Dosen Pengampu : Prof. Dr. Suhartono, M.Kom

Mata Kuliah : Linear Algebra

Prodi : Teknik Informatika

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Pengertian Inflow-Outflow Uang Kartal

Inflow adalah uang yang masuk ke Bank Indonesia melalui kegiatan penyetoran. Sedangkan outflow adalah uang yang keluar dari Bank Indonesia melalui kegiatan penarikan. Setiap daerah memiliki prediksi data inflow-outflow uang kartal yang berbeda-beda.

Berikut komparasi visualisasi dan prediksi data inflow-outflow uang kartal antara Jambi dengan Aceh menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path ="datainflow.xlsx")
datainflow
## # A tibble: 10 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path ="dataoutflow.xlsx")
dataoutflow
## # A tibble: 10 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>

1. Komparasi Visualisasi dan Prediksi Data Inflow Uang Kartal antara Jambi dengan Aceh Setiap Periode

plot(datainflow$Tahun,datainflow$Jambi,type = "l", col= "black")
lines(datainflow$Tahun,datainflow$Aceh,col="brown")
legend("top",c("Inflow Jambi","Inflow Aceh"),fill=c("black","brown"))

2. Komparasi Visualisasi dan Prediksi Data Outflow Uang Kartal antara Jambi dengan Aceh Setiap Periode

plot(dataoutflow$Tahun,dataoutflow$Jambi,type = "l", col= "purple")
lines(dataoutflow$Tahun,dataoutflow$Aceh,col="blue")
legend("top",c("Outflow Jambi","Outflow Aceh"),fill=c("purple","blue"))

3. Komparasi Visualisasi dan Prediksi Data Inflow-Outflow Uang Kartal antara Jambi dengan Aceh Setiap Periode

plot(datainflow$Tahun,datainflow$Jambi,type = "l", col= "black")
lines(datainflow$Tahun,datainflow$Aceh,col="brown")
lines(dataoutflow$Tahun,dataoutflow$Jambi,col= "purple")
lines(dataoutflow$Tahun,dataoutflow$Aceh,col="blue")
legend("top",c("Inflow Jambi","Inflow Aceh","Outflow Jambi","Outflow Aceh"),fill=c("black","brown","purple","blue"))

4. Komparasi Visualisasi dan Prediksi Data Inflow-Outflow Uang Kartal antara Jambi dengan Aceh Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
## New names:
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 13
##    Bulan               ...2  Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`
##    <dttm>              <lgl>    <dbl> <dbl>            <dbl>            <dbl>
##  1 2011-01-01 00:00:00 NA       4164.  124.            2068.             545.
##  2 2011-02-01 00:00:00 NA       3338.  115.            1826.             450.
##  3 2011-03-01 00:00:00 NA       4878.  154.            2028.             849.
##  4 2011-04-01 00:00:00 NA       3157.  122.            1429.             539.
##  5 2011-05-01 00:00:00 NA       3821.  123.            1539.             692.
##  6 2011-06-01 00:00:00 NA       3686.  151.            1637.             592.
##  7 2011-07-01 00:00:00 NA       4370.  107.            1791.             800.
##  8 2011-08-01 00:00:00 NA       3668.  184.            1256.             586.
##  9 2011-09-01 00:00:00 NA      12875.  606.            4172.            2176.
## 10 2011-10-01 00:00:00 NA       4777.  158.            1941.             787.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, `Kep. Riau` <dbl>,
## #   Jambi <dbl>, `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 13
##    Keterangan          ...2  Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`
##    <dttm>              <lgl>    <dbl> <dbl>            <dbl>            <dbl>
##  1 2011-01-01 00:00:00 NA       3442.  350.             941.             307.
##  2 2011-02-01 00:00:00 NA       3989.  193.             990.             228.
##  3 2011-03-01 00:00:00 NA       4229.  230.            1209.             347.
##  4 2011-04-01 00:00:00 NA       6721.  529.            1653.             336.
##  5 2011-05-01 00:00:00 NA       5787.  523.            1465.             328.
##  6 2011-06-01 00:00:00 NA       7395.  406.            2167.             399.
##  7 2011-07-01 00:00:00 NA       7154.  958.            1695.             449.
##  8 2011-08-01 00:00:00 NA      16043. 1046.            4104.            1376.
##  9 2011-09-01 00:00:00 NA       1915.  124.             824.             148.
## 10 2011-10-01 00:00:00 NA       5174.  634.            1392.             299.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, `Kep. Riau` <dbl>,
## #   Jambi <dbl>, `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$Jambi, type = "l", col = "black")
lines(datainflowperbulan$Aceh,col="brown")
lines(dataoutflowperbulan$Jambi, col = "purple")
lines(dataoutflowperbulan$Aceh,col="blue")
legend("top",c("Inflow Jambi","Inflow Aceh","Outflow Jambi","Outflow Aceh"),fill=c("black","brown","purple","blue"))

