Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Inflow - Outflow

Inflow disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Sumatera Barat menggunakan bahasa pemrograman R.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowTahunan.xlsx")
datainflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>
library (readxl)
dataoutflow <- read_excel(path = "outflowTahunan.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Sumatera Barat setiap periode

plot(datainflow$Tahun,datainflow$`Sumatera Barat`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Sumatera Barat setiap periode

plot(dataoutflow$Tahun,dataoutflow$`Sumatera Barat`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sumatera Barat Setiap Periode

plot(datainflow$Tahun,datainflow$`Sumatera Barat`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Sumatera Barat`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sumatera Barat Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(datainflowperbulan$`Sumatera Barat`, type = "l", col = "green")
lines(dataoutflowperbulan$`Sumatera Barat`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

SumateraSelatantimeseries <- datainflowperbulan$`Sumatera Barat`
plot.ts(SumateraSelatantimeseries , type = "l", col = "green")

logSumateraSelatan <- log(datainflowperbulan$`Sumatera Barat`)
plot.ts(logSumateraSelatan)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Sumatera Barat

SumateraSelataninflowtimeseries <- ts(datainflowperbulan$`Sumatera Barat`, frequency=12, start=c(2011,1))
SumateraSelataninflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  544.5248  450.0701  849.2939  539.1026  691.9377  592.4192  799.5802
## 2012 1130.4905  865.3519  854.9514  704.9590  885.0385  641.2570 1038.4298
## 2013 1776.9203 1112.8960  940.8829  994.6862 1107.1890 1086.4650 1303.0975
## 2014 1675.2029 1111.3808  924.0093  993.2328  762.4694  866.8874  675.1555
## 2015 1698.0899  904.5427  969.6610  836.3249  855.4427 1045.4934 2161.9387
## 2016 1751.8196  892.1499  904.6083  737.9714  919.1321  720.4721 2928.9035
## 2017 1850.5169 1143.2622 1287.3335 1037.7823 1173.4844  683.3602 2902.9224
## 2018 2037.4366  957.8346  732.3303 1043.6172  956.1836 2214.6015 2449.9422
## 2019 1890.0168  845.6557  917.9565  986.2518  810.4107 3290.2635 1379.9442
## 2020 1936.5593  867.9322  593.6931  586.1949  460.8289 1752.8809  720.9419
## 2021 2463.1456 1078.7217  996.1128  924.2523 2033.1787 1301.2214  934.1477
##            Aug       Sep       Oct       Nov       Dec
## 2011  586.3581 2176.2413  787.3761  854.4358  513.2068
## 2012 1339.7732 1507.8169  789.7558  883.7977  550.4838
## 2013 2173.6578 1202.3046  933.7316  875.4979  548.6130
## 2014 3114.2115 1200.3284 1157.9625  931.1027  691.0219
## 2015 1729.1363  824.0283  995.3346  750.3287  538.4899
## 2016 1145.6062 1048.3006 1050.2491 1005.0248  973.9955
## 2017 1503.0438 1122.1439 1047.2614  883.3420  677.3816
## 2018 1185.0947 1199.5619 1008.1251  776.0709  497.4198
## 2019 1194.5156 1066.1918 1093.7082  771.6151  503.1632
## 2020  934.1740  842.2214  604.4694  893.2831  502.3578
## 2021 1017.1201
SumateraSelatanoutflowtimeseries <- ts(dataoutflowperbulan$`Sumatera Barat`, frequency=12, start=c(2011,1))
SumateraSelatanoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  306.70068  227.74199  347.23365  335.95990  327.77383  399.24039
## 2012  214.52616  252.76902  462.17950  577.54488  461.72280  623.94257
## 2013  245.10797  218.45108  398.34203  317.45463  461.02830  471.02622
## 2014  185.88126  273.86294  480.13567  452.26115  466.95347  548.54011
## 2015  124.28159  443.52843  443.34413  514.88579  503.17081  926.50648
## 2016  140.03323  351.99398  316.41743  604.36993  757.45169 2598.20471
## 2017  349.10531  710.49354  848.72339  860.68821  999.67421 3176.59985
## 2018   55.96053  302.53616  543.51806  570.24349 1461.73993 2601.75460
## 2019   75.55494  370.26231  613.28838  952.67623 3692.93346   50.39067
## 2020  102.48174  308.36325  782.28278  819.13541 2242.07887   34.07573
## 2021   86.54225  374.74081  559.24066 1554.62334 2167.68623  295.68386
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  448.56438 1376.25990  147.70279  298.57216  349.75474  734.22520
## 2012  543.65577 1260.36359  163.22296  437.83317  405.63471 1030.89819
## 2013 1130.65362  773.18744  411.62158  536.88884  421.89894 1125.35118
## 2014 2100.82357  115.32964  393.25698  416.17580  555.13227 1071.69548
## 2015 2153.22221  161.12169  337.86600  346.21304  452.70749 1063.81167
## 2016  636.60428  298.35824  592.36023  470.20911  815.03093 1616.78339
## 2017  151.96773  583.16929  372.26254  511.67734  738.88167 1451.21128
## 2018  113.42245  401.53968  287.98036  398.91845  512.61803 1196.57690
## 2019  445.31828  672.32642  403.02094  428.11685  511.72653 1249.35115
## 2020  651.14472  565.58335  343.19704  792.57966  483.75028 1638.08473
## 2021  684.83394  217.18849
plot.ts(SumateraSelataninflowtimeseries)

