Universitas : UIN MAULANA MALIK IBRAHIM MALANG
Jurusan : Teknik Informatika
Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.
Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara sesama dan non-residen perusahaan, jika orang tua pengendali utama adalah penduduk. Investasi langsung keluar juga disebut investasi langsung di luar negeri.
library(readxl)
datainflow <- read_excel(path = "InflowTahun.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 12
## Keterangan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat` `Nusa Tenggara T~`
## <dbl> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 NA NA NA NA NA NA
## 2 2011 NA 10322. 6394. 1803. 2125.
## 3 2012 NA 14613. 8202. 3676. 2735.
## 4 2013 NA 17512. 5066. 7024. 5422.
## 5 2014 NA 20807. 11590. 5704. 3512.
## 6 2015 NA 23008. 13072. 6285. 3651.
## 7 2016 NA 30965. 17914. 8842. 4210.
## 8 2017 NA 30797. 16962. 8383. 5452.
## 9 2018 NA 33866. 18610. 9140. 6116.
## 10 2019 NA 38116. 21422. 9614. 7080.
## 11 2020 NA 29400. 14735. 8007. 6657.
## 12 2021 NA 18892. 7505. 5888. 5498.
## # ... with 6 more variables: Kalimantan <dbl>, `Kalimantan Barat` <dbl>,
## # `Kalimantan Tengah` <dbl>, `Kalimantan Selatan` <dbl>,
## # `Kalimantan Timur` <dbl>, `Kalimantan Utara` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "OutflowTahun.xlsx")
dataoutflow
## # A tibble: 11 x 10
## Tahun Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 8912. 3819. 3693. 29535. 5221.
## 2 2012 10782. 4379. 4260. 33444. 5698.
## 3 2013 7248. 10628. 11524. 44929. 6011.
## 4 2014 13104. 5620. 4668. 38772. 6764.
## 5 2015 14471. 6728. 5530. 41945. 8486.
## 6 2016 18140. 8149. 5652. 42179. 9402.
## 7 2017 17822. 8770. 7569. 50404. 11132.
## 8 2018 20434. 9271. 7555. 53989. 12278.
## 9 2019 20654. 10288. 7738. 57579. 13768.
## 10 2020 14323. 8546. 8356. 52060. 13501.
## 11 2021 6531. 5222. 3472. 30291. 6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflow
## # A tibble: 11 x 10
## Tahun Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 8912. 3819. 3693. 29535. 5221.
## 2 2012 10782. 4379. 4260. 33444. 5698.
## 3 2013 7248. 10628. 11524. 44929. 6011.
## 4 2014 13104. 5620. 4668. 38772. 6764.
## 5 2015 14471. 6728. 5530. 41945. 8486.
## 6 2016 18140. 8149. 5652. 42179. 9402.
## 7 2017 17822. 8770. 7569. 50404. 11132.
## 8 2018 20434. 9271. 7555. 53989. 12278.
## 9 2019 20654. 10288. 7738. 57579. 13768.
## 10 2020 14323. 8546. 8356. 52060. 13501.
## 11 2021 6531. 5222. 3472. 30291. 6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
plot(datainflow$Keterangan,datainflow$Kalimantan,type = "l", col= "steelblue")
plot(dataoutflow$Tahun,dataoutflow$Kalimantan,type = "l", col= "red")
plot(datainflow$Keterangan,datainflow$Kalimantan,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$Kalimantan,col="red")
legend("top",c("Inflow","Outflow"),fill=c("green","steelblue"))
library(readxl)
datainflowperbulan <- read_excel(path = "InflowBulan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 12
## Bulan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 912. 463. 93.8
## 2 2011-02-01 00:00:00 NA 591. 401. 82.1
## 3 2011-03-01 00:00:00 NA 869. 532. 125.
## 4 2011-04-01 00:00:00 NA 709. 431. 124.
## 5 2011-05-01 00:00:00 NA 754. 474. 113.
## 6 2011-06-01 00:00:00 NA 633. 393. 105.
## 7 2011-07-01 00:00:00 NA 856. 585. 137.
## 8 2011-08-01 00:00:00 NA 607. 328. 136.
## 9 2011-09-01 00:00:00 NA 1965. 1434. 292.
## 10 2011-10-01 00:00:00 NA 874. 522. 184.
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## # Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflowperbulan <- read_excel(path = "OutflowBulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
