Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jurusan : Teknik Informatika
Inflow disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.
Outflow disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.
contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Aceh menggunakan bahasa pemrograman R.
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowTahunan.xlsx")
datainflow
## # A tibble: 11 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 57900. 2308. 23238. 9385. 3012. 1426.
## 2 2012 65911. 2620. 25981. 11192. 4447. 2236.
## 3 2013 98369. 36337. 18120. 14056. 8933. 3378.
## 4 2014 86024. 4567. 30503. 14103. 6358. 2563.
## 5 2015 86549. 4710. 30254. 13309. 7156. 3218.
## 6 2016 97764. 5775. 34427. 14078. 8211. 4317.
## 7 2017 103748. 5514. 35617. 15312. 8553. 4412.
## 8 2018 117495. 5799. 41769. 15058. 10730. 5134.
## 9 2019 133762. 7509. 47112. 14750. 10915. 6077.
## 10 2020 109345. 6641. 36609. 10696. 9148. 6175.
## 11 2021 89270. 3702. 31840. 10748. 7769. 5009.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>
library (readxl)
dataoutflow <- read_excel(path = "outflowTahunan.xlsx")
dataoutflow
## # A tibble: 11 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 80092. 6338. 22176. 5300. 12434. 5819.
## 2 2012 85235. 6378. 22495. 6434. 13014. 6966.
## 3 2013 103288. 23278. 19235. 6511. 15460. 8747.
## 4 2014 102338. 8630. 26391. 7060. 15158. 10122.
## 5 2015 109186. 9637. 27877. 7471. 15789. 9803.
## 6 2016 121992. 11311. 31959. 9198. 17645. 10068.
## 7 2017 133606. 11760. 35243. 10754. 18128. 10749.
## 8 2018 135676. 11450. 36908. 8447. 17926. 12597.
## 9 2019 153484. 13087. 44051. 9465. 19277. 12644.
## 10 2020 140589. 12874. 39758. 8763. 19139. 8461.
## 11 2021 86627. 5770. 23453. 5941. 12631. 5128.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>
plot(datainflow$Tahun,datainflow$`Aceh`,type = "l", col= "steelblue")
plot(dataoutflow$Tahun,dataoutflow$`Aceh`,type = "l", col= "red")
plot(datainflow$Tahun,datainflow$`Aceh`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Aceh`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
## keterangan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 4164. 124. 2068. 545. 94.2
## 2 2011-02-01 00:00:00 3338. 115. 1826. 450. 96.4
## 3 2011-03-01 00:00:00 4878. 154. 2028. 849. 288.
## 4 2011-04-01 00:00:00 3157. 122. 1429. 539. 160.
## 5 2011-05-01 00:00:00 3821. 123. 1539. 692. 195.
## 6 2011-06-01 00:00:00 3686. 151. 1637. 592. 101.
## 7 2011-07-01 00:00:00 4370. 107. 1791. 800. 143.
## 8 2011-08-01 00:00:00 3668. 184. 1256. 586. 134.
## 9 2011-09-01 00:00:00 12875. 606. 4172. 2176. 1014.
## 10 2011-10-01 00:00:00 4777. 158. 1941. 787. 341.
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## # Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # Kep. Bangka Belitung <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