Jambitimeseries <- datainflowperbulan$Jambi
Acehtimeseries <- datainflowperbulan$Aceh
plot.ts(Jambitimeseries , type = "l", col = "black")
lines(Acehtimeseries , type = "l", col = "brown")
legend("top",c("Jambi Timeseries","Aceh Timeseries"),fill=c("black","brown"))

logJambi <- log(datainflowperbulan$Jambi)
logAceh <- log(datainflowperbulan$Aceh)
plot.ts(logJambi, type = "l", col = "black")
lines(logAceh , type = "l", col = "brown")
legend("top",c("logJambi","logAceh"),fill=c("black","brown"))

library(TTR)
JambiSMA3 <- SMA(datainflowperbulan$Jambi,n=3)
AcehSMA3 <- SMA(datainflowperbulan$Aceh,n=3)
plot.ts(JambiSMA3, type = "l", col = "black")
lines(AcehSMA3, type = "l", col = "brown")
legend("top",c("JambiSMA3","AcehSMA3"),fill=c("black","brown"))

library(TTR)
JambiSMA3 <- SMA(datainflowperbulan$Jambi,n=8)
AcehSMA3 <- SMA(datainflowperbulan$Aceh,n=8)
plot.ts(JambiSMA3, type = "l", col = "black")
lines(AcehSMA3, type = "l", col = "brown")
legend("top",c("JambiSMA3","AcehSMA3"),fill=c("black","brown"))

