library(readxl)
datainflowsumatera <- read_excel(path = "sumatera.xlsx")
datainflowsumatera 
## # A tibble: 10 x 12
##    Propinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Aceh            2308.  2620. 36337. 4.57e3  4710.  5775.  5514.  5799.  7509.
##  2 Sumatera Utara 23238. 25981. 18120. 3.05e4 30254. 34427. 35617. 41769. 47112.
##  3 Sumatera Barat  9385. 11192. 14056. 1.41e4 13309. 14078. 15312. 15058. 14750.
##  4 Riau            3012.  4447.  8933. 6.36e3  7156.  8211.  8553. 10730. 10915.
##  5 Kep. Riau       1426.  2236.  3378. 2.56e3  3218.  4317.  4412.  5134.  6077.
##  6 Jambi           1868.  2138.  3047. 5.17e3  4978.  4398.  4404.  5657.  6486.
##  7 Sumatera Sela~  7820.  9126.  8647. 1.00e4 10797. 12752. 13075. 14267. 14812.
##  8 Bengkulu        1153.  1201.  2378. 3.26e3  2791.  2889.  3620.  4150.  5789.
##  9 Lampung         7690.  6969.  3474. 9.45e3  8160.  9373. 12078. 13415. 17046.
## 10 Kep. Bangka B~     0      0      0  1.37e1  1177.  1544.  1164.  1517.  3265.
## # ... with 2 more variables: `2020` <dbl>, `2021` <dbl>
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
sumatera2011 <- select(datainflowsumatera, '2011')
sumatera2011
## # A tibble: 10 x 1
##    `2011`
##     <dbl>
##  1  2308.
##  2 23238.
##  3  9385.
##  4  3012.
##  5  1426.
##  6  1868.
##  7  7820.
##  8  1153.
##  9  7690.
## 10     0
library(tidyverse)
sumateranon2011 <- select(datainflowsumatera, -'2011')
sumateranon2011
## # A tibble: 10 x 11
##    Propinsi       `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Aceh            2620. 36337. 4.57e3  4710.  5775.  5514.  5799.  7509.  6641.
##  2 Sumatera Utara 25981. 18120. 3.05e4 30254. 34427. 35617. 41769. 47112. 36609.
##  3 Sumatera Barat 11192. 14056. 1.41e4 13309. 14078. 15312. 15058. 14750. 10696.
##  4 Riau            4447.  8933. 6.36e3  7156.  8211.  8553. 10730. 10915.  9148.
##  5 Kep. Riau       2236.  3378. 2.56e3  3218.  4317.  4412.  5134.  6077.  6175.
##  6 Jambi           2138.  3047. 5.17e3  4978.  4398.  4404.  5657.  6486.  5628.
##  7 Sumatera Sela~  9126.  8647. 1.00e4 10797. 12752. 13075. 14267. 14812. 11756.
##  8 Bengkulu        1201.  2378. 3.26e3  2791.  2889.  3620.  4150.  5789.  4971.
##  9 Lampung         6969.  3474. 9.45e3  8160.  9373. 12078. 13415. 17046. 15158.
## 10 Kep. Bangka B~     0      0  1.37e1  1177.  1544.  1164.  1517.  3265.  2562.
## # ... with 1 more variable: `2021` <dbl>
sumatera2012 <- datainflowsumatera %>% select('2012')
sumatera2012
## # A tibble: 10 x 1
##    `2012`
##     <dbl>
##  1  2620.
##  2 25981.
##  3 11192.
##  4  4447.
##  5  2236.
##  6  2138.
##  7  9126.
##  8  1201.
##  9  6969.
## 10     0
library(dplyr)
sumateratahun <- datainflowsumatera %>% rename('2010' = '2011')
head(sumateratahun)
## # A tibble: 6 x 12
##   Propinsi `2010` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Aceh      2308.  2620. 36337.  4567.  4710.  5775.  5514.  5799.  7509.  6641.
