##Load data
dat1 <- read.csv("/Users/fc2284/Desktop/bip/dati.csv")
raw <-dim(dat1)[1]
# Distance contact points
euclideanDist <- function(x1, y1, x2, y2){sqrt((x2 - x1)^2 + (y2 - y1)^2)}
dat1$fga <-sqrt((dat1$ThumbXinMM-dat1$IndexXinMM)^2 + (dat1$ThumbYinMM -dat1$IndexYinMM)^2)
#Blocks
dat1$blocks <- rep(1:4,each= 200, times = 2)
#Data Cleaning
dat1 <- dat1 %>%
filter(ThumbX != -1, Time <= 1.5, Time > .2,fga > 15, fga < 120)
filtered<- dim(dat1)[1]
#Removed trial
1 - (filtered/raw)
## [1] 0.051875
#------------------------------------------------------------------------------
## Weber Law
#-----------------------------------------------------------------------------
W = dat1%>% group_by(Distance, Condition, blocks, subj) %>%
summarise( fga = sd(fga),
ThumbXinMM = sd(ThumbXinMM, na.rm = TRUE),
ThumbYinMM = sd(ThumbYinMM),
IndexXinMM = sd(IndexXinMM),
IndexYinMM = sd(IndexYinMM),
Time = sd (Time),
errT = sum(at)/n(),
errI = sum(ai)/n()
)
#Fga ~ Distance
ggplot(W, aes(Distance, fga, colour = Condition )) +
geom_point() +
theme_minimal() +
geom_smooth(method = "lm", se = FALSE) +
facet_grid(subj~blocks)
#ThumbXinMM ~ Distance
ggplot(W, aes(Distance, ThumbXinMM, colour = Condition )) +
geom_point() +
theme_minimal() +
geom_smooth(method = "lm", se = FALSE) +
facet_grid( subj~blocks)
#IndexXinMM ~ Distance
ggplot(W, aes(Distance, IndexXinMM, colour = Condition )) +
geom_point() +
theme_minimal() +
geom_smooth(method = "lm",se = FALSE) +
facet_grid( subj~blocks)
#IndexYinMM ~ Distance
ggplot(W, aes(Distance, IndexYinMM, colour = Condition )) +
geom_point() +
theme_minimal() +
geom_smooth(method = "lm",se = FALSE) +
facet_grid( subj~blocks)
#Time ~ Distance
ggplot(W, aes(Distance, Time, colour = Condition )) +
geom_point() +
theme_minimal() +
geom_smooth(method = "lm",se = FALSE) +
facet_grid( subj~blocks)
#errI ~ Distance
ggplot(W, aes(Distance, errI, colour = Condition )) +
geom_point() +
theme_minimal() +
facet_grid( subj~blocks)
#errT ~ Distance
ggplot(W, aes(Distance, errT, colour = Condition)) +
geom_point() +
theme_minimal() +
facet_grid( subj~blocks)
#------------------------------------------------------------------------------
##Detrending Time~Distance
#-----------------------------------------------------------------------------
bb <- dat1%>%
group_by(Distance, Condition, blocks, subj) %>%
do(
residFGA = residuals(lm(fga~Time+Distance, data = .))
) %>%
unnest(cols = c(residFGA)) %>%
group_by(Distance, Condition, blocks, subj) %>%
summarise(
sdFGAdetrend = sd(residFGA)
)
ggplot(bb, aes(Distance, sdFGAdetrend, colour = Condition)) +
geom_point() +
theme_minimal() +
geom_smooth(method = "lm", se = FALSE) +
facet_grid(subj~blocks)
#------------------------------------------------------------------------------
## Thumb-Index Correlation
#-----------------------------------------------------------------------------
W2 = dat1%>% group_by(Distance, Condition, blocks, subj) %>%
summarise(CorTIx = cor(IndexXinMM, ThumbXinMM),
CorTIy = cor(IndexYinMM, ThumbYinMM)
)
ggplot(data=W2, aes(y=CorTIx, x=Distance)) +
geom_line(linetype = "dashed")+
geom_point()+
theme_minimal() +
facet_grid( subj~blocks)
ggplot(data=W2, aes(y=CorTIy, x=Distance)) +
geom_line(linetype = "dashed")+
geom_point()+
theme_minimal() +
facet_grid( subj~blocks)
#------------------------------------------------------------------------------
## Qualche analisi sugli errori
#-----------------------------------------------------------------------------
#1: Il soggetto sbaglia sia con pollice che con indice (327 trial)
dat2<- subset(dat1, at == 0 | ai == 0)
dim(dat2)
## [1] 327 31
W = dat2%>% group_by(Distance,subj) %>%
summarise( fgaSD = sd(fga)
)
ggplot(W, aes(Distance, fgaSD)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
facet_grid(~subj)
#2: Il soggetto sbaglia solo con indice (268)
dat2<- subset(dat1, at == 0 & ai == 1)
dim(dat2)
## [1] 268 31
W = dat2%>% group_by(Distance,subj) %>%
summarise( fgaSD = sd(fga)
)
ggplot(W, aes(Distance, fgaSD)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
facet_grid(~subj)
#3: Il soggetto sbaglia solo con pollice (268)
dat2<- subset(dat1, at == 1 & ai == 0)
dim(dat2)
## [1] 26 31
W = dat2%>% group_by(Distance,subj) %>%
summarise( fgaSD = sd(fga)
)
ggplot(W, aes(Distance, fgaSD)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
facet_grid(~subj)
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).