UIN Maulana Malik Ibrahim Malang Teknik Informatika

Pengertian Inflow dan Outflow uang kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

Ini adalah contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Maluku menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path = "data1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 13
##    Keterangan ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Sela~`
##         <dbl> <lgl>    <dbl>            <dbl>             <dbl>            <dbl>
##  1         NA NA         NA               NA                NA               NA 
##  2       2011 NA      25056.            5671.             1563.           10593.
##  3       2012 NA      31011.            6635.             1885.           13702.
##  4       2013 NA      63774.           21646.             1520.           17770.
##  5       2014 NA      41607.            7374.             3000.           19384.
##  6       2015 NA      40309.            6286.             2593.           19583.
##  7       2016 NA      45737.            7266.             2665.           21043.
##  8       2017 NA      44126.            7044.             2806.           18803.
##  9       2018 NA      52672.            7781.             3701.           21894.
## 10       2019 NA      60202.            7809.             4042.           24749.
## 11       2020 NA      52812.            6324.             3052.           21551.
## 12       2021 NA      45714.            4671.             2453.           18335.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "data3.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Selatan`
##         <dbl>    <dbl>            <dbl>             <dbl>              <dbl>
##  1       2011   36449.            6606.             4017.              8967.
##  2       2012   43623.            6375.             4458.             11873.
##  3       2013   64181.           22740.             4544.             11485.
##  4       2014   48231.            7207.             5696.             15645.
##  5       2015   53153.            7202.             5310.             16236.
##  6       2016   53145.            7707.             4962.             15494.
##  7       2017   56297.            8421.             5226.             15159.
##  8       2018   60935.            7605.             5578.             16779.
##  9       2019   60723.            7367.             5531.             18089.
## 10       2020   64828.            7437.             4674.             20503.
## 11       2021   33806.            3050.             2763.             12017.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Maluku setiap periode

plot(datainflow$Keterangan,datainflow$`Maluku`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Maluku setiap periode

plot(dataoutflow$Keterangan,dataoutflow$`Maluku`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Maluku Setiap Periode

plot(datainflow$Keterangan,datainflow$`Maluku`,type = "l", col= "steelblue")
lines(dataoutflow$Keterangan,dataoutflow$`Maluku`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Maluku Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "data2.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "data4.xlsx")
## New names:
## * `` -> ...1
datainflowperbulan
## # A tibble: 128 x 13
##    ...1                ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>              <lgl>    <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00 NA       2584.             861.             167. 
##  2 2011-02-01 00:00:00 NA       1504.             353.              46.1
##  3 2011-03-01 00:00:00 NA       2032.             415.             133. 
##  4 2011-04-01 00:00:00 NA       1591.             342.              91.5
##  5 2011-05-01 00:00:00 NA       1704.             379.             106. 
##  6 2011-06-01 00:00:00 NA       1795.             413.              77.0
##  7 2011-07-01 00:00:00 NA       1863.             480.             113. 
##  8 2011-08-01 00:00:00 NA       1606.             415.              76.9
##  9 2011-09-01 00:00:00 NA       4967.             886.             446. 
## 10 2011-10-01 00:00:00 NA       1918.             423.             113. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    ...1                Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>                 <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00     966.             244.              83.5
##  2 2011-02-01 00:00:00     957.             260.             139. 
##  3 2011-03-01 00:00:00    1982.             352.             189. 
##  4 2011-04-01 00:00:00    2605.             460.             266. 
##  5 2011-05-01 00:00:00    2559.             474.             317. 
##  6 2011-06-01 00:00:00    2557.             459.             311. 
##  7 2011-07-01 00:00:00    3087.             622.             351. 
##  8 2011-08-01 00:00:00    6228.             985.             656. 
##  9 2011-09-01 00:00:00    1234.             212.             105. 
## 10 2011-10-01 00:00:00    2947.             545.             356. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
plot(datainflowperbulan$`Maluku`, type = "l", col = "green")
lines(dataoutflowperbulan$`Maluku`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

Malukutimeseries <- datainflowperbulan$`Maluku`
plot.ts(Malukutimeseries , type = "l", col = "green")

logMaluku <- log(datainflowperbulan$`Maluku`)
plot.ts(logMaluku)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Maluku

