1. Introdução

O presente trabalho tem a proposta da disciplina estatística aplicada a Enenharia, proposta pelo professor Steven Dutts, que consiste em analisar duas variáveis quantitativas. Para se fazer essa analise, faremos um diagrama de dispersão e uma matriz de correlação, sobre a base de dados FifaData.csv. Emseguida se propõe a fazer uma publicação no RPUBS do arquivo Rmarkdown.

2. Carregando a base de dados

library(readr)
FifaData <- read_csv("C:/Users/Cliente/Desktop/Base_de_dados-master/FifaData.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   Name = col_character(),
##   Nationality = col_character(),
##   National_Position = col_character(),
##   Club = col_character(),
##   Club_Position = col_character(),
##   Club_Joining = col_character(),
##   Height = col_character(),
##   Weight = col_character(),
##   Preffered_Foot = col_character(),
##   Birth_Date = col_character(),
##   Preffered_Position = col_character(),
##   Work_Rate = col_character()
## )
## i Use `spec()` for the full column specifications.
View(FifaData)

##3. Observando a base de dados

View(FifaData)
head(FifaData)
## # A tibble: 6 x 53
##   Name    Nationality National_Positi~ National_Kit Club  Club_Position Club_Kit
##   <chr>   <chr>       <chr>                   <dbl> <chr> <chr>            <dbl>
## 1 Cristi~ Portugal    LS                          7 Real~ LW                   7
## 2 Lionel~ Argentina   RW                         10 FC B~ RW                  10
## 3 Neymar  Brazil      LW                         10 FC B~ LW                  11
## 4 Luis S~ Uruguay     LS                          9 FC B~ ST                   9
## 5 Manuel~ Germany     GK                          1 FC B~ GK                   1
## 6 De Gea  Spain       GK                          1 Manc~ GK                   1
## # ... with 46 more variables: Club_Joining <chr>, Contract_Expiry <dbl>,
## #   Rating <dbl>, Height <chr>, Weight <chr>, Preffered_Foot <chr>,
## #   Birth_Date <chr>, Age <dbl>, Preffered_Position <chr>, Work_Rate <chr>,
## #   Weak_foot <dbl>, Skill_Moves <dbl>, Ball_Control <dbl>, Dribbling <dbl>,
## #   Marking <dbl>, Sliding_Tackle <dbl>, Standing_Tackle <dbl>,
## #   Aggression <dbl>, Reactions <dbl>, Attacking_Position <dbl>,
## #   Interceptions <dbl>, Vision <dbl>, Composure <dbl>, Crossing <dbl>,
## #   Short_Pass <dbl>, Long_Pass <dbl>, Acceleration <dbl>, Speed <dbl>,
## #   Stamina <dbl>, Strength <dbl>, Balance <dbl>, Agility <dbl>, Jumping <dbl>,
## #   Heading <dbl>, Shot_Power <dbl>, Finishing <dbl>, Long_Shots <dbl>,
## #   Curve <dbl>, Freekick_Accuracy <dbl>, Penalties <dbl>, Volleys <dbl>,
## #   GK_Positioning <dbl>, GK_Diving <dbl>, GK_Kicking <dbl>, GK_Handling <dbl>,
## #   GK_Reflexes <dbl>

A base de dados contem 17588 jugadores de futebol, divididos em 53 variáveis, sendo que essas variáveis são caracteristicas como, natural de qual pais, idade, avaliação, clube que joga entre outras.

A base de dados, se apresenta distribuida em média, mediana, quartis, como demonstrado abaixo.

