Dosen Pengampu : Prof. Dr. Suhartono, M.Kom

Mata Kuliah : Linear Algebra

Prodi : Teknik Informatika

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Pengertian Inflow-Outflow Uang Kartal

Inflow adalah uang yang masuk ke Bank Indonesia melalui kegiatan penyetoran. Sedangkan outflow adalah uang yang keluar dari Bank Indonesia melalui kegiatan penarikan. Setiap daerah memiliki prediksi data inflow-outflow uang kartal yang berbeda-beda.

Berikut komparasi visualisasi dan prediksi data inflow-outflow uang kartal antara Lampung dengan Bengkulu menggunakan bahasa pemrograman R.

library(readxl)
datainflow <- read_excel(path ="datainflow.xlsx")
datainflow
## # A tibble: 10 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path ="dataoutflow.xlsx")
dataoutflow
## # A tibble: 10 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>

1. Komparasi Visualisasi dan Prediksi Data Inflow Uang Kartal antara Lampung dengan Bengkulu Setiap Periode

plot(datainflow$Tahun,datainflow$Lampung,type = "l", col= "red")
lines(datainflow$Tahun,datainflow$Bengkulu,col="blue")
legend("top",c("Inflow Lampung","Inflow Bengkulu"),fill=c("red","blue"))

2. Komparasi Visualisasi dan Prediksi Data Outflow Uang Kartal antara Lampung dengan Bengkulu Setiap Periode

plot(dataoutflow$Tahun,dataoutflow$Lampung,type = "l", col= "green")
lines(dataoutflow$Tahun,dataoutflow$Bengkulu,col="yellow")
legend("top",c("Outflow Lampung","Outflow Bengkulu"),fill=c("green","yellow"))

3. Komparasi Visualisasi dan Prediksi Data Inflow-Outflow Uang Kartal antara Lampung dengan Bengkulu Setiap Periode

plot(datainflow$Tahun,datainflow$Lampung,type = "l", col= "red")
lines(datainflow$Tahun,datainflow$Bengkulu,col="blue")
lines(dataoutflow$Tahun,dataoutflow$Lampung,col= "green")
lines(dataoutflow$Tahun,dataoutflow$Bengkulu,col="yellow")
legend("top",c("Inflow Lampung","Inflow Bengkulu","Outflow Lampung","Outflow Bengkulu"),fill=c("red","blue","green","yellow"))

4. Komparasi Visualisasi dan Prediksi Data Inflow-Outflow Uang Kartal antara Lampung dengan Bengkulu Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
## New names:
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 13
##    Bulan               ...2  Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`
##    <dttm>              <lgl>    <dbl> <dbl>            <dbl>            <dbl>
##  1 2011-01-01 00:00:00 NA       4164.  124.            2068.             545.
##  2 2011-02-01 00:00:00 NA       3338.  115.            1826.             450.
##  3 2011-03-01 00:00:00 NA       4878.  154.            2028.             849.
##  4 2011-04-01 00:00:00 NA       3157.  122.            1429.             539.
##  5 2011-05-01 00:00:00 NA       3821.  123.            1539.             692.
##  6 2011-06-01 00:00:00 NA       3686.  151.            1637.             592.
##  7 2011-07-01 00:00:00 NA       4370.  107.            1791.             800.
##  8 2011-08-01 00:00:00 NA       3668.  184.            1256.             586.
##  9 2011-09-01 00:00:00 NA      12875.  606.            4172.            2176.
## 10 2011-10-01 00:00:00 NA       4777.  158.            1941.             787.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, `Kep. Riau` <dbl>,
## #   Jambi <dbl>, `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 13
##    Keterangan          ...2  Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`
##    <dttm>              <lgl>    <dbl> <dbl>            <dbl>            <dbl>
##  1 2011-01-01 00:00:00 NA       3442.  350.             941.             307.
##  2 2011-02-01 00:00:00 NA       3989.  193.             990.             228.
##  3 2011-03-01 00:00:00 NA       4229.  230.            1209.             347.
##  4 2011-04-01 00:00:00 NA       6721.  529.            1653.             336.
##  5 2011-05-01 00:00:00 NA       5787.  523.            1465.             328.
##  6 2011-06-01 00:00:00 NA       7395.  406.            2167.             399.
##  7 2011-07-01 00:00:00 NA       7154.  958.            1695.             449.
##  8 2011-08-01 00:00:00 NA      16043. 1046.            4104.            1376.
##  9 2011-09-01 00:00:00 NA       1915.  124.             824.             148.
## 10 2011-10-01 00:00:00 NA       5174.  634.            1392.             299.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, `Kep. Riau` <dbl>,
## #   Jambi <dbl>, `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$Lampung, type = "l", col = "red")
lines(datainflowperbulan$Bengkulu,col="blue")
lines(dataoutflowperbulan$Lampung, col = "green")
lines(dataoutflowperbulan$Bengkulu,col="yellow")
legend("top",c("Inflow Lampung","Inflow Bengkulu","Outflow Lampung","Outflow Bengkulu"),fill=c("red","blue","green","yellow"))