Malukuinflowtimeseries <- ts(datainflowperbulan$`Maluku`, frequency=12, start=c(2011,1))
Malukuinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  173.46915   70.63217   94.57877   97.52975   84.13177  130.97905
## 2012  315.72399  151.66574  113.00384   72.19651   56.04100   54.38012
## 2013  695.27374  348.06096  325.55503  450.60594  400.16117  421.20997
## 2014  423.83645  200.94569   96.22735  125.18203   94.98721  109.19298
## 2015  499.54972  229.16958  155.42673   93.44224  114.99787   77.48475
## 2016  473.54889  225.61107  187.11682  125.33421  141.47431  150.83220
## 2017  571.86280  168.63121  199.78422  144.11651  165.87234   90.57580
## 2018  726.88094  357.50953  224.88505  205.12539  211.56560  425.48352
## 2019  937.78961  296.48541  252.74304  163.88780  302.55014  601.76651
## 2020  851.06124  396.17545  289.23273  178.95458  151.26336  235.72380
## 2021  978.47905  422.95995  213.65558  199.06807  441.23702  208.70063
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   99.35938   90.13565  243.06215   70.70926   62.60944   55.56591
## 2012  141.04389   86.41643   52.27125   27.44608   51.54123   25.32715
## 2013  395.26477 1113.56465   73.85404   38.67432   50.79921   27.88505
## 2014   50.57730  320.34903  150.79841   72.47475   78.08260   58.34591
## 2015  309.01228  104.96799   64.31078   42.91157   63.08052   35.16150
## 2016  410.73268  133.94504  167.40458   82.57896  100.58709  167.98696
## 2017  305.01296  261.47775  194.90558  173.82550   99.32666  108.88923
## 2018  314.94567  211.63632  180.39173  158.12325  125.53073   67.81591
## 2019  352.19157  286.45405  256.56616  223.26937  227.60450  154.83102
## 2020  143.54599  159.62922  179.49377  142.80347  149.72071   31.76341
## 2021  147.89048  182.65354
Malukuoutflowtimeseries <- ts(dataoutflowperbulan$`Maluku`, frequency=12, start=c(2011,1))
Malukuoutflowtimeseries
##              Jan         Feb         Mar         Apr         May         Jun
## 2011    4.336825   47.198505   99.733621  171.306380  195.212975  129.584818
## 2012    7.141083  102.910498  194.320186  214.131311  205.778895  281.382638
## 2013   84.152453  247.206655  296.327795  220.634582  404.654339  484.381607
## 2014    4.616670   41.720219  114.725590  194.215507  188.719909  212.123576
## 2015    8.195562   66.885442  121.201143  126.778596  209.000120  250.806017
## 2016   23.758867   78.699690   35.853997  164.481528  214.735765  593.487422
## 2017   10.870840  111.368306   76.024964  169.205914  137.783105  846.269255
## 2018   32.603608   19.121820   74.942050  210.588667  316.683995  881.570932
## 2019    7.553912  129.788225   96.193375  347.227782  870.700565   10.146299
## 2020   18.372503   90.760656  247.182767  252.684506  599.806100  152.497996
## 2021    3.739239   36.003264  121.725942  345.788540  656.278267  253.329150
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  227.799959  379.645791   71.801200  176.344615  178.695202  670.725459
## 2012  287.513947  214.945774  139.027165  302.795906  216.112085  523.662477
## 2013 1330.374506  325.410470  196.736296  279.869375  221.887658  703.131711
## 2014  483.830955  116.386131  164.453666  226.139847  261.001668  853.049618
## 2015  559.026798  139.627927  233.337438  329.470763  285.284358  793.693604
## 2016  297.320323  163.235820  303.420592  258.474148  299.973745  875.681588
## 2017  114.472734  310.233788  195.472688  194.643194  317.116812 1187.691182
## 2018   73.764495  258.987644  189.101140  214.265063  270.239583  882.156572
## 2019  359.262239  280.167477  192.305913  252.011053  317.438023 1208.502131
## 2020  197.880026  304.072441  174.338165  261.762021  400.893364 1023.324627
## 2021  191.034978  197.748747
plot.ts(Malukuinflowtimeseries)

plot.ts(Malukuoutflowtimeseries)

Malukuintimeseriescomponents <- decompose(Malukuinflowtimeseries)
Malukuintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
## 2012  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
## 2013  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
## 2014  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
## 2015  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
## 2016  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
## 2017  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
## 2018  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
## 2019  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
## 2020  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
## 2021  419.22564   50.95875  -18.71564  -50.43618  -42.27682   16.06749
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   35.94814   55.81487  -66.70109 -120.64451 -124.94891 -154.29175
## 2012   35.94814   55.81487  -66.70109 -120.64451 -124.94891 -154.29175
## 2013   35.94814   55.81487  -66.70109 -120.64451 -124.94891 -154.29175
## 2014   35.94814   55.81487  -66.70109 -120.64451 -124.94891 -154.29175
## 2015   35.94814   55.81487  -66.70109 -120.64451 -124.94891 -154.29175
## 2016   35.94814   55.81487  -66.70109 -120.64451 -124.94891 -154.29175
## 2017   35.94814   55.81487  -66.70109 -120.64451 -124.94891 -154.29175
## 2018   35.94814   55.81487  -66.70109 -120.64451 -124.94891 -154.29175
## 2019   35.94814   55.81487  -66.70109 -120.64451 -124.94891 -154.29175
## 2020   35.94814   55.81487  -66.70109 -120.64451 -124.94891 -154.29175
## 2021   35.94814   55.81487
Malukuouttimeseriescomponents <- decompose(Malukuoutflowtimeseries)
Malukuouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
## 2012 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
## 2013 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
## 2014 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
## 2015 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
## 2016 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
## 2017 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
## 2018 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
## 2019 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
## 2020 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
## 2021 -270.34323 -197.08614 -147.67431  -77.08041   60.15260  120.24738
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  108.94262  -34.86151  -98.17840  -35.41887  -10.78034  582.08060
## 2012  108.94262  -34.86151  -98.17840  -35.41887  -10.78034  582.08060
## 2013  108.94262  -34.86151  -98.17840  -35.41887  -10.78034  582.08060
## 2014  108.94262  -34.86151  -98.17840  -35.41887  -10.78034  582.08060
## 2015  108.94262  -34.86151  -98.17840  -35.41887  -10.78034  582.08060
## 2016  108.94262  -34.86151  -98.17840  -35.41887  -10.78034  582.08060
## 2017  108.94262  -34.86151  -98.17840  -35.41887  -10.78034  582.08060
## 2018  108.94262  -34.86151  -98.17840  -35.41887  -10.78034  582.08060
## 2019  108.94262  -34.86151  -98.17840  -35.41887  -10.78034  582.08060
## 2020  108.94262  -34.86151  -98.17840  -35.41887  -10.78034  582.08060
## 2021  108.94262  -34.86151
plot(Malukuintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(Malukuouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Malukuintimeseriescomponents$trend,type = "l", col = "orange")
lines(Malukuouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Malukuintimeseriescomponents$random ,type = "l", col = "orange")
lines(Malukuouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Malukuintimeseriescomponents$figure ,type = "l", col = "orange")
lines(Malukuouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8