Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Inflow - Outflow

Inflow disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Riau menggunakan bahasa pemrograman R.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowTahunan.xlsx")
datainflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>
library (readxl)
dataoutflow <- read_excel(path = "outflowTahunan.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Riau setiap periode

plot(datainflow$Tahun,datainflow$`Riau`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Riau setiap periode

plot(dataoutflow$Tahun,dataoutflow$`Riau`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Riau Setiap Periode

plot(datainflow$Tahun,datainflow$`Riau`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Riau`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Riau Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(datainflowperbulan$`Riau`, type = "l", col = "green")
lines(dataoutflowperbulan$`Riau`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

Riautimeseries <- datainflowperbulan$`Riau`
plot.ts(Riautimeseries , type = "l", col = "green")

logRiau <- log(datainflowperbulan$`Riau`)
plot.ts(logRiau)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Riau

Riauinflowtimeseries <- ts(datainflowperbulan$`Riau`, frequency=12, start=c(2011,1))
Riauinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   94.24460   96.39424  287.98845  160.06180  194.70583  100.67608
## 2012  445.71970  364.44861  274.48827  235.70588  341.36393  250.99083
## 2013 1548.75771  724.83408  666.22356 1146.69694  714.10313  628.70916
## 2014  897.55475  597.76572  391.46587  414.92963  399.11419  324.09467
## 2015 1095.88812  347.44105  369.02908  424.74718  505.67346  498.57889
## 2016 1332.16109  622.76483  564.49565  377.26617  501.64829  415.02464
## 2017 1228.76098  692.52354  787.21834  671.46804  700.20181  173.00907
## 2018 1545.34390  887.66466  697.71403  627.84201  422.92181 1972.65304
## 2019 1663.41486  723.68853  671.06970  670.02297  372.20685 2633.04629
## 2020 1566.80990  900.25231  656.60197  465.35740  832.48125 1646.18946
## 2021 2241.25936  910.24470  683.86349  608.93339 1522.46355  829.78643
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  143.32160  134.02960 1013.73676  341.22178  285.25779  160.83875
## 2012  390.91878  802.77936  408.83238  299.94057  391.02488  241.07860
## 2013  666.15895 1389.62436  454.88185  526.87296  302.26685  164.31963
## 2014  230.89241 1726.82385  377.03621  427.15336  334.94644  236.43117
## 2015 1399.11338  924.21942  357.65246  492.53688  457.74194  283.85194
## 2016 1858.40120  454.01158  563.71821  617.78181  426.00867  477.63763
## 2017 2114.71229  662.80534  502.47310  396.17308  428.57649  195.45782
## 2018 1293.01149  794.86546  685.77238  761.58086  774.35900  265.80837
## 2019  792.15569  841.10671  817.22178  825.61507  713.15676  192.69741
## 2020  754.19735  643.18320  372.80961  524.47867  611.53183  174.17311
## 2021  454.26751  518.24240
Riauoutflowtimeseries <- ts(dataoutflowperbulan$`Riau`, frequency=12, start=c(2011,1))
Riauoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  478.18402  400.24595  621.35321 1005.56107 1000.35374 1365.96130
## 2012  292.47450  399.76750  880.86006 1049.68113 1055.29479 1142.69911
## 2013  116.34632  569.05345 2345.35727  412.85210 1045.96329 1004.92649
## 2014  517.96101  526.24079 1089.97967 1000.53879 1182.86056 1199.39334
## 2015  133.58209  757.00411 1048.19275 1317.24918 1173.47065 1965.00327
## 2016  264.81101  670.51938  998.35476 1250.91662 1523.48445 4170.88866
## 2017  733.56292  981.17365 1359.41399 1239.79585 1413.94085 3856.69476
## 2018  233.11415 1118.03060 1545.86969 1215.64481 2476.59753 3343.03974
## 2019  455.48443 1012.74002 1340.33344 1521.82191 4902.80531  241.49091
## 2020  739.71921  831.87016 1264.41224 1774.60350 2925.82841  282.77052
## 2021  311.09352  805.14586 1430.24476 2632.46893 3111.28761 1073.67143
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  815.43379 2729.10217  154.42178  829.93388  873.64100 2159.95096
## 2012 1196.25287 2392.32861  381.04524  883.96286  968.57206 2370.85940
## 2013 1473.20994 1758.54800  892.49248 1341.31082 1558.92781 2941.37515
## 2014 3974.55298   13.89336  971.59826  969.79530 1076.07146 2634.65301
## 2015 3286.54673  393.89838  718.78270  935.00142 1054.45513 3005.38270
## 2016  515.04790 1100.53865 1629.71683 1273.01584 1438.08721 2809.65000
## 2017  330.25241 1530.30977  896.72821 1317.25781 1705.10587 2763.50350
## 2018  735.25593 1364.76585  955.53100 1303.13335 1240.43316 2394.18052
## 2019 1223.33771 1452.78989 1124.43995 1242.01385 1649.73723 3110.25361
## 2020 1530.19271 1470.10144 1394.12769 2017.60832 1409.04284 3498.29809
## 2021 1692.92089 1573.91533
plot.ts(Riauinflowtimeseries)

plot.ts(Riauoutflowtimeseries)

Riauintimeseriescomponents <- decompose(Riauinflowtimeseries)
Riauintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2012  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2013  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2014  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2015  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2016  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2017  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2018  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2019  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2020  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2021  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2012  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2013  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2014  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2015  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2016  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2017  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2018  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2019  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2020  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2021  306.31477  167.03441
Riauouttimeseriescomponents <- decompose(Riauoutflowtimeseries)
Riauouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2012 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2013 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2014 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2015 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2016 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2017 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2018 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2019 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2020 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2021 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2012   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2013   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2014   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2015   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2016   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2017   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2018   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2019   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2020   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2021   140.29335    51.92179
plot(Riauintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(Riauouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Riauintimeseriescomponents$trend,type = "l", col = "orange")
lines(Riauouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Riauintimeseriescomponents$random ,type = "l", col = "orange")
lines(Riauouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Riauintimeseriescomponents$figure ,type = "l", col = "orange")
lines(Riauouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))