UIN Maulana Malik Ibrahim Malang Teknik Informatika

Pengertian Inflow dan Outflow uang kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

Ini adalah contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Maluku Utara menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path = "data1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 13
##    Keterangan ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Sela~`
##         <dbl> <lgl>    <dbl>            <dbl>             <dbl>            <dbl>
##  1         NA NA         NA               NA                NA               NA 
##  2       2011 NA      25056.            5671.             1563.           10593.
##  3       2012 NA      31011.            6635.             1885.           13702.
##  4       2013 NA      63774.           21646.             1520.           17770.
##  5       2014 NA      41607.            7374.             3000.           19384.
##  6       2015 NA      40309.            6286.             2593.           19583.
##  7       2016 NA      45737.            7266.             2665.           21043.
##  8       2017 NA      44126.            7044.             2806.           18803.
##  9       2018 NA      52672.            7781.             3701.           21894.
## 10       2019 NA      60202.            7809.             4042.           24749.
## 11       2020 NA      52812.            6324.             3052.           21551.
## 12       2021 NA      45714.            4671.             2453.           18335.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "data3.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sulampua `Sulawesi Utara` `Sulawesi Tengah` `Sulawesi Selatan`
##         <dbl>    <dbl>            <dbl>             <dbl>              <dbl>
##  1       2011   36449.            6606.             4017.              8967.
##  2       2012   43623.            6375.             4458.             11873.
##  3       2013   64181.           22740.             4544.             11485.
##  4       2014   48231.            7207.             5696.             15645.
##  5       2015   53153.            7202.             5310.             16236.
##  6       2016   53145.            7707.             4962.             15494.
##  7       2017   56297.            8421.             5226.             15159.
##  8       2018   60935.            7605.             5578.             16779.
##  9       2019   60723.            7367.             5531.             18089.
## 10       2020   64828.            7437.             4674.             20503.
## 11       2021   33806.            3050.             2763.             12017.
## # ... with 7 more variables: `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>,
## #   Gorontalo <dbl>, `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>,
## #   `Papua Barat` <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Maluku Utara setiap periode

plot(datainflow$Keterangan,datainflow$`Maluku Utara`,type = "l", col= "red")

2.Visualisasi Prediksi Data outflow Uang Kartal Maluku Utara setiap periode

plot(dataoutflow$Keterangan,dataoutflow$`Maluku Utara`,type = "l", col= "green")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Maluku Utara Setiap Periode

plot(datainflow$Keterangan,datainflow$`Maluku Utara`,type = "l", col= "red")
lines(dataoutflow$Keterangan,dataoutflow$`Maluku Utara`,col="green")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Maluku Utara Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "data2.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "data4.xlsx")
## New names:
## * `` -> ...1
datainflowperbulan
## # A tibble: 128 x 13
##    ...1                ...2  Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>              <lgl>    <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00 NA       2584.             861.             167. 
##  2 2011-02-01 00:00:00 NA       1504.             353.              46.1
##  3 2011-03-01 00:00:00 NA       2032.             415.             133. 
##  4 2011-04-01 00:00:00 NA       1591.             342.              91.5
##  5 2011-05-01 00:00:00 NA       1704.             379.             106. 
##  6 2011-06-01 00:00:00 NA       1795.             413.              77.0
##  7 2011-07-01 00:00:00 NA       1863.             480.             113. 
##  8 2011-08-01 00:00:00 NA       1606.             415.              76.9
##  9 2011-09-01 00:00:00 NA       4967.             886.             446. 
## 10 2011-10-01 00:00:00 NA       1918.             423.             113. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    ...1                Sulampua `Sulawesi Utara` `Sulawesi Tengah`
##    <dttm>                 <dbl>            <dbl>             <dbl>
##  1 2011-01-01 00:00:00     966.             244.              83.5
##  2 2011-02-01 00:00:00     957.             260.             139. 
##  3 2011-03-01 00:00:00    1982.             352.             189. 
##  4 2011-04-01 00:00:00    2605.             460.             266. 
##  5 2011-05-01 00:00:00    2559.             474.             317. 
##  6 2011-06-01 00:00:00    2557.             459.             311. 
##  7 2011-07-01 00:00:00    3087.             622.             351. 
##  8 2011-08-01 00:00:00    6228.             985.             656. 
##  9 2011-09-01 00:00:00    1234.             212.             105. 
## 10 2011-10-01 00:00:00    2947.             545.             356. 
## # ... with 118 more rows, and 8 more variables: `Sulawesi Selatan` <dbl>,
## #   `Sulawesi Tenggara` <dbl>, `Sulawesi Barat` <dbl>, Gorontalo <dbl>,
## #   `Maluku Utara` <dbl>, Maluku <dbl>, Papua <dbl>, `Papua Barat` <dbl>
plot(datainflowperbulan$`Maluku Utara`, type = "l", col = "grey")
lines(dataoutflowperbulan$`Maluku Utara`,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("grey","blue"))

