UIN Maulana Malik Ibrahim Malang Teknik Informatika

Pengertian Inflow dan Outflow uang kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

Ini adalah contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Papua Barat menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path = "data1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 13
##    Keterangan ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Sela~`
##         <dbl> <lgl>    <dbl>            <dbl>             <dbl>            <dbl>
##  1         NA NA         NA               NA                NA               NA 
##  2       2011 NA      25056.            5671.             1563.           10593.
##  3       2012 NA      31011.            6635.             1885.           13702.
##  4       2013 NA      63774.           21646.             1520.           17770.
##  5       2014 NA      41607.            7374.             3000.           19384.
##  6       2015 NA      40309.            6286.             2593.           19583.
##  7       2016 NA      45737.            7266.             2665.           21043.
##  8       2017 NA      44126.            7044.             2806.           18803.
##  9       2018 NA      52672.            7781.             3701.           21894.
## 10       2019 NA      60202.            7809.             4042.           24749.
## 11       2020 NA      52812.            6324.             3052.           21551.
## 12       2021 NA      45714.            4671.             2453.           18335.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "data3.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Selatan`
##         <dbl>    <dbl>            <dbl>             <dbl>              <dbl>
##  1       2011   36449.            6606.             4017.              8967.
##  2       2012   43623.            6375.             4458.             11873.
##  3       2013   64181.           22740.             4544.             11485.
##  4       2014   48231.            7207.             5696.             15645.
##  5       2015   53153.            7202.             5310.             16236.
##  6       2016   53145.            7707.             4962.             15494.
##  7       2017   56297.            8421.             5226.             15159.
##  8       2018   60935.            7605.             5578.             16779.
##  9       2019   60723.            7367.             5531.             18089.
## 10       2020   64828.            7437.             4674.             20503.
## 11       2021   33806.            3050.             2763.             12017.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Papua Barat setiap periode

plot(datainflow$Keterangan,datainflow$`Papua Barat`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Papua Barat setiap periode

plot(dataoutflow$Keterangan,dataoutflow$`Papua Barat`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Papua Barat Setiap

plot(datainflow$Keterangan,datainflow$`Papua Barat`,type = "l", col= "steelblue")
lines(dataoutflow$Keterangan,dataoutflow$`Papua Barat`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Papua Barat Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "data2.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "data4.xlsx")
## New names:
## * `` -> ...1
datainflowperbulan
## # A tibble: 128 x 13
##    ...1                ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>              <lgl>    <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00 NA       2584.             861.             167. 
##  2 2011-02-01 00:00:00 NA       1504.             353.              46.1
##  3 2011-03-01 00:00:00 NA       2032.             415.             133. 
##  4 2011-04-01 00:00:00 NA       1591.             342.              91.5
##  5 2011-05-01 00:00:00 NA       1704.             379.             106. 
##  6 2011-06-01 00:00:00 NA       1795.             413.              77.0
##  7 2011-07-01 00:00:00 NA       1863.             480.             113. 
##  8 2011-08-01 00:00:00 NA       1606.             415.              76.9
##  9 2011-09-01 00:00:00 NA       4967.             886.             446. 
## 10 2011-10-01 00:00:00 NA       1918.             423.             113. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    ...1                Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>                 <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00     966.             244.              83.5
##  2 2011-02-01 00:00:00     957.             260.             139. 
##  3 2011-03-01 00:00:00    1982.             352.             189. 
##  4 2011-04-01 00:00:00    2605.             460.             266. 
##  5 2011-05-01 00:00:00    2559.             474.             317. 
##  6 2011-06-01 00:00:00    2557.             459.             311. 
##  7 2011-07-01 00:00:00    3087.             622.             351. 
##  8 2011-08-01 00:00:00    6228.             985.             656. 
##  9 2011-09-01 00:00:00    1234.             212.             105. 
## 10 2011-10-01 00:00:00    2947.             545.             356. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
plot(datainflowperbulan$`Papua Barat`, type = "l", col = "green")
lines(dataoutflowperbulan$`Papua Barat`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

PapuaBarattimeseries <- datainflowperbulan$`Papua Barat`
plot.ts(PapuaBarattimeseries, type = "l", col = "green")

logPapuaBarat <- log(datainflowperbulan$`Papua Barat`)
plot.ts(logPapuaBarat)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Papua Barat

