Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Inflow - Outflow

Inflow disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Kep. Riau menggunakan bahasa pemrograman R.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowTahunan.xlsx")
datainflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>
library (readxl)
dataoutflow <- read_excel(path = "outflowTahunan.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Kep. Riau setiap periode

plot(datainflow$Tahun,datainflow$`Kep. Riau`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Kep. Riau setiap periode

plot(dataoutflow$Tahun,dataoutflow$`Kep. Riau`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Kep. Riau Setiap Periode

plot(datainflow$Tahun,datainflow$`Kep. Riau`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Kep. Riau`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Kep. Riau Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(datainflowperbulan$`Kep. Riau`, type = "l", col = "green")
lines(dataoutflowperbulan$`Kep. Riau`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

Kep.Riautimeseries <- datainflowperbulan$`Kep. Riau`
plot.ts(Kep.Riautimeseries , type = "l", col = "green")

logKep.Riau <- log(datainflowperbulan$`Kep. Riau`)
plot.ts(logKep.Riau)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Kep. Riau

Kep.Riauinflowtimeseries <- ts(datainflowperbulan$`Kep. Riau`, frequency=12, start=c(2011,1))
Kep.Riauinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   84.22317   45.28489   87.19606  106.27655   79.41735   79.39071
## 2012  154.12964  248.64100  144.87430  208.13217  195.88684  142.58026
## 2013  386.21824  264.78916  225.74983  311.08538  210.63038  202.38804
## 2014  264.22703  270.00068  175.25704  142.22593  123.06405  103.56327
## 2015  527.48615  169.98619  240.82415  193.34540  234.14488  170.06052
## 2016  661.93008  385.82752  312.32158  276.09507  316.70196  150.48089
## 2017  512.43711  385.28011  383.55697  202.89962  208.91189  105.70146
## 2018  711.86420  353.76509  374.70466  387.21015  311.02800  979.33988
## 2019  845.27320  521.35431  474.60558  353.38377  268.14443 1193.95980
## 2020  731.48682  637.43455  386.64090  524.91472  379.63698  793.99943
## 2021 1078.46297  611.51858  423.88140  540.01754  976.15802  569.57964
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  120.99479   64.58641  369.70995  126.63637  168.11264   94.51409
## 2012  206.86457  315.89649  216.54585  155.27273  155.62754   91.58926
## 2013  294.45220  919.59500  181.59798  217.10630  110.05512   54.15557
## 2014   60.20677  631.73314  222.13537  258.28860  241.39837   70.90054
## 2015  561.93669  310.80650  164.20381  281.41579  249.20775  114.23718
## 2016  809.08819  262.15868  351.87129  328.02559  261.59397  200.41305
## 2017  839.30770  414.28185  388.93568  378.94493  384.83909  206.46159
## 2018  405.77807  331.14363  383.34951  308.45259  414.23273  172.78907
## 2019  533.39994  388.53399  422.87038  421.73089  397.68404  256.38430
## 2020  507.29098  486.49911  527.42384  414.62940  516.46748  269.03594
## 2021  393.47068  415.69709
Kep.Riauoutflowtimeseries <- ts(dataoutflowperbulan$`Kep. Riau`, frequency=12, start=c(2011,1))
Kep.Riauoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  189.20654  268.01656  208.80011  364.35734  447.61217  516.05275
## 2012  332.54370  239.53906  479.70454  362.89160  542.67878  658.10047
## 2013  119.26413  365.97218  463.90646  372.88312  673.61694  581.56634
## 2014  517.98070  246.77804  530.04786  715.09716  830.04557  997.34576
## 2015  192.79623  628.08355  542.19874  855.97355  724.82924 1138.74670
## 2016  256.75804  506.42349  672.97048  840.07221  983.30103 1966.97714
## 2017  410.59624  367.54302  749.04887  703.31521  964.80569 2092.64435
## 2018  229.17137  850.81662  993.83877  936.80576 1739.35274 1649.76547
## 2019  351.32570  533.80541 1070.37711 1147.55958 2819.62986  249.37983
## 2020  627.16179  494.16093  823.30668  707.72583  963.88952  220.66070
## 2021  140.35818  543.53780  588.91635 1222.73228 1161.79670  437.98386
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  584.09410 1311.58555   99.21788  270.28783  510.72809 1048.66737
## 2012  660.22824 1072.58101  276.95017  630.29531  519.38376 1190.73164
## 2013 1117.71986  754.58448  735.90065  919.20095  866.05783 1776.70961
## 2014 2056.31540  207.71173  816.86614 1059.52199  601.55529 1542.99310
## 2015 1695.67523  534.01001  678.06544  545.91971  784.86345 1481.35677
## 2016  604.40807  711.35343  871.77960  638.81776  828.88407 1185.88923
## 2017  461.27959 1028.34957  764.82488  906.81927 1121.10595 1179.11994
## 2018  941.81987 1152.64514  825.48506  895.10397  878.93357 1503.35024
## 2019  971.67306 1124.34920  811.30642  969.06768 1018.72975 1576.51468
## 2020  615.39884  525.84998  521.60564  967.01965  506.01366 1488.62254
## 2021  611.98142  420.24414
plot.ts(Kep.Riauinflowtimeseries)

plot.ts(Kep.Riauoutflowtimeseries)

Kep.Riauintimeseriescomponents <- decompose(Kep.Riauinflowtimeseries)
Kep.Riauintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2012  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2013  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2014  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2015  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2016  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2017  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2018  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2019  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2020  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2021  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2012  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2013  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2014  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2015  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2016  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2017  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2018  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2019  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2020  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2021  104.58593   76.67545
Kep.Riauouttimeseriescomponents <- decompose(Kep.Riauoutflowtimeseries)
Kep.Riauouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2012 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2013 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2014 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2015 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2016 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2017 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2018 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2019 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2020 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2021 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2012  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2013  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2014  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2015  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2016  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2017  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2018  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2019  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2020  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2021  167.80534   38.30166
plot(Kep.Riauintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(Kep.Riauouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Kep.Riauintimeseriescomponents$trend,type = "l", col = "orange")
lines(Kep.Riauouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Kep.Riauintimeseriescomponents$random ,type = "l", col = "orange")
lines(Kep.Riauouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Kep.Riauintimeseriescomponents$figure ,type = "l", col = "orange")
lines(Kep.Riauouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))