summary(FifaData)
##      Name           Nationality        National_Position   National_Kit  
##  Length:17588       Length:17588       Length:17588       Min.   : 1.00  
##  Class :character   Class :character   Class :character   1st Qu.: 6.00  
##  Mode  :character   Mode  :character   Mode  :character   Median :12.00  
##                                                           Mean   :12.22  
##                                                           3rd Qu.:18.00  
##                                                           Max.   :36.00  
##                                                           NA's   :16513  
##      Club           Club_Position         Club_Kit     Club_Joining      
##  Length:17588       Length:17588       Min.   : 1.00   Length:17588      
##  Class :character   Class :character   1st Qu.: 9.00   Class :character  
##  Mode  :character   Mode  :character   Median :18.00   Mode  :character  
##                                        Mean   :21.29                     
##                                        3rd Qu.:27.00                     
##                                        Max.   :99.00                     
##                                        NA's   :1                         
##  Contract_Expiry     Rating         Height             Weight         
##  Min.   :2017    Min.   :45.00   Length:17588       Length:17588      
##  1st Qu.:2017    1st Qu.:62.00   Class :character   Class :character  
##  Median :2019    Median :66.00   Mode  :character   Mode  :character  
##  Mean   :2019    Mean   :66.17                                        
##  3rd Qu.:2020    3rd Qu.:71.00                                        
##  Max.   :2023    Max.   :94.00                                        
##  NA's   :1                                                            
##  Preffered_Foot      Birth_Date             Age        Preffered_Position
##  Length:17588       Length:17588       Min.   :17.00   Length:17588      
##  Class :character   Class :character   1st Qu.:22.00   Class :character  
##  Mode  :character   Mode  :character   Median :25.00   Mode  :character  
##                                        Mean   :25.46                     
##                                        3rd Qu.:29.00                     
##                                        Max.   :47.00                     
##                                                                          
##   Work_Rate           Weak_foot      Skill_Moves     Ball_Control  
##  Length:17588       Min.   :1.000   Min.   :1.000   Min.   : 5.00  
##  Class :character   1st Qu.:3.000   1st Qu.:2.000   1st Qu.:53.00  
##  Mode  :character   Median :3.000   Median :2.000   Median :63.00  
##                     Mean   :2.934   Mean   :2.303   Mean   :57.97  
##                     3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:69.00  
##                     Max.   :5.000   Max.   :5.000   Max.   :95.00  
##                                                                    
##    Dribbling       Marking      Sliding_Tackle  Standing_Tackle   Aggression   
##  Min.   : 4.0   Min.   : 3.00   Min.   : 5.00   Min.   : 3.00   Min.   : 2.00  
##  1st Qu.:47.0   1st Qu.:22.00   1st Qu.:23.00   1st Qu.:26.00   1st Qu.:44.00  
##  Median :60.0   Median :48.00   Median :51.00   Median :54.00   Median :59.00  
##  Mean   :54.8   Mean   :44.23   Mean   :45.57   Mean   :47.44   Mean   :55.92  
##  3rd Qu.:68.0   3rd Qu.:64.00   3rd Qu.:64.00   3rd Qu.:66.00   3rd Qu.:70.00  
##  Max.   :97.0   Max.   :92.00   Max.   :95.00   Max.   :92.00   Max.   :96.00  
##                                                                                
##    Reactions     Attacking_Position Interceptions       Vision     
##  Min.   :29.00   Min.   : 2.00      Min.   : 3.00   Min.   :10.00  
##  1st Qu.:55.00   1st Qu.:37.00      1st Qu.:26.00   1st Qu.:43.00  
##  Median :62.00   Median :54.00      Median :52.00   Median :54.00  
##  Mean   :61.77   Mean   :49.59      Mean   :46.79   Mean   :52.71  
##  3rd Qu.:68.00   3rd Qu.:64.00      3rd Qu.:64.00   3rd Qu.:64.00  
##  Max.   :96.00   Max.   :94.00      Max.   :93.00   Max.   :94.00  
##                                                                    
##    Composure        Crossing       Short_Pass      Long_Pass     Acceleration  
##  Min.   : 5.00   Min.   : 6.00   Min.   :10.00   Min.   : 7.0   Min.   :11.00  
##  1st Qu.:47.00   1st Qu.:38.00   1st Qu.:52.00   1st Qu.:42.0   1st Qu.:57.00  
##  Median :57.00   Median :54.00   Median :62.00   Median :56.0   Median :68.00  
##  Mean   :55.85   Mean   :49.74   Mean   :58.12   Mean   :52.4   Mean   :65.29  
##  3rd Qu.:66.00   3rd Qu.:64.00   3rd Qu.:68.00   3rd Qu.:64.0   3rd Qu.:75.00  
##  Max.   :94.00   Max.   :91.00   Max.   :92.00   Max.   :93.0   Max.   :96.00  
##                                                                                
##      Speed          Stamina         Strength        Balance     
##  Min.   :11.00   Min.   :10.00   Min.   :20.00   Min.   :10.00  
##  1st Qu.:58.00   1st Qu.:57.00   1st Qu.:57.00   1st Qu.:56.00  
##  Median :68.00   Median :66.00   Median :66.00   Median :65.00  
##  Mean   :65.48   Mean   :63.48   Mean   :65.09   Mean   :64.01  
##  3rd Qu.:75.00   3rd Qu.:74.00   3rd Qu.:74.00   3rd Qu.:74.00  
##  Max.   :96.00   Max.   :95.00   Max.   :98.00   Max.   :97.00  
##                                                                 
##     Agility         Jumping         Heading        Shot_Power   
##  Min.   :11.00   Min.   :15.00   Min.   : 4.00   Min.   : 3.00  
##  1st Qu.:55.00   1st Qu.:58.00   1st Qu.:45.00   1st Qu.:45.00  
##  Median :65.00   Median :65.00   Median :56.00   Median :59.00  
##  Mean   :63.21   Mean   :64.92   Mean   :52.39   Mean   :55.58  
##  3rd Qu.:74.00   3rd Qu.:73.00   3rd Qu.:65.00   3rd Qu.:69.00  
##  Max.   :96.00   Max.   :95.00   Max.   :94.00   Max.   :93.00  
##                                                                 
##    Finishing       Long_Shots       Curve       Freekick_Accuracy
##  Min.   : 2.00   Min.   : 4.0   Min.   : 6.00   Min.   : 4.00    
##  1st Qu.:29.00   1st Qu.:32.0   1st Qu.:34.00   1st Qu.:31.00    
##  Median :48.00   Median :52.0   Median :48.00   Median :42.00    
##  Mean   :45.16   Mean   :47.4   Mean   :47.18   Mean   :43.38    
##  3rd Qu.:61.00   3rd Qu.:63.0   3rd Qu.:62.00   3rd Qu.:57.00    
##  Max.   :95.00   Max.   :91.0   Max.   :92.00   Max.   :93.00    
##                                                                  
##    Penalties        Volleys      GK_Positioning    GK_Diving    
##  Min.   : 7.00   Min.   : 3.00   Min.   : 1.00   Min.   : 1.00  
##  1st Qu.:39.00   1st Qu.:30.00   1st Qu.: 8.00   1st Qu.: 8.00  
##  Median :50.00   Median :44.00   Median :11.00   Median :11.00  
##  Mean   :49.17   Mean   :43.28   Mean   :16.61   Mean   :16.82  
##  3rd Qu.:61.00   3rd Qu.:57.00   3rd Qu.:14.00   3rd Qu.:14.00  
##  Max.   :96.00   Max.   :93.00   Max.   :91.00   Max.   :89.00  
##                                                                 
##    GK_Kicking     GK_Handling     GK_Reflexes  
##  Min.   : 1.00   Min.   : 1.00   Min.   : 1.0  
##  1st Qu.: 8.00   1st Qu.: 8.00   1st Qu.: 8.0  
##  Median :11.00   Median :11.00   Median :11.0  
##  Mean   :16.46   Mean   :16.56   Mean   :16.9  
##  3rd Qu.:14.00   3rd Qu.:14.00   3rd Qu.:14.0  
##  Max.   :95.00   Max.   :91.00   Max.   :90.0  
## 

