Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Inflow - Outflow

Inflow disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Sumatera Selatan menggunakan bahasa pemrograman R.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowTahunan.xlsx")
datainflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>
library (readxl)
dataoutflow <- read_excel(path = "outflowTahunan.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Sumatera Selatan setiap periode

plot(datainflow$Tahun,datainflow$`Sumatera Selatan`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Sumatera Selatan setiap periode

plot(dataoutflow$Tahun,dataoutflow$`Sumatera Selatan`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sumatera Selatan Setiap Periode

plot(datainflow$Tahun,datainflow$`Sumatera Selatan`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Sumatera Selatan`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sumatera Selatan Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(datainflowperbulan$`Sumatera Selatan`, type = "l", col = "green")
lines(dataoutflowperbulan$`Sumatera Selatan`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

SumateraSelatantimeseries <- datainflowperbulan$`Sumatera Selatan`
plot.ts(SumateraSelatantimeseries , type = "l", col = "green")

logSumateraSelatan <- log(datainflowperbulan$`Sumatera Selatan`)
plot.ts(logSumateraSelatan)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Sumatera Selatan

SumateraSelataninflowtimeseries <- ts(datainflowperbulan$`Sumatera Selatan`, frequency=12, start=c(2011,1))
SumateraSelataninflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  456.4919  363.4010  661.9322  355.8931  655.5655  445.7856  533.9543
## 2012  847.7118  557.6804  842.2304  433.0244  852.8930  791.5389  572.3589
## 2013 1241.6259  583.4391  369.7243  594.3824  606.8414  451.6471  436.7965
## 2014 1290.5744  697.7210  539.5584  601.5915  496.8451  761.1483  292.8094
## 2015 1373.5722  467.9884  507.1713  316.2315  646.5083  769.0185 2218.0190
## 2016 1724.9435  757.5883  698.3839  580.2943  975.7450  820.2649 3028.2880
## 2017 1247.4278  649.6430  715.8801  816.9179  919.5968  497.3588 3480.9746
## 2018 1386.1845  640.7069  770.9428  855.5950  824.7960 2888.6614 1826.9664
## 2019 1729.8884  787.8768  710.2534 1126.8944  967.7749 3393.1168 1151.6163
## 2020 2054.0128  914.8161  680.3686  665.8459 1019.4927 1432.5599 1025.4901
## 2021 1825.6471  768.0047  782.0909 1035.3983 1947.4074 1072.3469  963.1947
##            Aug       Sep       Oct       Nov       Dec
## 2011  744.7032 1712.5480  561.2395  979.5828  349.2438
## 2012 1688.2790  825.1074  638.0242  767.6416  309.4864
## 2013 2094.8131  390.1139  941.0992  631.0574  305.7795
## 2014 2458.0650  693.6043  957.7864  685.5728  562.6037
## 2015 1058.1097  827.1355  979.8054  933.4509  700.1903
## 2016  969.6394  966.3684  828.4733  743.3749  658.3444
## 2017 1085.7413 1042.5878 1027.7669  931.9672  659.4133
## 2018 1187.7423 1109.3445  995.0373  993.8724  786.6507
## 2019 1222.7634 1014.0402 1049.8722  925.4907  732.1411
## 2020  933.0685  922.3794  619.9658  929.7524  558.5297
## 2021  711.8520
SumateraSelatanoutflowtimeseries <- ts(dataoutflowperbulan$`Sumatera Selatan`, frequency=12, start=c(2011,1))
SumateraSelatanoutflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  665.0204 1327.9789  784.5960 1664.4175 1013.5138 1173.7556 1295.7944
## 2012  585.9661 1172.7767 1566.9525 1156.5310 1230.6371 1367.3602 1140.7971
## 2013  313.1714  522.0305  822.0748  370.0617  820.6871  914.3388 2150.1090
## 2014  681.3193  728.3859 1107.6390 1145.9336  970.1190 1138.7692 3375.7872
## 2015  303.5811  730.8745  947.5489 1528.0217  971.6950 1253.9235 3292.4818
## 2016  291.6833  754.0870  998.3022 1389.9930 1557.6113 3449.6370 1082.9331
## 2017  846.0081 1142.9021 1533.7630 1016.7147 1223.4515 4005.3341  441.6113
## 2018  577.3886 1086.3337 1585.9543 1302.7789 2209.9709 3882.2670  783.2563
## 2019  539.7334 1120.4360 1655.8566 2078.5155 4646.7802  448.9773 1286.7151
## 2020  516.0607 1086.5070 1851.9668 1261.4710 2590.3465  607.8210 1445.3980
## 2021  338.7335 1037.2551 1384.9886 2483.6447 2709.4180 1017.8561 1575.3735
##            Aug       Sep       Oct       Nov       Dec
## 2011 2621.9702  312.8544  903.8191  872.5556 1887.2803
## 2012 2552.5039  668.3767 1229.9850  806.9955 2121.1970
## 2013 1120.7014 1160.2111 1070.8040 1267.4096 2161.6112
## 2014  255.9222  760.6027  899.5059 1009.9874 1298.2534
## 2015  637.9153  689.0966  528.2202 1125.9204 1474.4510
## 2016 1108.8282 1044.8214 1044.6620 1210.0297 1823.2746
## 2017 1246.7486  781.9704 1137.4882 1686.9596 1918.1924
## 2018 1204.7220 1000.8916  973.8639 1416.3610 1907.2461
## 2019 1315.9151  889.2873  967.7377 1603.9596 2567.3698
## 2020 1494.1643 1371.2573 1979.2621 1571.4548 2533.1589
## 2021  888.5372
plot.ts(SumateraSelataninflowtimeseries)