## Bulan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 912. 463. 93.8
## 2 2011-02-01 00:00:00 NA 591. 401. 82.1
## 3 2011-03-01 00:00:00 NA 869. 532. 125.
## 4 2011-04-01 00:00:00 NA 709. 431. 124.
## 5 2011-05-01 00:00:00 NA 754. 474. 113.
## 6 2011-06-01 00:00:00 NA 633. 393. 105.
## 7 2011-07-01 00:00:00 NA 856. 585. 137.
## 8 2011-08-01 00:00:00 NA 607. 328. 136.
## 9 2011-09-01 00:00:00 NA 1965. 1434. 292.
## 10 2011-10-01 00:00:00 NA 874. 522. 184.
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## # Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 11
## Bulan `Bali Nusra` Bali `Nusa Tenggara Barat` `Nusa Tenggara~`
## <dttm> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 423. 177. 194. 51.9
## 2 2011-02-01 00:00:00 482. 353. 40.9 87.6
## 3 2011-03-01 00:00:00 989. 581. 273. 136.
## 4 2011-04-01 00:00:00 1207. 662. 343. 202.
## 5 2011-05-01 00:00:00 1168. 652. 279. 237.
## 6 2011-06-01 00:00:00 1476. 852. 351. 273.
## 7 2011-07-01 00:00:00 1536. 746. 319. 471.
## 8 2011-08-01 00:00:00 3084. 1888. 796. 400.
## 9 2011-09-01 00:00:00 926. 458. 293. 175.
## 10 2011-10-01 00:00:00 1321. 609. 399. 313.
## # ... with 118 more rows, and 6 more variables: Kalimantan <dbl>,
## # `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
plot(datainflowperbulan$Kalimantan, type = "l", col = "steelblue")
lines(dataoutflowperbulan$Kalimantan,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
Kalimantantimeseries <- datainflowperbulan$Kalimantan
plot.ts(Kalimantantimeseries , type = "l", col = "steelblue")
logKalimantan <- log(datainflowperbulan$Kalimantan)
plot.ts(logKalimantan)
Kalimantaninflowtimeseries <- ts(datainflowperbulan$Kalimantan, frequency=12, start=c(2011,1))
Kalimantaninflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 982.0676 486.4215 1150.0744 612.1185 886.9024 849.9228
## 2012 2584.7855 1591.0769 1190.8039 1257.5387 1222.9938 980.4479
## 2013 5930.9533 3034.3545 2824.3131 3078.7353 2700.6872 2416.3717
## 2014 3758.4997 2271.3511 1704.3943 1851.5859 1490.9773 1782.9483
## 2015 4922.8092 2224.6906 2207.6379 1883.6853 1769.5275 1968.0280
## 2016 4644.7033 2824.5500 2371.9574 1868.7632 2227.6024 1436.9881
## 2017 4565.2125 2648.0854 2567.2427 2306.1718 2651.5982 1220.9444
## 2018 5424.8078 2599.8996 2494.4800 2776.3594 2533.9331 6739.4262
## 2019 6198.7438 3050.6054 2926.8587 3287.4523 2304.5627 8725.8993
## 2020 6471.4469 3406.5754 2314.9900 2269.9825 2511.8455 5253.3087
## 2021 7298.6883 3575.8581 3272.7532 2543.6912 5590.1432 3638.7721
## Jul Aug Sep Oct Nov Dec
## 2011 853.1505 647.7339 3684.7031 1075.5043 1335.1661 708.2715
## 2012 1521.9471 2413.1364 1882.6851 921.9712 1317.3116 689.9743
## 2013 2265.4579 10364.2659 1427.0732 1554.3614 1339.1711 761.9364
## 2014 790.2439 5723.7791 2130.0210 2181.2845 1653.7917 1040.5228
## 2015 4639.2567 2697.4141 2013.4138 2009.1588 1718.8270 1372.4382
## 2016 6049.1492 2581.9038 2509.4511 2106.4707 2097.8652 2127.3564
## 2017 6655.7608 2888.5383 2869.5967 2628.8515 2370.9517 1746.4700
## 2018 4501.8949 2963.4548 3176.0797 3202.8480 2680.2176 2063.6640
## 2019 3904.5939 3686.1159 3535.9565 3637.1874 3117.5200 1782.6214
## 2020 2852.9725 2838.4324 3109.9978 1908.7549 3112.1009 1149.4244
## 2021 2637.2677 2814.6656
Kalimantanoutflowtimeseries <- ts(dataoutflowperbulan$Kalimantan, frequency=12, start=c(2011,1))
Kalimantanoutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 582.2242 859.0178 1570.2218 2337.0253 2019.1669 2439.1742
## 2012 834.9211 1409.7713 2125.2689 2378.9988 2628.5642 2954.4279
## 2013 1035.3895 1808.5302 2731.7646 2153.8350 3810.3190 3437.1400
## 2014 948.7785 1379.0510 2511.3898 2746.2057 2713.3284 2831.2588
## 2015 686.6159 1783.9609 2295.2388 3361.3209 3013.7731 4325.7830
## 2016 818.7089 1925.1134 2081.6134 3036.3231 3907.9318 8764.1853
## 2017 1552.3718 2485.4757 3262.4454 3459.7874 4157.8382 10832.3521
## 2018 817.5598 2849.7438 3927.9008 3676.1021 7041.7074 9637.7045
## 2019 1235.8249 2929.3173 3734.6734 5220.7579 13438.4430 856.1754
## 2020 1568.3579 2566.7644 3898.8501 5176.8640 7565.9636 1546.9692
## 2021 618.8893 2150.0993 3163.2461 6284.5272 7612.7585 3140.4786
## Jul Aug Sep Oct Nov Dec
## 2011 2543.5871 6258.0677 671.3997 2174.8158 2631.5086 5448.2917
## 2012 2834.8268 5112.4519 1065.1376 3006.8743 2832.1058 6260.9022
## 2013 8871.1225 4572.3990 2069.9639 3150.6647 3557.6844 7730.3153
## 2014 8509.6390 1072.7505 2499.2401 3501.1177 2882.1789 7177.1445
## 2015 7950.5142 1569.0496 2818.2509 3058.4110 3782.5731 7299.3565
## 2016 2815.3950 2328.2286 3181.5704 2887.3519 3873.3004 6559.2052
## 2017 1396.5417 4158.7154 2746.5025 3688.0760 4964.1545 7699.4466
## 2018 2665.5558 4053.4685 3024.6391 3960.9865 4382.4883 7951.2099
## 2019 4475.0908 4230.7453 3322.1716 4185.1525 4989.9148 8960.7725
## 2020 4100.4353 3203.6999 3570.6942 5348.0481 4276.5758 9237.0826
## 2021 4112.9850 3207.9518
plot.ts(Kalimantaninflowtimeseries)