3.1 Avaliando a Base de dados

O estudo se propõe a analisar duas variaveis quantitativas: idade dos jogadores e suas avaliações, com o objetivo de verificar se a idade está interferindo diretamente ou não em seus rendimentos, e consequentemente em suas avaliações.

Para isso criamos uma separação por faixa de avaliação com base no cálculo da média:

library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
FifaData = FifaData %>%
  mutate(
    Faixa_rating = case_when(
      Rating < 62 ~ "1. Baixa avaliação",
      Rating < 68 ~ "2. Média avaliação",
      Rating < 71 ~ "3. Alta avaliação",
      Rating < 99 ~ "4. Altíssima avaliação",
      TRUE ~ "5. Outro Caso"))

4. Diagrama de Dispersão

O diagrama de dispersão é conhecido como uma das principais ferramentas da estatistica que se propõe a analisar atraves de uma representação gráfica a relação entre duas variáveis quantitativas, medindo uma de causa e uma de efeito.

Essa correlação criada com base no diagrama pode ser:

Positiva: quando os pontos se unem em uma linha crescente. Isso quer dizer que, assim que uma variável aumenta, a outra também cresce; Negativa: quando os pontos se unem em uma linha decrescente. O que significa que, à medida que uma variável aumenta, a outra diminui; Nula: quando os pontos estão bem dispersos e, portanto, indica que não há correlação aparente entre as duas variáveis.

plot(FifaData$Age,FifaData$Rating, main="Diagrama de Dispersão",
     xlab = "Idade dos jogadores", 
     ylab = "Nível das avaliações",col="#c43512", pch=16)

abline(lsfit(FifaData$Age,FifaData$Rating),col="black")

4.1 Medindo a Correlação entre as variáveis

cor(FifaData$Age,FifaData$Rating)
## [1] 0.4582763

Verifica-se uma correlação moderada de 0,4582, o que nos faz demonstrar a matriz de correlação.

5. Matriz de Correlação

library(corrplot)
## Warning: package 'corrplot' was built under R version 4.1.2
## corrplot 0.92 loaded
FifaData %>% select(Vision,Ball_Control, Marking,Aggression,Reactions,Composure) %>%
  cor() %>% corrplot.mixed()

Na matriz de correlação acima descrita, identificamos que as variáveis: “Vision”, “Ball_Control”, “Marking”, “Aggression”, “Reactions” e “Compusere” todas positivamente correlacionadas com a idade dos jogadores: “Age”. “Ball_Control” e “Vision” são os que possuem maior grau de relação com a idade, pois índices de correlação são acima de 0,7.

6. Conclusões

Com as analises descritas no estudo identificamos que o controle da bola e visão do jogador tem uma associação direta com a idade, o que era de se esperar, devidos tais atividades serem se desenvolverem melhor em pessoas mais jovens. “Vision” e “Marking” tem baixa associação com a idade apesar de estarem positivamente correlacionados. Conclue-se com os dados analisados que a carreira do jogador de futebol se torna curta, pois as habilidades físicas como visão, marcação de bola tem relação direta com a idade do jogador.