Lampungtimeseries <- datainflowperbulan$Lampung
Bengkulutimeseries <- datainflowperbulan$Bengkulu
plot.ts(Lampungtimeseries , type = "l", col = "red")
lines(Bengkulutimeseries , type = "l", col = "blue")
legend("top",c("Lampung Timeseries","Bengkulu Timeseries"),fill=c("red","blue"))

logLampung <- log(datainflowperbulan$Lampung)
logBengkulu <- log(datainflowperbulan$Bengkulu)
plot.ts(logLampung, type = "l", col = "red")
lines(logBengkulu , type = "l", col = "blue")
legend("top",c("logLampung","logBengkulu"),fill=c("red","blue"))

library(TTR)
LampungSMA3 <- SMA(datainflowperbulan$Lampung,n=3)
BengkuluSMA3 <- SMA(datainflowperbulan$Bengkulu,n=3)
plot.ts(LampungSMA3, type = "l", col = "red")
lines(BengkuluSMA3, type = "l", col = "blue")
legend("top",c("LampungSMA3","BengkuluSMA3"),fill=c("red","blue"))

library(TTR)
BengkuluSMA3 <- SMA(datainflowperbulan$Bengkulu,n=8)
LampungSMA3 <- SMA(datainflowperbulan$Lampung,n=8)
plot.ts(BengkuluSMA3, type = "l", col = "red")
lines(LampungSMA3, type = "l", col = "blue")
legend("top",c("BengkuluSMA3","LampungSMA3"),fill=c("red","blue"))