5. Komparasi Visualisasi dan Prediksi Data Inflow-Outflow Time Series Uang Kartal antara Jambi dengan Aceh

Jambiinflowtimeseries <- ts(datainflowperbulan$Jambi, frequency=12, start=c(2011,1))
Acehinflowtimeseries <- ts(datainflowperbulan$Aceh, frequency=12, start=c(2011,1))
Jambiinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   48.21238   39.91336  202.77581   76.36759  102.29337   80.38363
## 2012  214.78357  185.06614  118.25569  112.18712  176.73267  131.65442
## 2013  440.25724  250.16557  156.40296  131.70444   80.43460   90.88444
## 2014  648.84622  443.17728  218.60749  372.98546  277.49781  326.07002
## 2015  800.91577  310.67803  334.27000  339.99797  285.21811  266.80514
## 2016  723.86727  399.44327  227.89071  207.32596  294.89205  265.25147
## 2017  436.71704  349.18620  374.44420  291.87853  265.93193  109.35945
## 2018  850.92308  423.79251  432.57396  284.21732  331.44473  943.33760
## 2019  928.32921  508.44605  501.71263  395.87576  375.81227 1377.08370
## 2020  929.25223  453.21208  375.57835  488.00832  366.02264  926.36280
## 2021 1319.31010  533.89020  481.47669  442.30053  954.47189  568.16022
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  118.45074   91.88117  618.33464  137.23519  238.83742  112.93547
## 2012  178.67562  446.70847  180.60249   96.89252  190.29249  106.61224
## 2013  150.73569  696.17818  239.01380  381.11280  240.84581  189.04884
## 2014  228.38825 1336.65537  383.31015  366.82210  328.60113  238.13597
## 2015 1033.05014  473.13670  295.54859  329.75416  266.79923  241.96031
## 2016 1069.41796  211.81993  325.26906  251.99989  234.81316  186.17002
## 2017 1008.96424  331.35488  369.25742  288.45059  300.80490  277.28824
## 2018  555.66909  452.09732  390.12811  409.82051  356.98477  225.60052
## 2019  517.64046  582.60662  370.00861  477.26284  302.21112  149.17703
## 2020  418.88012  362.62433  363.94528  290.43227  404.08403  249.99980
## 2021  337.72947  342.40788
Acehinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  124.33329  115.14321  154.41614  122.18349  122.75253  151.37534
## 2012  315.65341  292.57807  170.13069  139.33374  167.56600  119.32971
## 2013 5571.15653 3457.27812 3253.57336 3775.08977 3705.38033 3449.77565
## 2014  779.00596  332.03457  248.89939  260.82180  168.17801  194.97802
## 2015  836.57498  376.45107  317.53476  263.06848  256.64615  398.59527
## 2016  883.11220  498.41373  242.45180  218.98473  298.46423  450.32018
## 2017 1120.37553  452.83734  347.32016  240.71874  299.60563  194.84441
## 2018 1279.35872  366.57150  278.86587  262.95066  288.49282 1005.08498
## 2019 1293.88334  565.87121  397.27368  342.84300  420.44274 1554.92585
## 2020 1641.95487  692.74998  297.06861  281.42142  489.21304 1095.11262
## 2021  762.78539  487.91516  368.91965  308.33410  566.54102  502.60975
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  107.22432  183.84525  605.62334  157.64630  287.24653  176.19523
## 2012  196.61835  420.06418  286.31394  142.89984  288.58842   80.49051
## 2013 3456.32173 8516.17096  243.91990  379.41362  322.99838  205.46842
## 2014  173.99322 1306.11875  271.45458  454.45573  219.11177  157.53593
## 2015  977.94399  495.56495  179.23767  257.65850  227.20326  123.34945
## 2016 1374.47417  310.75050  538.99459  432.31664  301.61184  225.04199
## 2017 1149.75614  264.01934  627.70230  365.36280  275.68807  175.99260
## 2018  784.64208  369.23511  426.04458  344.08223  243.18631  150.59965
## 2019  473.28934  684.81679  405.51614  467.20195  436.23339  466.53727
## 2020  257.81810  592.86464  410.39330  273.60601  438.09977  170.52803
## 2021  280.32142  424.17610
Jambioutflowtimeseries <- ts(dataoutflowperbulan$Jambi, frequency=12, start=c(2011,1))