## 2 Sumater~ 23238. 25981. 18120. 30503. 30254. 34427. 35617. 41769. 47112. 36609.
## 3 Sumater~  9385. 11192. 14056. 14103. 13309. 14078. 15312. 15058. 14750. 10696.
## 4 Riau      3012.  4447.  8933.  6358.  7156.  8211.  8553. 10730. 10915.  9148.
## 5 Kep. Ri~  1426.  2236.  3378.  2563.  3218.  4317.  4412.  5134.  6077.  6175.
## 6 Jambi     1868.  2138.  3047.  5169.  4978.  4398.  4404.  5657.  6486.  5628.
## # ... with 1 more variable: `2021` <dbl>
library(dplyr)
sumateraaceh <- datainflowsumatera %>%
    filter(Propinsi == 'Aceh') %>%
    select('2011','2012')
sumateraaceh
## # A tibble: 1 x 2
##   `2011` `2012`
##    <dbl>  <dbl>
## 1  2308.  2620.
library(dplyr)
sumateraup1 <- datainflowsumatera %>%
  filter(Propinsi == 'Aceh', Propinsi == 'Bengkulu') %>%
  select('2011','2012')
sumateraup1
## # A tibble: 0 x 2
## # ... with 2 variables: 2011 <dbl>, 2012 <dbl>
str(datainflowsumatera)
## tibble [10 x 12] (S3: tbl_df/tbl/data.frame)
##  $ Propinsi: chr [1:10] "Aceh" "Sumatera Utara" "Sumatera Barat" "Riau" ...
##  $ 2011    : num [1:10] 2308 23238 9385 3012 1426 ...
##  $ 2012    : num [1:10] 2620 25981 11192 4447 2236 ...
##  $ 2013    : num [1:10] 36337 18120 14056 8933 3378 ...
##  $ 2014    : num [1:10] 4567 30503 14103 6358 2563 ...
##  $ 2015    : num [1:10] 4710 30254 13309 7156 3218 ...
##  $ 2016    : num [1:10] 5775 34427 14078 8211 4317 ...
##  $ 2017    : num [1:10] 5514 35617 15312 8553 4412 ...
##  $ 2018    : num [1:10] 5799 41769 15058 10730 5134 ...
##  $ 2019    : num [1:10] 7509 47112 14750 10915 6077 ...
##  $ 2020    : num [1:10] 6641 36609 10696 9148 6175 ...
##  $ 2021    : num [1:10] 3702 31840 10748 7769 5009 ...
str(datainflowsumatera %>% group_by(Propinsi))