5. Komparasi Visualisasi dan Prediksi Data Inflow-Outflow Time Series Uang Kartal antara Lampung dengan Bengkulu

Lampunginflowtimeseries <- ts(datainflowperbulan$Lampung, frequency=12, start=c(2011,1))
Bengkuluinflowtimeseries <- ts(datainflowperbulan$Bengkulu, frequency=12, start=c(2011,1))
Lampunginflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  621.71179  358.56622  550.36496  340.44445  402.03710  573.97617
## 2012 1054.26685  666.52412  517.06758  282.85569  344.24522  206.42495
## 2013  234.65931  117.20955  170.13195   75.87996   74.77127   36.67275
## 2014 1433.51885  725.39736  590.72966  568.85388  487.63656  605.40178
## 2015 1360.19086  508.30661  417.04559  277.84130  383.31675  415.35766
## 2016 1390.23556  804.10302  598.27040  555.00940  286.75963  158.32177
## 2017 1134.20195  690.26841  655.03228  794.03117  675.69061  531.31408
## 2018 1802.74124  949.48387  814.34998  689.44512  370.42214 2491.07250
## 2019 2147.18917  921.91017  900.51341 1104.01903  842.23750 3364.05676
## 2020 2551.78237 1446.11620  939.33048  955.09673 1276.19200 1889.39473
## 2021 2555.46285 1243.57068  936.61307 1164.78835 2166.96750 1237.16558
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  656.24294  542.87169 1775.98512  623.85717  801.97986  442.08517
## 2012  412.76796 1054.75071  949.52907  542.34897  684.54376  253.90505
## 2013   44.55553  417.59331  503.81158  545.79969  811.39285  441.34723
## 2014  405.66825 2092.45192  643.26178  797.24338  708.30613  389.36846
## 2015 1428.15031  593.52078  619.52684  913.62659  703.11334  539.77191
## 2016 2223.80337  456.30742  715.20587  756.16663  791.67218  637.28563
## 2017 2604.58586 1140.22051 1078.63653 1103.29322  928.41949  742.39402
## 2018 1695.17386 1035.94201 1075.27013  999.38822 1026.78169  465.18491
## 2019 1323.56631 1497.04385 1400.45661 1499.49687 1110.19777  935.76984
## 2020 1067.22370 1128.19519 1159.70107  738.52056 1396.10786  609.86422
## 2021  636.42925  756.16900
Bengkuluinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  122.17640   42.56978   56.79831   27.06372   33.27979   25.84131
## 2012  229.63010  125.41615   65.93120   27.71178   17.46938   17.46938
## 2013  225.33676  240.39147  247.97928  232.80433  158.28819   99.59913
## 2014  708.02522  269.13089  173.04810  221.13003  102.52019  131.58252
## 2015  644.62293  221.83713  163.04665  105.55613   96.35064   84.34825
## 2016  702.39709  293.29774  185.31632   73.73894  119.25824   76.02947
## 2017  705.34454  296.38089  218.07302  108.20777  124.26259   38.37514
## 2018  885.45535  277.07756  207.05547  156.74029  120.71976  669.85657
## 2019  902.06334  384.59633  283.98631  340.23492  256.59610 1294.68991
## 2020  983.83714  517.87037  322.68228  295.68625  330.78731  594.49286
## 2021 1134.14469  507.34820  410.99660  309.79568  798.17998  293.65593
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   98.70596   64.44523  430.67254  100.84602  111.67560   39.03351
## 2012   74.43659  207.95245  172.87088  104.67443  134.41372   23.27873
## 2013  135.59282  392.32979  166.69236  194.90184  165.05959  118.56169
## 2014   83.35252  899.76893  204.79900  245.78856  146.50267   75.86238
## 2015  662.75459  223.16428  168.84114  212.90720  127.31721   80.51677
## 2016  661.14587  110.45568  243.85150  175.18164  136.70141  111.48900
## 2017  919.91900  300.75244  296.76196  275.01659  201.18931  135.31315
## 2018  423.32742  286.78781  368.53402  286.96586  286.34575  181.12197
## 2019  381.33964  428.71096  432.36290  498.97557  330.91527  254.67978
## 2020  289.77418  409.26120  438.92378  281.96995  320.24937  185.53660
## 2021  350.87090  355.37500
Lampungoutflowtimeseries <- ts(dataoutflowperbulan$Lampung, frequency=12, start=c(2011,1))
Bengkuluoutflowtimeseries <- ts(dataoutflowperbulan$Bengkulu, frequency=12, start=c(2011,1))
Lampungoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  171.73514  219.94503  342.64595  449.19497  435.48670  560.37199
## 2012  158.37385  143.61587  394.89727  507.72792  767.30148  655.28330
## 2013   22.45428   29.23682  110.38391  131.24521  202.68550  265.22837
## 2014  176.19089  461.64557  620.25400  823.10212  860.99213  627.46225
## 2015   79.28158  339.63124  533.63173 1128.60610  824.42210 1345.73686
## 2016   90.45391  366.34626  546.39793  569.14521  878.53762 3098.46776
## 2017  237.91153  511.86310  849.69294  966.64675 1462.29777 3500.09080
## 2018  318.72999  882.14666 1174.25565  998.17193 2665.43895 2743.98079
## 2019  404.72220  917.99585 1094.90498 1598.16522 4619.20707  177.59795
## 2020  456.44219  786.94826 1872.12587  872.29617 2180.29038  535.27930
## 2021  101.59299  535.40874 1170.44151 1897.92824 2151.89979  841.46432
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  666.16768 1300.12070   85.77778  360.29523  363.14330  769.51399
## 2012 1070.05511 1224.03581  191.19995  311.82312  165.81554  785.51667
## 2013  716.58596  270.42444  682.06111  561.75263  495.94527 1083.01386
## 2014 2409.46995  269.11197  419.94532  498.62539  574.09363  598.25583
## 2015 2563.10561  767.93798  447.47874  410.26991  567.34463  938.38091
## 2016  500.52865 1026.05478 1034.08560  685.71598  788.86106  850.91234
## 2017  331.22315 1081.53768  589.27201  743.74975 1260.73121 1823.76710
## 2018  608.59506  813.89609  640.85045  760.05619  901.58457 1217.68173
## 2019 1207.01071  973.97942  907.99564  781.79512 1193.23921 1749.78046
## 2020 1538.36508  948.45298 1152.95654 1422.69234  897.20976 1210.34936
## 2021 1102.00325  249.35351
Bengkuluoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   43.00021   82.23542  143.53922  246.22066  202.80478  265.84634
## 2012   77.67069  136.45409  214.08931  230.04005  343.95133  343.95133
## 2013  150.23670  309.92998  431.93072  314.02314  742.58906  664.43864
## 2014  184.84757  233.07711  359.39862  524.14915  447.54582  377.69263
## 2015  103.40197  176.91637  236.82757  435.72702  510.20743  474.21976
## 2016   59.75611  134.50325  206.17499  355.34003  506.32330 1581.42961
## 2017  156.75645  191.46206  341.51406  410.43977  612.92546 1597.77779
## 2018  104.78294  200.91583  399.37190  498.39520  866.36789 1137.64484
## 2019  136.77104  354.05007  432.66657  755.79629 1646.68269  168.74806
## 2020  256.84547  331.85653  442.42736  531.24172  969.68490  209.58637
## 2021   95.04035  340.25426  457.19172  920.71828 1096.04779  629.30605
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  263.31558  497.98805   73.97831  188.67118  175.22115  377.68102
## 2012  205.01716  360.89097  153.25346  209.32113  202.05658  482.63553
## 2013 1563.65149  783.20289  262.44591  260.53121  382.27823  624.35333
## 2014  949.04614  161.37331  247.44909  317.04213  292.98312  488.31758
## 2015 1085.06420  246.35914  274.35432  250.71305  309.02593  748.71687
## 2016  212.21523  567.18382  238.44064  187.43127  384.85065  729.08792
## 2017  110.49356  216.10078  248.63583  249.51486  472.84165  838.28091
## 2018  233.48894  261.42442  225.52806  344.89425  470.11011  752.32699
## 2019  653.94175  479.32908  380.83854  386.78029  650.26438  795.78060
## 2020  680.85829  483.37874  506.16610  625.26947  575.95459  950.75046
## 2021  676.14611  466.14904
plot.ts(Lampunginflowtimeseries,type = "l", col = "red")
lines(Bengkuluinflowtimeseries, type = "l", col = "blue")
legend("top",c("Lampunginflowtimeseries","Bengkuluinflowtimeseries"),fill=c("red","blue"))

