library(readxl)
datainflowsumatera <- read_excel(path = "sumatera.xlsx")
datainflowsumatera
## # A tibble: 10 x 12
##    Propinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Aceh            2308.  2620. 36337. 4.57e3  4710.  5775.  5514.  5799.  7509.
##  2 Sumatera Utara 23238. 25981. 18120. 3.05e4 30254. 34427. 35617. 41769. 47112.
##  3 Sumatera Barat  9385. 11192. 14056. 1.41e4 13309. 14078. 15312. 15058. 14750.
##  4 Riau            3012.  4447.  8933. 6.36e3  7156.  8211.  8553. 10730. 10915.
##  5 Kep. Riau       1426.  2236.  3378. 2.56e3  3218.  4317.  4412.  5134.  6077.
##  6 Jambi           1868.  2138.  3047. 5.17e3  4978.  4398.  4404.  5657.  6486.
##  7 Sumatera Sela~  7820.  9126.  8647. 1.00e4 10797. 12752. 13075. 14267. 14812.
##  8 Bengkulu        1153.  1201.  2378. 3.26e3  2791.  2889.  3620.  4150.  5789.
##  9 Lampung         7690.  6969.  3474. 9.45e3  8160.  9373. 12078. 13415. 17046.
## 10 Kep. Bangka B~     0      0      0  1.37e1  1177.  1544.  1164.  1517.  3265.
## # ... with 2 more variables: `2020` <dbl>, `2021` <dbl>
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
datalongersumater <- datainflowsumatera %>% 
  pivot_longer(!Propinsi, names_to = "Tahun", values_to = "Kasus")
datalongersumater 
## # A tibble: 110 x 3
##    Propinsi Tahun  Kasus
##    <chr>    <chr>  <dbl>
##  1 Aceh     2011   2308.
##  2 Aceh     2012   2620.
##  3 Aceh     2013  36337.
##  4 Aceh     2014   4567.
##  5 Aceh     2015   4710.
##  6 Aceh     2016   5775.
##  7 Aceh     2017   5514.
##  8 Aceh     2018   5799.
##  9 Aceh     2019   7509.
## 10 Aceh     2020   6641.
## # ... with 100 more rows
library(dplyr)
sumateraup2 <- select(datalongersumater, Propinsi, Kasus)
sumateraup2
## # A tibble: 110 x 2
##    Propinsi  Kasus
##    <chr>     <dbl>
##  1 Aceh      2308.
##  2 Aceh      2620.
##  3 Aceh     36337.
##  4 Aceh      4567.
##  5 Aceh      4710.
##  6 Aceh      5775.
##  7 Aceh      5514.
##  8 Aceh      5799.
##  9 Aceh      7509.
## 10 Aceh      6641.
## # ... with 100 more rows
library(dplyr)
sumateraup4 <- datalongersumater  %>%
    filter(Propinsi == 'Aceh') %>%
    select('Propinsi', 'Tahun', 'Kasus')
sumateraup4 
## # A tibble: 11 x 3
##    Propinsi Tahun  Kasus
##    <chr>    <chr>  <dbl>
##  1 Aceh     2011   2308.
##  2 Aceh     2012   2620.
##  3 Aceh     2013  36337.
##  4 Aceh     2014   4567.
##  5 Aceh     2015   4710.
##  6 Aceh     2016   5775.
##  7 Aceh     2017   5514.
##  8 Aceh     2018   5799.
##  9 Aceh     2019   7509.
## 10 Aceh     2020   6641.
## 11 Aceh     2021   3702.
sumateraup5 <- datalongersumater %>%
  filter(Propinsi == 'Aceh', Tahun == '2011') %>%
 select('Propinsi', 'Tahun', 'Kasus')
sumateraup5
## # A tibble: 1 x 3
##   Propinsi Tahun Kasus
##   <chr>    <chr> <dbl>
## 1 Aceh     2011  2308.
ggplot(data = datalongersumater, mapping = aes(x = Tahun, y = Kasus)) +
  geom_point() +
  facet_wrap( ~ Propinsi) +
  theme(axis.text.x = element_text(angle = 90))

ggplot(data = datalongersumater, mapping = aes(x = Propinsi, y = Kasus)) +
  geom_point() +
  facet_wrap( ~ Tahun) +
  theme(axis.text.x = element_text(angle = 90))