.28314 2967.05786
## 2012  977.32756  960.85980  534.65664  969.18617 1209.85472 5568.36943
## 2013  412.11826  199.01356  797.43057  850.89702 1417.59238 3503.70527
## 2014 1566.16605  265.50631  675.74330 1133.78665 1221.34415 3726.05212
## 2015 1688.22884  716.29519  768.84716  989.76610 1112.17797 3555.11869
## 2016  527.59998  695.06668 1193.63697  753.10671  800.07915 3895.57847
## 2017  301.57113 1133.37938  735.51619  551.49118 1207.09433 3713.27214
## 2018  652.58193  913.02193  563.36553  787.55099 1038.88697 3906.44858
## 2019  417.16127  647.68437  148.78954  340.00520 1401.07749 4730.37517
## 2020  767.52171  493.80411  711.10149  973.13583 1483.32489 4195.80676
## 2021  823.89483  865.61310
plot.ts(Papuainflowtimeseries)

plot.ts(Papuaoutflowtimeseries)

Papuaintimeseriescomponents <- decompose(Papuainflowtimeseries)
Papuaintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
## 2012 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
## 2013 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
## 2014 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
## 2015 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
## 2016 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
## 2017 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
## 2018 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
## 2019 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
## 2020 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
## 2021 1259.82187  155.61686 -156.54380 -215.59672 -248.95621  -69.24604
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  -58.14814 -100.83057 -123.14328 -161.26165 -153.57056 -128.14177
## 2012  -58.14814 -100.83057 -123.14328 -161.26165 -153.57056 -128.14177
## 2013  -58.14814 -100.83057 -123.14328 -161.26165 -153.57056 -128.14177
## 2014  -58.14814 -100.83057 -123.14328 -161.26165 -153.57056 -128.14177
## 2015  -58.14814 -100.83057 -123.14328 -161.26165 -153.57056 -128.14177
## 2016  -58.14814 -100.83057 -123.14328 -161.26165 -153.57056 -128.14177
## 2017  -58.14814 -100.83057 -123.14328 -161.26165 -153.57056 -128.14177
## 2018  -58.14814 -100.83057 -123.14328 -161.26165 -153.57056 -128.14177
## 2019  -58.14814 -100.83057 -123.14328 -161.26165 -153.57056 -128.14177
## 2020  -58.14814 -100.83057 -123.14328 -161.26165 -153.57056 -128.14177
## 2021  -58.14814 -100.83057
Papuaouttimeseriescomponents <- decompose(Papuaoutflowtimeseries)
Papuaouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
## 2012 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
## 2013 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
## 2014 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
## 2015 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
## 2016 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
## 2017 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
## 2018 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
## 2019 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
## 2020 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
## 2021 -804.616322 -716.999591 -542.008020 -346.418468 -228.941898    6.838166
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011 -121.467115 -185.383638 -272.214486  -99.659642  259.520155 3051.350858
## 2012 -121.467115 -185.383638 -272.214486  -99.659642  259.520155 3051.350858
## 2013 -121.467115 -185.383638 -272.214486  -99.659642  259.520155 3051.350858
## 2014 -121.467115 -185.383638 -272.214486  -99.659642  259.520155 3051.350858
## 2015 -121.467115 -185.383638 -272.214486  -99.659642  259.520155 3051.350858
## 2016 -121.467115 -185.383638 -272.214486  -99.659642  259.520155 3051.350858
## 2017 -121.467115 -185.383638 -272.214486  -99.659642  259.520155 3051.350858
## 2018 -121.467115 -185.383638 -272.214486  -99.659642  259.520155 3051.350858
## 2019 -121.467115 -185.383638 -272.214486  -99.659642  259.520155 3051.350858
## 2020 -121.467115 -185.383638 -272.214486  -99.659642  259.520155 3051.350858
## 2021 -121.467115 -185.383638
plot(Papuaintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(Papuaouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Papuaintimeseriescomponents$trend,type = "l", col = "orange")
lines(Papuaouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Papuaintimeseriescomponents$random ,type = "l", col = "orange")
lines(Papuaouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Papuaintimeseriescomponents$figure ,type = "l", col = "orange")
lines(Papuaouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8