MalukuUtaratimeseries <- datainflowperbulan$`Maluku Utara`
plot.ts(MalukuUtaratimeseries , type = "l", col = "green")

logMalukuUtara <- log(datainflowperbulan$`Maluku Utara`)
plot.ts(logMalukuUtara)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Maluku Utara

MalukuUtarainflowtimeseries <- ts(datainflowperbulan$`Maluku Utara`, frequency=12, start=c(2011,1))
MalukuUtarainflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   62.10373   22.50867   54.15182   38.80835   42.43800   28.92824
## 2012  113.02124   87.03536   46.36464   37.50103   60.26457   27.92469
## 2013 1392.31787  859.44247  844.62455  971.67575 1070.50061 1064.86735
## 2014  211.65994   69.47643   43.75856   83.90539   47.38005   49.84697
## 2015  219.64695   59.93098   52.40471   50.82307   54.20264   56.75826
## 2016  200.20750   90.80773   60.75087   49.48764   49.66303   87.96881
## 2017  207.85401   92.73008   96.76078   88.68023   99.30188   61.50242
## 2018  355.57064   80.24984  109.06044   52.92882   76.11618  291.78714
## 2019  451.10744  129.89358   77.82786  104.17636   88.62895  458.73546
## 2020  399.90351  163.26113  118.89817  100.50598  119.77383  243.69075
## 2021  584.30152  157.58542  106.37244   93.98828  307.33331  192.89382
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   24.01728   32.47994  160.69514   46.79988   45.26823   28.01422
## 2012   41.70865   69.51879   57.23457   22.76074   45.43771   23.79136
## 2013 1045.40166 2767.83065   91.56887   78.41379   69.13370   17.06019
## 2014   38.21002  198.75658   82.13432   64.21434   77.99877   38.41842
## 2015  237.59333   91.56407   58.97259   41.65076   47.63351   35.34494
## 2016  284.56284   90.85775  111.20567   96.70454   50.19685   86.70455
## 2017  209.10802  142.19811  143.92009   89.11779   72.18040   35.17707
## 2018  177.16853  108.46879   83.52319   78.58572   68.85937   48.16373
## 2019  119.04007  134.60441  100.06981   91.45382  113.59993   54.82074
## 2020  143.56000  152.20226  148.98405  105.47128  122.38243   56.98181
## 2021  151.50785  143.81800
MalukuUtaraoutflowtimeseries <- ts(dataoutflowperbulan$`Maluku Utara`, frequency=12, start=c(2011,1))
MalukuUtaraoutflowtimeseries
##              Jan         Feb         Mar         Apr         May         Jun
## 2011   67.898967   39.076739   71.505420  108.030761  120.785748  103.445786
## 2012   46.222625   58.235535   92.804047  175.019579  156.685529  135.175914
## 2013  267.193407  790.517592  780.153948  559.469282 1038.415848  982.177013
## 2014   23.686751   75.749703  110.371277  127.414509  105.005835  180.129675
## 2015   14.607574   75.218048  119.977235  128.560930  170.027322  214.587436
## 2016    3.563644   51.995252  105.361498  124.356947  262.613050  508.764644
## 2017   42.708324  102.114026  174.000256  165.856286  299.036394  535.867738
## 2018   24.060536   73.654062  173.809492  194.107934  282.576804  586.110404
## 2019   26.516420   58.100606  117.396146  364.028553  652.085703   21.268600
## 2020   56.624914   73.084380  239.982806  383.778330  347.565756  117.342705
## 2021   11.219680   69.113371  265.819418  339.474669  571.546973  167.662814
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  167.978644  277.980048   10.064785  114.978744  116.617350  432.592342
## 2012  176.665284  218.116570   52.191991  143.909345   86.160987  335.963059
## 2013 2228.699586 1146.719605  111.178567  185.968130  133.891448  353.765320
## 2014  389.092920    8.238407  107.333709  166.331465  153.798976  362.061397
## 2015  507.036406   60.158876  264.422613  116.730169  254.240558  471.465423
## 2016  118.405316  111.001222  227.058198  165.622251  220.966539  346.769901
## 2017   96.466463  155.472516  101.984563  181.050285  255.755029  641.933726
## 2018  109.099487  165.544115  105.526556  175.719286  156.629912  631.165421
## 2019  314.027763  188.767597  112.501926  164.514552  260.883164  703.725061
## 2020  246.984628  121.310717  205.186934  257.006808  235.616209  658.584330
## 2021  242.802497  155.369764
plot.ts(MalukuUtarainflowtimeseries)