Acehoutflowtimeseries <- ts(dataoutflowperbulan$Aceh, frequency=12, start=c(2011,1))
Jambioutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  297.46348  280.08970  341.37188  474.26014  371.36905  540.43609
## 2012  133.61579  321.29557  315.41057  373.26078  441.58952  474.63459
## 2013  110.31731  184.50535  223.54744  235.42017  450.54670  349.51626
## 2014  351.35683  459.63127  637.62828  526.41165  683.34064  651.89272
## 2015  249.99472  486.10988  549.06994  721.86428  701.16932  931.14718
## 2016  229.69662  442.46621  487.32817  572.51965  587.13872 1610.89703
## 2017  394.17886  553.63581  500.03923  530.31764  570.86673 1961.91565
## 2018  275.03184  451.87980  498.71186  687.34280 1222.83919 1579.32715
## 2019  218.20233  534.52562  559.51510  895.65817 2018.12386  147.10847
## 2020  230.43948  421.99569  606.04929  713.68012 1262.75583  143.79548
## 2021   54.41456  487.87292  732.48101 1261.14201 1578.66374  642.31328
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  428.10203 1056.05643   92.78528  295.39728  272.21261  767.15036
## 2012  330.20592  835.74847  221.85612  472.49384  299.07579  794.04754
## 2013  839.48154  339.88048  732.69193  819.24007  782.02490 1235.18658
## 2014 1929.38736  274.46904  553.86575  703.65271  588.68032 1000.86095
## 2015 1582.71912  395.76377  549.45261  479.75684  631.21748 1046.24662
## 2016  456.38157  430.25770  842.64910  521.69293  648.58138  944.35648
## 2017  212.49734  680.41258  470.55865  568.53590  820.95090 1169.98413
## 2018  391.43773  555.29629  475.32140  545.11918  735.03562 1042.05433
## 2019  717.81375  656.73797  617.28665  719.15618  727.75492 1392.15834
## 2020  633.64958  610.36918  689.06184 1124.09728  807.10093 1706.97368
## 2021  664.55917  624.91746
Acehoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  349.57673  192.62487  230.35748  528.59007  523.47023  405.84701
## 2012  420.97459  217.70857  503.88607  600.25342  429.26734  606.25526
## 2013  758.75245 1850.82994 2442.65886 1618.83372 2777.13063 2209.74012
## 2014  288.10448  489.92887  504.83732  773.93194  485.84142  912.38357
## 2015  269.29171  255.71308  521.69449 1125.85624  564.44034 1011.07770
## 2016  307.32375  172.45727  730.75026  667.74179 1079.70825 2642.66616
## 2017  247.27680  344.01370  677.88709  850.88747 1157.54011 2346.78323
## 2018  120.03917  266.02669  996.17473  707.23188 1634.43230 1889.68997
## 2019   85.36298  400.92165  964.22663 1218.54729 3312.30047  122.91218
## 2020  182.38950  426.10026 1433.83382 1432.33902 1689.68700  436.00470
## 2021   56.98918   60.56520  591.41875 1789.00566 2112.99646  176.09492
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  957.58488 1046.09243  123.98156  634.45751  595.14381  750.32697
## 2012  600.85083  791.04331  303.81795  854.83456  207.40890  841.70726
## 2013 5383.25551 2570.21842  566.69494  895.80335  699.91951 1504.22825
## 2014 1538.16507  285.80192  611.06198  902.31059  586.60778 1250.89508
## 2015 1558.53777  301.57675 1040.79937  316.39942  824.14892 1847.02405
## 2016  692.69059  653.34617 1027.41562  515.70143  962.49370 1858.31057
## 2017  282.09425 1520.49864  354.31840  667.42332  766.85433 2544.67010
## 2018  278.98765 1155.80705  609.61619  549.33587  622.53291 2619.93560
## 2019  687.35821 1230.78590  600.44006  552.87679 1055.67352 2855.56524
## 2020 1768.67777  455.94178  829.58521 1174.85940  774.36491 2269.89617
## 2021  662.04381  320.71844
plot.ts(Jambiinflowtimeseries,type = "l", col = "black")
lines(Acehinflowtimeseries, type = "l", col = "brown")
legend("top",c("Jambiinflowtimeseries","Acehinflowtimeseries"),fill=c("black","brown"))