## grouped_df [10 x 12] (S3: grouped_df/tbl_df/tbl/data.frame)
##  $ Propinsi: chr [1:10] "Aceh" "Sumatera Utara" "Sumatera Barat" "Riau" ...
##  $ 2011    : num [1:10] 2308 23238 9385 3012 1426 ...
##  $ 2012    : num [1:10] 2620 25981 11192 4447 2236 ...
##  $ 2013    : num [1:10] 36337 18120 14056 8933 3378 ...
##  $ 2014    : num [1:10] 4567 30503 14103 6358 2563 ...
##  $ 2015    : num [1:10] 4710 30254 13309 7156 3218 ...
##  $ 2016    : num [1:10] 5775 34427 14078 8211 4317 ...
##  $ 2017    : num [1:10] 5514 35617 15312 8553 4412 ...
##  $ 2018    : num [1:10] 5799 41769 15058 10730 5134 ...
##  $ 2019    : num [1:10] 7509 47112 14750 10915 6077 ...
##  $ 2020    : num [1:10] 6641 36609 10696 9148 6175 ...
##  $ 2021    : num [1:10] 3702 31840 10748 7769 5009 ...
##  - attr(*, "groups")= tibble [10 x 2] (S3: tbl_df/tbl/data.frame)
##   ..$ Propinsi: chr [1:10] "Aceh" "Bengkulu" "Jambi" "Kep. Bangka Belitung" ...
##   ..$ .rows   : list<int> [1:10] 
##   .. ..$ : int 1
##   .. ..$ : int 8
##   .. ..$ : int 6
##   .. ..$ : int 10
##   .. ..$ : int 5
##   .. ..$ : int 9
##   .. ..$ : int 4
##   .. ..$ : int 3
##   .. ..$ : int 7
##   .. ..$ : int 2
##   .. ..@ ptype: int(0) 
##   ..- attr(*, ".drop")= logi TRUE
sumateraup3 <- datainflowsumatera %>%
    group_by(Propinsi)
sumateraup3
## # A tibble: 10 x 12
## # Groups:   Propinsi [10]
##    Propinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Aceh            2308.  2620. 36337. 4.57e3  4710.  5775.  5514.  5799.  7509.
##  2 Sumatera Utara 23238. 25981. 18120. 3.05e4 30254. 34427. 35617. 41769. 47112.
##  3 Sumatera Barat  9385. 11192. 14056. 1.41e4 13309. 14078. 15312. 15058. 14750.
##  4 Riau            3012.  4447.  8933. 6.36e3  7156.  8211.  8553. 10730. 10915.
##  5 Kep. Riau       1426.  2236.  3378. 2.56e3  3218.  4317.  4412.  5134.  6077.
##  6 Jambi           1868.  2138.  3047. 5.17e3  4978.  4398.  4404.  5657.  6486.
##  7 Sumatera Sela~  7820.  9126.  8647. 1.00e4 10797. 12752. 13075. 14267. 14812.
##  8 Bengkulu        1153.  1201.  2378. 3.26e3  2791.  2889.  3620.  4150.  5789.
##  9 Lampung         7690.  6969.  3474. 9.45e3  8160.  9373. 12078. 13415. 17046.
## 10 Kep. Bangka B~     0      0      0  1.37e1  1177.  1544.  1164.  1517.  3265.
## # ... with 2 more variables: `2020` <dbl>, `2021` <dbl>
datainflowsumatera %>%
    filter(Propinsi == 'Aceh') %>%
    count('2011', sort = TRUE)
## # A tibble: 1 x 2
##   `"2011"`     n
##   <chr>    <int>
## 1 2011         1
sumateraacehup1 <- datainflowsumatera %>%
    mutate('2010' = datainflowsumatera$'2011'/2)
sumateraacehup1 
## # A tibble: 10 x 13
##    Propinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Aceh            2308.  2620. 36337. 4.57e3  4710.  5775.  5514.  5799.  7509.
##  2 Sumatera Utara 23238. 25981. 18120. 3.05e4 30254. 34427. 35617. 41769. 47112.
##  3 Sumatera Barat  9385. 11192. 14056. 1.41e4 13309. 14078. 15312. 15058. 14750.
##  4 Riau            3012.  4447.  8933. 6.36e3  7156.  8211.  8553. 10730. 10915.
##  5 Kep. Riau       1426.  2236.  3378. 2.56e3  3218.  4317.  4412.  5134.  6077.
##  6 Jambi           1868.  2138.  3047. 5.17e3  4978.  4398.  4404.  5657.  6486.
##  7 Sumatera Sela~  7820.  9126.  8647. 1.00e4 10797. 12752. 13075. 14267. 14812.
##  8 Bengkulu        1153.  1201.  2378. 3.26e3  2791.  2889.  3620.  4150.  5789.
##  9 Lampung         7690.  6969.  3474. 9.45e3  8160.  9373. 12078. 13415. 17046.
## 10 Kep. Bangka B~     0      0      0  1.37e1  1177.  1544.  1164.  1517.  3265.
## # ... with 3 more variables: `2020` <dbl>, `2021` <dbl>, `2010` <dbl>
ggplot(data = datainflowsumatera, mapping = aes(x = Propinsi, y = `2011`)) +
  geom_point()