plot.ts(SumateraSelatanoutflowtimeseries)

SumateraSelatanintimeseriescomponents <- decompose(SumateraSelataninflowtimeseries)
SumateraSelatanintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
## 2012  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
## 2013  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
## 2014  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
## 2015  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
## 2016  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
## 2017  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
## 2018  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
## 2019  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
## 2020  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
## 2021  677.50012 -167.90248 -240.27096 -255.95989 -254.27532  231.31747
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  527.87634  371.73426   96.85991 -177.47315 -269.01396 -540.39235
## 2012  527.87634  371.73426   96.85991 -177.47315 -269.01396 -540.39235
## 2013  527.87634  371.73426   96.85991 -177.47315 -269.01396 -540.39235
## 2014  527.87634  371.73426   96.85991 -177.47315 -269.01396 -540.39235
## 2015  527.87634  371.73426   96.85991 -177.47315 -269.01396 -540.39235
## 2016  527.87634  371.73426   96.85991 -177.47315 -269.01396 -540.39235
## 2017  527.87634  371.73426   96.85991 -177.47315 -269.01396 -540.39235
## 2018  527.87634  371.73426   96.85991 -177.47315 -269.01396 -540.39235
## 2019  527.87634  371.73426   96.85991 -177.47315 -269.01396 -540.39235
## 2020  527.87634  371.73426   96.85991 -177.47315 -269.01396 -540.39235
## 2021  527.87634  371.73426
SumateraSelatanouttimeseriescomponents <- decompose(SumateraSelatanoutflowtimeseries)
SumateraSelatanouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
## 2012 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
## 2013 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
## 2014 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
## 2015 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
## 2016 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
## 2017 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
## 2018 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
## 2019 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
## 2020 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
## 2021 -535.28958 -328.69192 -132.69390  -49.10511  545.48678  538.93605
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  171.98463  -44.52431 -321.49495 -208.98678 -160.73573  525.11481
## 2012  171.98463  -44.52431 -321.49495 -208.98678 -160.73573  525.11481
## 2013  171.98463  -44.52431 -321.49495 -208.98678 -160.73573  525.11481
## 2014  171.98463  -44.52431 -321.49495 -208.98678 -160.73573  525.11481
## 2015  171.98463  -44.52431 -321.49495 -208.98678 -160.73573  525.11481
## 2016  171.98463  -44.52431 -321.49495 -208.98678 -160.73573  525.11481
## 2017  171.98463  -44.52431 -321.49495 -208.98678 -160.73573  525.11481
## 2018  171.98463  -44.52431 -321.49495 -208.98678 -160.73573  525.11481
## 2019  171.98463  -44.52431 -321.49495 -208.98678 -160.73573  525.11481
## 2020  171.98463  -44.52431 -321.49495 -208.98678 -160.73573  525.11481
## 2021  171.98463  -44.52431
plot(SumateraSelatanintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(SumateraSelatanouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SumateraSelatanintimeseriescomponents$trend,type = "l", col = "orange")
lines(SumateraSelatanouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SumateraSelatanintimeseriescomponents$random ,type = "l", col = "orange")
lines(SumateraSelatanouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SumateraSelatanintimeseriescomponents$figure ,type = "l", col = "orange")
lines(SumateraSelatanouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))