plot.ts(Kalimantanoutflowtimeseries)
Kalimantanintimeseriescomponents <- decompose(Kalimantaninflowtimeseries)
Kalimantanintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## 2012 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## 2013 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## 2014 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## 2015 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## 2016 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## 2017 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## 2018 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## 2019 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## 2020 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## 2021 2355.5005 -118.3226 -498.2221 -501.9084 -643.6089 580.6372
## Jul Aug Sep Oct Nov Dec
## 2011 734.5961 972.4389 -95.8579 -624.0092 -700.0012 -1461.2426
## 2012 734.5961 972.4389 -95.8579 -624.0092 -700.0012 -1461.2426
## 2013 734.5961 972.4389 -95.8579 -624.0092 -700.0012 -1461.2426
## 2014 734.5961 972.4389 -95.8579 -624.0092 -700.0012 -1461.2426
## 2015 734.5961 972.4389 -95.8579 -624.0092 -700.0012 -1461.2426
## 2016 734.5961 972.4389 -95.8579 -624.0092 -700.0012 -1461.2426
## 2017 734.5961 972.4389 -95.8579 -624.0092 -700.0012 -1461.2426
## 2018 734.5961 972.4389 -95.8579 -624.0092 -700.0012 -1461.2426
## 2019 734.5961 972.4389 -95.8579 -624.0092 -700.0012 -1461.2426
## 2020 734.5961 972.4389 -95.8579 -624.0092 -700.0012 -1461.2426
## 2021 734.5961 972.4389
Kalimantanouttimeseriescomponents <- decompose(Kalimantanoutflowtimeseries)
Kalimantanouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## 2012 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## 2013 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## 2014 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## 2015 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## 2016 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## 2017 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## 2018 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## 2019 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## 2020 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## 2021 -2825.07684 -1701.86621 -813.75865 -326.19998 1547.90126 1179.20313
## Jul Aug Sep Oct Nov Dec
## 2011 895.53166 -70.31379 -1241.33156 -265.22422 16.11986 3605.01535
## 2012 895.53166 -70.31379 -1241.33156 -265.22422 16.11986 3605.01535
## 2013 895.53166 -70.31379 -1241.33156 -265.22422 16.11986 3605.01535
## 2014 895.53166 -70.31379 -1241.33156 -265.22422 16.11986 3605.01535
## 2015 895.53166 -70.31379 -1241.33156 -265.22422 16.11986 3605.01535
## 2016 895.53166 -70.31379 -1241.33156 -265.22422 16.11986 3605.01535
## 2017 895.53166 -70.31379 -1241.33156 -265.22422 16.11986 3605.01535
## 2018 895.53166 -70.31379 -1241.33156 -265.22422 16.11986 3605.01535
## 2019 895.53166 -70.31379 -1241.33156 -265.22422 16.11986 3605.01535
## 2020 895.53166 -70.31379 -1241.33156 -265.22422 16.11986 3605.01535
## 2021 895.53166 -70.31379
plot(Kalimantanintimeseriescomponents$seasonal,type = "l", col = "steelblue")
lines(Kalimantanouttimeseriescomponents$seasonal,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
plot(Kalimantanintimeseriescomponents$trend,type = "l", col = "green")
lines(Kalimantanouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))
plot(Kalimantanintimeseriescomponents$random ,type = "l", col = "green")
lines(Kalimantanouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))
plot(Kalimantanintimeseriescomponents$figure ,type = "l", col = "green")
lines(Kalimantanouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))