plot.ts(Lampungoutflowtimeseries,type = "l", col = "green")
lines(Bengkuluoutflowtimeseries, type = "l", col = "yellow")
legend("top",c("Lampungoutflowtimeseries","Bengkuluoutflowtimeseries"),fill=c("green","yellow"))

Lampungintimeseriescomponents <- decompose(Lampunginflowtimeseries)
Bengkuluintimeseriescomponents <- decompose(Bengkuluinflowtimeseries)
Lampungintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2012  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2013  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2014  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2015  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2016  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2017  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2018  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2019  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2020  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2021  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2012  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2013  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2014  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2015  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2016  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2017  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2018  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2019  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2020  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2021  320.071011  118.042127
Bengkuluintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2012  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2013  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2014  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2015  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2016  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2017  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2018  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2019  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2020  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2021  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2012   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2013   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2014   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2015   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2016   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2017   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2018   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2019   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2020   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2021   99.818044   52.992951
Lampungouttimeseriescomponents <- decompose(Lampungoutflowtimeseries)
Bengkuluouttimeseriescomponents <- decompose(Bengkuluoutflowtimeseries)
Lampungouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2012 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2013 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2014 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2015 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2016 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2017 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2018 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2019 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2020 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2021 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2012  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2013  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2014  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2015  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2016  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2017  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2018  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2019  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2020  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2021  308.82481   14.24713
Bengkuluouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2012 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2013 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2014 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2015 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2016 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2017 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2018 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2019 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2020 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2021 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2012  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2013  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2014  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2015  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2016  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2017  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2018  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2019  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2020  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2021  169.42047  -21.85756
plot(Lampungintimeseriescomponents$seasonal,type = "l", col = "red")
lines(Bengkuluintimeseriescomponents$seasonal,col="blue")
lines(Lampungouttimeseriescomponents$seasonal, type = "l", col = "green")
lines(Bengkuluouttimeseriescomponents$seasonal,col="yellow")
legend("top",c("Lampung Inflow","Bengkulu Inflow", "Lampung Outflow","Bengkulu Outflow"),fill=c("red","blue","green","yellow"))

plot(Lampungintimeseriescomponents$trend,type = "l", col = "red")
lines(Bengkuluintimeseriescomponents$trend,col="blue")
lines(Lampungouttimeseriescomponents$trend, type = "l", col = "green")
lines(Bengkuluouttimeseriescomponents$trend,col="yellow")
legend("top",c("Lampung Inflow","Bengkulu Inflow", "Lampung Outflow","Bengkulu Outflow"),fill=c("red","blue","green","yellow"))

plot(Lampungintimeseriescomponents$random,type = "l", col = "red")
lines(Bengkuluintimeseriescomponents$random,col="blue")
lines(Lampungouttimeseriescomponents$random, type = "l", col = "green")
lines(Bengkuluouttimeseriescomponents$random,col="yellow")
legend("top",c("Lampung Inflow","Bengkulu Inflow", "Lampung Outflow","Bengkulu Outflow"),fill=c("red","blue","green","yellow"))

plot(Lampungintimeseriescomponents$figure,type = "l", col = "red")
lines(Bengkuluintimeseriescomponents$figure,col="blue")
lines(Lampungouttimeseriescomponents$figure, type = "l", col = "green")
lines(Bengkuluouttimeseriescomponents$figure,col="yellow")
legend("top",c("Lampung Inflow","Bengkulu Inflow", "Lampung Outflow","Bengkulu Outflow"),fill=c("red","blue","green","yellow"))

Referensi

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#:~:text=Inflow%20merupakan%20uang%20yang%20masuk,melalui%20kegiatan%20penarikan%20%5B2%5D.

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx

https://rpubs.com/suhartono-uinmaliki/861286