Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Inflow - Outflow

Inflow disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Lampung menggunakan bahasa pemrograman R.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowTahunan.xlsx")
datainflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>
library (readxl)
dataoutflow <- read_excel(path = "outflowTahunan.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Lampung setiap periode

plot(datainflow$Tahun,datainflow$`Lampung`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Lampung setiap periode

plot(dataoutflow$Tahun,dataoutflow$`Lampung`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Lampung Setiap Periode

plot(datainflow$Tahun,datainflow$`Lampung`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Lampung`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Lampung Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(datainflowperbulan$`Lampung`, type = "l", col = "green")
lines(dataoutflowperbulan$`Lampung`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

Lampungtimeseries <- datainflowperbulan$`Lampung`
plot.ts(Lampungtimeseries , type = "l", col = "green")

logLampung <- log(datainflowperbulan$`Lampung`)
plot.ts(logLampung)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Lampung

Lampunginflowtimeseries <- ts(datainflowperbulan$`Lampung`, frequency=12, start=c(2011,1))
Lampunginflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  621.71179  358.56622  550.36496  340.44445  402.03710  573.97617
## 2012 1054.26685  666.52412  517.06758  282.85569  344.24522  206.42495
## 2013  234.65931  117.20955  170.13195   75.87996   74.77127   36.67275
## 2014 1433.51885  725.39736  590.72966  568.85388  487.63656  605.40178
## 2015 1360.19086  508.30661  417.04559  277.84130  383.31675  415.35766
## 2016 1390.23556  804.10302  598.27040  555.00940  286.75963  158.32177
## 2017 1134.20195  690.26841  655.03228  794.03117  675.69061  531.31408
## 2018 1802.74124  949.48387  814.34998  689.44512  370.42214 2491.07250
## 2019 2147.18917  921.91017  900.51341 1104.01903  842.23750 3364.05676
## 2020 2551.78237 1446.11620  939.33048  955.09673 1276.19200 1889.39473
## 2021 2555.46285 1243.57068  936.61307 1164.78835 2166.96750 1237.16558
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  656.24294  542.87169 1775.98512  623.85717  801.97986  442.08517
## 2012  412.76796 1054.75071  949.52907  542.34897  684.54376  253.90505
## 2013   44.55553  417.59331  503.81158  545.79969  811.39285  441.34723
## 2014  405.66825 2092.45192  643.26178  797.24338  708.30613  389.36846
## 2015 1428.15031  593.52078  619.52684  913.62659  703.11334  539.77191
## 2016 2223.80337  456.30742  715.20587  756.16663  791.67218  637.28563
## 2017 2604.58586 1140.22051 1078.63653 1103.29322  928.41949  742.39402
## 2018 1695.17386 1035.94201 1075.27013  999.38822 1026.78169  465.18491
## 2019 1323.56631 1497.04385 1400.45661 1499.49687 1110.19777  935.76984
## 2020 1067.22370 1128.19519 1159.70107  738.52056 1396.10786  609.86422
## 2021  636.42925  756.16900
Lampungoutflowtimeseries <- ts(dataoutflowperbulan$`Lampung`, frequency=12, start=c(2011,1))
Lampungoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  171.73514  219.94503  342.64595  449.19497  435.48670  560.37199
## 2012  158.37385  143.61587  394.89727  507.72792  767.30148  655.28330
## 2013   22.45428   29.23682  110.38391  131.24521  202.68550  265.22837
## 2014  176.19089  461.64557  620.25400  823.10212  860.99213  627.46225
## 2015   79.28158  339.63124  533.63173 1128.60610  824.42210 1345.73686
## 2016   90.45391  366.34626  546.39793  569.14521  878.53762 3098.46776
## 2017  237.91153  511.86310  849.69294  966.64675 1462.29777 3500.09080
## 2018  318.72999  882.14666 1174.25565  998.17193 2665.43895 2743.98079
## 2019  404.72220  917.99585 1094.90498 1598.16522 4619.20707  177.59795
## 2020  456.44219  786.94826 1872.12587  872.29617 2180.29038  535.27930
## 2021  101.59299  535.40874 1170.44151 1897.92824 2151.89979  841.46432
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  666.16768 1300.12070   85.77778  360.29523  363.14330  769.51399
## 2012 1070.05511 1224.03581  191.19995  311.82312  165.81554  785.51667
## 2013  716.58596  270.42444  682.06111  561.75263  495.94527 1083.01386
## 2014 2409.46995  269.11197  419.94532  498.62539  574.09363  598.25583
## 2015 2563.10561  767.93798  447.47874  410.26991  567.34463  938.38091
## 2016  500.52865 1026.05478 1034.08560  685.71598  788.86106  850.91234
## 2017  331.22315 1081.53768  589.27201  743.74975 1260.73121 1823.76710
## 2018  608.59506  813.89609  640.85045  760.05619  901.58457 1217.68173
## 2019 1207.01071  973.97942  907.99564  781.79512 1193.23921 1749.78046
## 2020 1538.36508  948.45298 1152.95654 1422.69234  897.20976 1210.34936
## 2021 1102.00325  249.35351
plot.ts(Lampunginflowtimeseries)

plot.ts(Lampungoutflowtimeseries)

Lampungintimeseriescomponents <- decompose(Lampunginflowtimeseries)
Lampungintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2012  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2013  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2014  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2015  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2016  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2017  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2018  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2019  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2020  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2021  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2012  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2013  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2014  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2015  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2016  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2017  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2018  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2019  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2020  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2021  320.071011  118.042127
Lampungouttimeseriescomponents <- decompose(Lampungoutflowtimeseries)
Lampungouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2012 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2013 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2014 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2015 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2016 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2017 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2018 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2019 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2020 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2021 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2012  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2013  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2014  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2015  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2016  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2017  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2018  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2019  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2020  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2021  308.82481   14.24713
plot(Lampungintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(Lampungouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Lampungintimeseriescomponents$trend,type = "l", col = "orange")
lines(Lampungouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Lampungintimeseriescomponents$random ,type = "l", col = "orange")
lines(Lampungouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Lampungintimeseriescomponents$figure ,type = "l", col = "orange")
lines(Lampungouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))