plot.ts(Jambioutflowtimeseries,type = "l", col = "purple")
lines(Acehoutflowtimeseries, type = "l", col = "blue")
legend("top",c("Jambioutflowtimeseries","Acehoutflowtimeseries"),fill=c("purple","blue"))

Jambiintimeseriescomponents <- decompose(Jambiinflowtimeseries)
Acehintimeseriescomponents <- decompose(Acehinflowtimeseries)
Jambiintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
## 2012  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
## 2013  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
## 2014  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
## 2015  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
## 2016  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
## 2017  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
## 2018  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
## 2019  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
## 2020  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
## 2021  331.44588  -14.12609  -81.49621  -93.86719 -114.25191  104.66208
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  156.97755  120.14214  -28.04183  -81.29134 -102.91768 -197.23539
## 2012  156.97755  120.14214  -28.04183  -81.29134 -102.91768 -197.23539
## 2013  156.97755  120.14214  -28.04183  -81.29134 -102.91768 -197.23539
## 2014  156.97755  120.14214  -28.04183  -81.29134 -102.91768 -197.23539
## 2015  156.97755  120.14214  -28.04183  -81.29134 -102.91768 -197.23539
## 2016  156.97755  120.14214  -28.04183  -81.29134 -102.91768 -197.23539
## 2017  156.97755  120.14214  -28.04183  -81.29134 -102.91768 -197.23539
## 2018  156.97755  120.14214  -28.04183  -81.29134 -102.91768 -197.23539
## 2019  156.97755  120.14214  -28.04183  -81.29134 -102.91768 -197.23539
## 2020  156.97755  120.14214  -28.04183  -81.29134 -102.91768 -197.23539
## 2021  156.97755  120.14214
Acehintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2012  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2013  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2014  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2015  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2016  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2017  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2018  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2019  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2020  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2021  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2012  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2013  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2014  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2015  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2016  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2017  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2018  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2019  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2020  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2021  209.38959  624.31306
Jambiouttimeseriescomponents <- decompose(Jambioutflowtimeseries)
Acehouttimeseriescomponents <- decompose(Acehoutflowtimeseries)
Jambiouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
## 2012 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
## 2013 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
## 2014 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
## 2015 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
## 2016 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
## 2017 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
## 2018 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
## 2019 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
## 2020 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
## 2021 -429.76166 -219.28351 -144.71768  -53.62864  238.04681  221.42655
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  120.11152  -48.40994 -109.85159  -14.39860  -16.35840  456.82513
## 2012  120.11152  -48.40994 -109.85159  -14.39860  -16.35840  456.82513
## 2013  120.11152  -48.40994 -109.85159  -14.39860  -16.35840  456.82513
## 2014  120.11152  -48.40994 -109.85159  -14.39860  -16.35840  456.82513
## 2015  120.11152  -48.40994 -109.85159  -14.39860  -16.35840  456.82513
## 2016  120.11152  -48.40994 -109.85159  -14.39860  -16.35840  456.82513
## 2017  120.11152  -48.40994 -109.85159  -14.39860  -16.35840  456.82513
## 2018  120.11152  -48.40994 -109.85159  -14.39860  -16.35840  456.82513
## 2019  120.11152  -48.40994 -109.85159  -14.39860  -16.35840  456.82513
## 2020  120.11152  -48.40994 -109.85159  -14.39860  -16.35840  456.82513
## 2021  120.11152  -48.40994
Acehouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2012 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2013 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2014 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2015 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2016 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2017 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2018 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2019 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2020 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2021 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2012  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2013  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2014  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2015  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2016  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2017  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2018  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2019  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2020  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2021  414.184121   42.244469
plot(Jambiintimeseriescomponents$seasonal,type = "l", col = "black")
lines(Acehintimeseriescomponents$seasonal,col="brown")
lines(Jambiouttimeseriescomponents$seasonal, type = "l", col = "purple")
lines(Acehouttimeseriescomponents$seasonal,col="blue")
legend("top",c("Jambi Inflow","Aceh Inflow", "Jambi Outflow","Aceh Outflow"),fill=c("black","brown","purple","blue"))

plot(Jambiintimeseriescomponents$trend,type = "l", col = "black")
lines(Acehintimeseriescomponents$trend,col="brown")
lines(Jambiouttimeseriescomponents$trend, type = "l", col = "purple")
lines(Acehouttimeseriescomponents$trend,col="blue")
legend("top",c("Jambi Inflow","Aceh Inflow", "Jambi Outflow","Aceh Outflow"),fill=c("black","brown","purple","blue"))

plot(Jambiintimeseriescomponents$random,type = "l", col = "black")
lines(Acehintimeseriescomponents$random,col="brown")
lines(Jambiouttimeseriescomponents$random, type = "l", col = "purple")
lines(Acehouttimeseriescomponents$random,col="blue")
legend("top",c("Jambi Inflow","Aceh Inflow", "Jambi Outflow","Aceh Outflow"),fill=c("black","brown","purple","blue"))

plot(Jambiintimeseriescomponents$figure,type = "l", col = "black")
lines(Acehintimeseriescomponents$figure,col="brown")
lines(Jambiouttimeseriescomponents$figure, type = "l", col = "purple")
lines(Acehouttimeseriescomponents$figure,col="blue")
legend("top",c("Jambi Inflow","Aceh Inflow", "Jambi Outflow","Aceh Outflow"),fill=c("black","brown","purple","blue"))

Referensi

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#:~:text=Inflow%20merupakan%20uang%20yang%20masuk,melalui%20kegiatan%20penarikan%20%5B2%5D.

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx

https://rpubs.com/suhartono-uinmaliki/861286