plot.ts(SumateraSelatanoutflowtimeseries)

SumateraSelatanintimeseriescomponents <- decompose(SumateraSelataninflowtimeseries)
SumateraSelatanintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
## 2012  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
## 2013  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
## 2014  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
## 2015  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
## 2016  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
## 2017  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
## 2018  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
## 2019  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
## 2020  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
## 2021  491.487816 -299.776183 -327.111996 -306.363005 -159.769086  338.917294
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  509.571884  389.746351   -6.409713 -100.157546 -116.102210 -414.033605
## 2012  509.571884  389.746351   -6.409713 -100.157546 -116.102210 -414.033605
## 2013  509.571884  389.746351   -6.409713 -100.157546 -116.102210 -414.033605
## 2014  509.571884  389.746351   -6.409713 -100.157546 -116.102210 -414.033605
## 2015  509.571884  389.746351   -6.409713 -100.157546 -116.102210 -414.033605
## 2016  509.571884  389.746351   -6.409713 -100.157546 -116.102210 -414.033605
## 2017  509.571884  389.746351   -6.409713 -100.157546 -116.102210 -414.033605
## 2018  509.571884  389.746351   -6.409713 -100.157546 -116.102210 -414.033605
## 2019  509.571884  389.746351   -6.409713 -100.157546 -116.102210 -414.033605
## 2020  509.571884  389.746351   -6.409713 -100.157546 -116.102210 -414.033605
## 2021  509.571884  389.746351
SumateraSelatanouttimeseriescomponents <- decompose(SumateraSelatanoutflowtimeseries)
SumateraSelatanouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
## 2012 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
## 2013 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
## 2014 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
## 2015 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
## 2016 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
## 2017 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
## 2018 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
## 2019 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
## 2020 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
## 2021 -840.21380 -395.36177   37.92850  -63.06564  481.08395  568.98365
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  311.95619   40.97787 -448.31460 -248.63179  -75.48302  630.14046
## 2012  311.95619   40.97787 -448.31460 -248.63179  -75.48302  630.14046
## 2013  311.95619   40.97787 -448.31460 -248.63179  -75.48302  630.14046
## 2014  311.95619   40.97787 -448.31460 -248.63179  -75.48302  630.14046
## 2015  311.95619   40.97787 -448.31460 -248.63179  -75.48302  630.14046
## 2016  311.95619   40.97787 -448.31460 -248.63179  -75.48302  630.14046
## 2017  311.95619   40.97787 -448.31460 -248.63179  -75.48302  630.14046
## 2018  311.95619   40.97787 -448.31460 -248.63179  -75.48302  630.14046
## 2019  311.95619   40.97787 -448.31460 -248.63179  -75.48302  630.14046
## 2020  311.95619   40.97787 -448.31460 -248.63179  -75.48302  630.14046
## 2021  311.95619   40.97787
plot(SumateraSelatanintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(SumateraSelatanouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SumateraSelatanintimeseriescomponents$trend,type = "l", col = "orange")
lines(SumateraSelatanouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SumateraSelatanintimeseriescomponents$random ,type = "l", col = "orange")
lines(SumateraSelatanouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(SumateraSelatanintimeseriescomponents$figure ,type = "l", col = "orange")
lines(SumateraSelatanouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))