## keterangan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 3442. 350. 941. 307. 478.
## 2 2011-02-01 00:00:00 3989. 193. 990. 228. 400.
## 3 2011-03-01 00:00:00 4229. 230. 1209. 347. 621.
## 4 2011-04-01 00:00:00 6721. 529. 1653. 336. 1006.
## 5 2011-05-01 00:00:00 5787. 523. 1465. 328. 1000.
## 6 2011-06-01 00:00:00 7395. 406. 2167. 399. 1366.
## 7 2011-07-01 00:00:00 7154. 958. 1695. 449. 815.
## 8 2011-08-01 00:00:00 16043. 1046. 4104. 1376. 2729.
## 9 2011-09-01 00:00:00 1915. 124. 824. 148. 154.
## 10 2011-10-01 00:00:00 5174. 634. 1392. 299. 830.
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## # Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # Kep. Bangka Belitung <dbl>
plot(datainflowperbulan$`Aceh`, type = "l", col = "green")
lines(dataoutflowperbulan$`Aceh`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))
Acehtimeseries <- datainflowperbulan$`Aceh`
plot.ts(Acehtimeseries , type = "l", col = "green")
logAceh <- log(datainflowperbulan$`Aceh`)
plot.ts(logAceh)
Acehinflowtimeseries <- ts(datainflowperbulan$`Aceh`, frequency=12, start=c(2011,1))
Acehinflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 124.33329 115.14321 154.41614 122.18349 122.75253 151.37534
## 2012 315.65341 292.57807 170.13069 139.33374 167.56600 119.32971
## 2013 5571.15653 3457.27812 3253.57336 3775.08977 3705.38033 3449.77565
## 2014 779.00596 332.03457 248.89939 260.82180 168.17801 194.97802
## 2015 836.57498 376.45107 317.53476 263.06848 256.64615 398.59527
## 2016 883.11220 498.41373 242.45180 218.98473 298.46423 450.32018
## 2017 1120.37553 452.83734 347.32016 240.71874 299.60563 194.84441
## 2018 1279.35872 366.57150 278.86587 262.95066 288.49282 1005.08498
## 2019 1293.88334 565.87121 397.27368 342.84300 420.44274 1554.92585
## 2020 1641.95487 692.74998 297.06861 281.42142 489.21304 1095.11262
## 2021 762.78539 487.91516 368.91965 308.33410 566.54102 502.60975
## Jul Aug Sep Oct Nov Dec
## 2011 107.22432 183.84525 605.62334 157.64630 287.24653 176.19523
## 2012 196.61835 420.06418 286.31394 142.89984 288.58842 80.49051
## 2013 3456.32173 8516.17096 243.91990 379.41362 322.99838 205.46842
## 2014 173.99322 1306.11875 271.45458 454.45573 219.11177 157.53593
## 2015 977.94399 495.56495 179.23767 257.65850 227.20326 123.34945
## 2016 1374.47417 310.75050 538.99459 432.31664 301.61184 225.04199
## 2017 1149.75614 264.01934 627.70230 365.36280 275.68807 175.99260
## 2018 784.64208 369.23511 426.04458 344.08223 243.18631 150.59965
## 2019 473.28934 684.81679 405.51614 467.20195 436.23339 466.53727
## 2020 257.81810 592.86464 410.39330 273.60601 438.09977 170.52803
## 2021 280.32142 424.17610
Acehoutflowtimeseries <- ts(dataoutflowperbulan$`Aceh`, frequency=12, start=c(2011,1))
Acehoutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 349.57673 192.62487 230.35748 528.59007 523.47023 405.84701
## 2012 420.97459 217.70857 503.88607 600.25342 429.26734 606.25526
## 2013 758.75245 1850.82994 2442.65886 1618.83372 2777.13063 2209.74012
## 2014 288.10448 489.92887 504.83732 773.93194 485.84142 912.38357
## 2015 269.29171 255.71308 521.69449 1125.85624 564.44034 1011.07770
## 2016 307.32375 172.45727 730.75026 667.74179 1079.70825 2642.66616
## 2017 247.27680 344.01370 677.88709 850.88747 1157.54011 2346.78323
## 2018 120.03917 266.02669 996.17473 707.23188 1634.43230 1889.68997
## 2019 85.36298 400.92165 964.22663 1218.54729 3312.30047 122.91218
## 2020 182.38950 426.10026 1433.83382 1432.33902 1689.68700 436.00470
## 2021 56.98918 60.56520 591.41875 1789.00566 2112.99646 176.09492
## Jul Aug Sep Oct Nov Dec
## 2011 957.58488 1046.09243 123.98156 634.45751 595.14381 750.32697
## 2012 600.85083 791.04331 303.81795 854.83456 207.40890 841.70726
## 2013 5383.25551 2570.21842 566.69494 895.80335 699.91951 1504.22825
## 2014 1538.16507 285.80192 611.06198 902.31059 586.60778 1250.89508
## 2015 1558.53777 301.57675 1040.79937 316.39942 824.14892 1847.02405
## 2016 692.69059 653.34617 1027.41562 515.70143 962.49370 1858.31057
## 2017 282.09425 1520.49864 354.31840 667.42332 766.85433 2544.67010
## 2018 278.98765 1155.80705 609.61619 549.33587 622.53291 2619.93560
## 2019 687.35821 1230.78590 600.44006 552.87679 1055.67352 2855.56524
## 2020 1768.67777 455.94178 829.58521 1174.85940 774.36491 2269.89617
## 2021 662.04381 320.71844
plot.ts(Acehinflowtimeseries)
plot.ts(Acehoutflowtimeseries)
Acehintimeseriescomponents <- decompose(Acehinflowtimeseries)
Acehintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## 2012 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## 2013 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## 2014 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## 2015 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## 2016 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## 2017 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## 2018 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## 2019 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## 2020 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## 2021 746.11568 48.27704 -118.98158 -92.82414 -59.75309 202.79450
## Jul Aug Sep Oct Nov Dec
## 2011 209.38959 624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2012 209.38959 624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2013 209.38959 624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2014 209.38959 624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2015 209.38959 624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2016 209.38959 624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2017 209.38959 624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2018 209.38959 624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2019 209.38959 624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2020 209.38959 624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2021 209.38959 624.31306
Acehouttimeseriescomponents <- decompose(Acehoutflowtimeseries)
Acehouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## 2012 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## 2013 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## 2014 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## 2015 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## 2016 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## 2017 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## 2018 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## 2019 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## 2020 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## 2021 -708.278397 -529.248520 -10.306620 8.333003 464.415314 350.679991
## Jul Aug Sep Oct Nov Dec
## 2011 414.184121 42.244469 -353.047814 -260.176871 -268.937025 850.138349
## 2012 414.184121 42.244469 -353.047814 -260.176871 -268.937025 850.138349
## 2013 414.184121 42.244469 -353.047814 -260.176871 -268.937025 850.138349
## 2014 414.184121 42.244469 -353.047814 -260.176871 -268.937025 850.138349
## 2015 414.184121 42.244469 -353.047814 -260.176871 -268.937025 850.138349
## 2016 414.184121 42.244469 -353.047814 -260.176871 -268.937025 850.138349
## 2017 414.184121 42.244469 -353.047814 -260.176871 -268.937025 850.138349
## 2018 414.184121 42.244469 -353.047814 -260.176871 -268.937025 850.138349
## 2019 414.184121 42.244469 -353.047814 -260.176871 -268.937025 850.138349
## 2020 414.184121 42.244469 -353.047814 -260.176871 -268.937025 850.138349
## 2021 414.184121 42.244469
plot(Acehintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(Acehouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))
plot(Acehintimeseriescomponents$trend,type = "l", col = "orange")
lines(Acehouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))
plot(Acehintimeseriescomponents$random ,type = "l", col = "orange")
lines(Acehouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))
plot(Acehintimeseriescomponents$figure ,type = "l", col = "orange")
lines(Acehouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))