plot.ts(MalukuUtaraoutflowtimeseries)

MalukuUtaraintimeseriescomponents <- decompose(MalukuUtarainflowtimeseries)
MalukuUtaraintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
## 2012  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
## 2013  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
## 2014  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
## 2015  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
## 2016  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
## 2017  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
## 2018  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
## 2019  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
## 2020  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
## 2021  223.212890  -12.299989  -31.652553  -21.955109   -8.567358   66.191532
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   49.992388  194.064839  -81.732872 -114.493940 -116.075762 -146.684067
## 2012   49.992388  194.064839  -81.732872 -114.493940 -116.075762 -146.684067
## 2013   49.992388  194.064839  -81.732872 -114.493940 -116.075762 -146.684067
## 2014   49.992388  194.064839  -81.732872 -114.493940 -116.075762 -146.684067
## 2015   49.992388  194.064839  -81.732872 -114.493940 -116.075762 -146.684067
## 2016   49.992388  194.064839  -81.732872 -114.493940 -116.075762 -146.684067
## 2017   49.992388  194.064839  -81.732872 -114.493940 -116.075762 -146.684067
## 2018   49.992388  194.064839  -81.732872 -114.493940 -116.075762 -146.684067
## 2019   49.992388  194.064839  -81.732872 -114.493940 -116.075762 -146.684067
## 2020   49.992388  194.064839  -81.732872 -114.493940 -116.075762 -146.684067
## 2021   49.992388  194.064839
MalukuUtaraouttimeseriescomponents <- decompose(MalukuUtaraoutflowtimeseries)
MalukuUtaraouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
## 2012 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
## 2013 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
## 2014 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
## 2015 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
## 2016 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
## 2017 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
## 2018 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
## 2019 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
## 2020 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
## 2021 -204.506239 -113.169259  -42.548857   -9.805777  110.254642  105.036560
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  187.464398   -2.539273 -119.060050  -83.395922  -65.965530  238.235308
## 2012  187.464398   -2.539273 -119.060050  -83.395922  -65.965530  238.235308
## 2013  187.464398   -2.539273 -119.060050  -83.395922  -65.965530  238.235308
## 2014  187.464398   -2.539273 -119.060050  -83.395922  -65.965530  238.235308
## 2015  187.464398   -2.539273 -119.060050  -83.395922  -65.965530  238.235308
## 2016  187.464398   -2.539273 -119.060050  -83.395922  -65.965530  238.235308
## 2017  187.464398   -2.539273 -119.060050  -83.395922  -65.965530  238.235308
## 2018  187.464398   -2.539273 -119.060050  -83.395922  -65.965530  238.235308
## 2019  187.464398   -2.539273 -119.060050  -83.395922  -65.965530  238.235308
## 2020  187.464398   -2.539273 -119.060050  -83.395922  -65.965530  238.235308
## 2021  187.464398   -2.539273
plot(MalukuUtaraintimeseriescomponents$seasonal,type = "l", col = "yellow")
lines(MalukuUtaraouttimeseriescomponents$seasonal,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(MalukuUtaraintimeseriescomponents$trend,type = "l", col = "yellow")
lines(MalukuUtaraouttimeseriescomponents$trend,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(MalukuUtaraintimeseriescomponents$random ,type = "l", col = "yellow")
lines(MalukuUtaraouttimeseriescomponents$random,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

plot(MalukuUtaraintimeseriescomponents$figure ,type = "l", col = "yellow")
lines(MalukuUtaraouttimeseriescomponents$figure,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("yellow","blue"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8