PapuaBaratinflowtimeseries <- ts(datainflowperbulan$`Papua Barat`, frequency=12, start=c(2011,1))
PapuaBaratinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011         NA         NA         NA         NA         NA         NA
## 2012         NA         NA         NA         NA         NA         NA
## 2013         NA         NA         NA         NA         NA         NA
## 2014         NA         NA         NA         NA         NA         NA
## 2015 234.786161  77.202679  42.333115   8.531739  12.219021  12.529806
## 2016 366.038954 119.481566  39.598847  10.650048  41.709904  14.203983
## 2017 252.350244  82.093992 110.628400  31.598978  59.325703  34.892096
## 2018 461.626541 126.237713  71.878709  28.365943  54.797393 151.098208
## 2019 508.781789 115.513617  53.002715  73.311085  82.682636 122.104424
## 2020 859.964132 102.333336  62.777983  55.573356  37.626417 165.383949
## 2021 818.035135 256.093228 247.396020 147.267117 169.155966  89.344549
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011         NA         NA         NA         NA         NA         NA
## 2012         NA         NA         NA         NA         NA         NA
## 2013         NA         NA         NA         NA         NA         NA
## 2014         NA         NA         NA         NA   7.068639   4.660277
## 2015  59.670808  23.755918  10.202931   4.128693  15.386826  16.789910
## 2016  92.752189  39.378805  33.605915  15.055478  16.170374  29.016368
## 2017 101.944111  74.428508  60.027285  65.514362  28.426638  32.070661
## 2018  74.826884  41.771733  54.451811  38.712443  30.245983  19.341296
## 2019  66.865723  85.400600 115.352739  70.857158  62.548625  91.250729
## 2020  68.525162  80.156326  67.120563  28.793665  66.178614  40.454433
## 2021 110.897296  68.918083
PapuaBaratoutflowtimeseries <- ts(dataoutflowperbulan$`Papua Barat`, frequency=12, start=c(2011,1))
PapuaBaratoutflowtimeseries
##              Jan         Feb         Mar         Apr         May         Jun
## 2011          NA          NA          NA          NA          NA          NA
## 2012          NA          NA          NA          NA          NA          NA
## 2013          NA          NA          NA          NA          NA          NA
## 2014          NA          NA          NA          NA          NA          NA
## 2015    2.767224    7.072923   24.798564   28.167208   55.250230  187.994953
## 2016    4.191762   14.133856  100.632664   48.171528   68.772119  260.278234
## 2017    8.142376   60.573964   84.218742  122.365413  112.860755  353.131057
## 2018    3.245099   32.495810   99.615551  174.081181  175.936383  334.822064
## 2019    2.807260   25.800347  172.503804  166.091680  342.092930   34.737358
## 2020   13.233726   86.879593  111.519662  218.850834  195.727540   44.899549
## 2021    4.470038   13.376282   70.283378  153.045616  203.613392  256.123665
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011          NA          NA          NA          NA          NA          NA
## 2012          NA          NA          NA          NA          NA          NA
## 2013          NA          NA          NA          NA          NA          NA
## 2014          NA          NA          NA          NA   17.210321  152.933962
## 2015  207.655769   26.356468  101.941446  174.807233  211.519620  870.275185
## 2016  127.667628   92.959929  196.022979   80.122501  150.225158  780.605152
## 2017  199.939051   98.039457  138.257536  102.072876  242.989312 1098.098839
## 2018  248.735522  266.922816  158.742263  187.260764  240.258633 1078.634152
## 2019  231.213770  109.885819  221.951256  233.287557  362.754221 1415.519360
## 2020  167.911591  160.036351  159.147310  121.654858  442.446051 1363.941709
## 2021   70.287839   86.299612
plot.ts(PapuaBaratinflowtimeseries)

plot.ts(PapuaBaratoutflowtimeseries)

PapuaBaratintimeseriescomponents <- decompose(PapuaBaratinflowtimeseries)
PapuaBaratintimeseriescomponents$seasonal
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
## 2012 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
## 2013 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
## 2014 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
## 2015 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
## 2016 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
## 2017 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
## 2018 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
## 2019 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
## 2020 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
## 2021 434.38233  22.87241 -30.85979 -59.21710 -42.15346  -7.50395 -17.74079
##            Aug       Sep       Oct       Nov       Dec
## 2011 -42.98226 -46.33704 -68.34111 -71.07851 -71.04073
## 2012 -42.98226 -46.33704 -68.34111 -71.07851 -71.04073
## 2013 -42.98226 -46.33704 -68.34111 -71.07851 -71.04073
## 2014 -42.98226 -46.33704 -68.34111 -71.07851 -71.04073
## 2015 -42.98226 -46.33704 -68.34111 -71.07851 -71.04073
## 2016 -42.98226 -46.33704 -68.34111 -71.07851 -71.04073
## 2017 -42.98226 -46.33704 -68.34111 -71.07851 -71.04073
## 2018 -42.98226 -46.33704 -68.34111 -71.07851 -71.04073
## 2019 -42.98226 -46.33704 -68.34111 -71.07851 -71.04073
## 2020 -42.98226 -46.33704 -68.34111 -71.07851 -71.04073
## 2021 -42.98226
PapuaBaratouttimeseriescomponents <- decompose(PapuaBaratoutflowtimeseries)
PapuaBaratouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
## 2012 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
## 2013 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
## 2014 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
## 2015 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
## 2016 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
## 2017 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
## 2018 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
## 2019 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
## 2020 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
## 2021 -222.24794 -188.84867 -110.74805  -78.56779  -45.52017  -12.67910
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  -26.55735  -98.10003  -61.48268  -75.47525   47.79177  872.43525
## 2012  -26.55735  -98.10003  -61.48268  -75.47525   47.79177  872.43525
## 2013  -26.55735  -98.10003  -61.48268  -75.47525   47.79177  872.43525
## 2014  -26.55735  -98.10003  -61.48268  -75.47525   47.79177  872.43525
## 2015  -26.55735  -98.10003  -61.48268  -75.47525   47.79177  872.43525
## 2016  -26.55735  -98.10003  -61.48268  -75.47525   47.79177  872.43525
## 2017  -26.55735  -98.10003  -61.48268  -75.47525   47.79177  872.43525
## 2018  -26.55735  -98.10003  -61.48268  -75.47525   47.79177  872.43525
## 2019  -26.55735  -98.10003  -61.48268  -75.47525   47.79177  872.43525
## 2020  -26.55735  -98.10003  -61.48268  -75.47525   47.79177  872.43525
## 2021  -26.55735  -98.10003
plot(PapuaBaratintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(PapuaBaratouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(PapuaBaratintimeseriescomponents$trend,type = "l", col = "orange")
lines(PapuaBaratouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(PapuaBaratintimeseriescomponents$random ,type = "l", col = "orange")
lines(PapuaBaratouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(PapuaBaratintimeseriescomponents$figure ,type = "l", col = "orange")
lines(PapuaBaratouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8