Universitas : UIN MAULANA MALIK IBRAHIM MALANG
Jurusan : Teknik Informatika
Relasional data set adalah sekumpulan item/data yang memiliki perpaduan atau hubungan yang telah ditentukan dan diatur sebagai satu set tabel menggunakan kolom dan baris. Tiap baris pada tabel dapat ditandai dengan pengidentifikasi unik yang disebut kunci utama (keyword), dan baris di antara beberapa tabel dapat dibuat saling terkait menggunakan kunci asing. Berikut relational data set mahasiswa UIN Maulana Malik Ibrahim Malang.
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Umur <- data.frame(
Nama = c("Budi", "Amirul", "Pian", "Rizky", "Danu", "Yuni", "Sita", "Tika", "Nana", "Beta", "Moat", "Susan"),
Umur = c(17, 18, 18, 19, 20, 18, 17, 17, 19,20, 17, 18),
stringsAsFactors = FALSE)
Umur
## Nama Umur
## 1 Budi 17
## 2 Amirul 18
## 3 Pian 18
## 4 Rizky 19
## 5 Danu 20
## 6 Yuni 18
## 7 Sita 17
## 8 Tika 17
## 9 Nana 19
## 10 Beta 20
## 11 Moat 17
## 12 Susan 18
Nim <- data.frame(
Nama = c("Budi", "Amirul", "Pian", "Rizky", "Danu", "Yuni", "Sita", "Tika", "Nana", "Beta", "Moat", "Susan"),
NIM = c(210605110010, 210605110011, 210605110012, 210605110013, 210605110014, 210605110015, 210605110016, 210605110017, 210605110018,210605110019, 210605110020, 210605110021),
stringsAsFactors = FALSE)
Nim
## Nama NIM
## 1 Budi 210605110010
## 2 Amirul 210605110011
## 3 Pian 210605110012
## 4 Rizky 210605110013
## 5 Danu 210605110014
## 6 Yuni 210605110015
## 7 Sita 210605110016
## 8 Tika 210605110017
## 9 Nana 210605110018
## 10 Beta 210605110019
## 11 Moat 210605110020
## 12 Susan 210605110021
library(dplyr)
Mahasiswa <- merge(
x = Umur,
y = Nim,
by = 'Nama',
all = TRUE
)
Mahasiswa
## Nama Umur NIM
## 1 Amirul 18 210605110011
## 2 Beta 20 210605110019
## 3 Budi 17 210605110010
## 4 Danu 20 210605110014
## 5 Moat 17 210605110020
## 6 Nana 19 210605110018
## 7 Pian 18 210605110012
## 8 Rizky 19 210605110013
## 9 Sita 17 210605110016
## 10 Susan 18 210605110021
## 11 Tika 17 210605110017
## 12 Yuni 18 210605110015
Asal <- data.frame(
Nama = c("Budi", "Amirul", "Pian", "Rizky", "Danu", "Yuni", "Sita", "Tika", "Nana", "Beta", "Moat", "Susan"),
asal = c("Malang","Bekasi","Bogor","Bandung","Pekalongan","Sumba","NTB","NTT","Lombok","Palembang","Papua","Aceh"),
stringsAsFactors = FALSE)
Asal
## Nama asal
## 1 Budi Malang
## 2 Amirul Bekasi
## 3 Pian Bogor
## 4 Rizky Bandung
## 5 Danu Pekalongan
## 6 Yuni Sumba
## 7 Sita NTB
## 8 Tika NTT
## 9 Nana Lombok
## 10 Beta Palembang
## 11 Moat Papua
## 12 Susan Aceh
library(dplyr)
Mahasiswa1 <- merge(
x = Mahasiswa,
y = Asal,
by = 'Nama',
all = TRUE
)
Mahasiswa1
## Nama Umur NIM asal
## 1 Amirul 18 210605110011 Bekasi
## 2 Beta 20 210605110019 Palembang
## 3 Budi 17 210605110010 Malang
## 4 Danu 20 210605110014 Pekalongan
## 5 Moat 17 210605110020 Papua
## 6 Nana 19 210605110018 Lombok
## 7 Pian 18 210605110012 Bogor
## 8 Rizky 19 210605110013 Bandung
## 9 Sita 17 210605110016 NTB
## 10 Susan 18 210605110021 Aceh
## 11 Tika 17 210605110017 NTT
## 12 Yuni 18 210605110015 Sumba
Nim <- data.frame(
Nama = c("Budi", "Amirul", "Pian", "Rizky", "Danu", "Yuni", "Sita", "Tika", "Nana", "Beta", "Moat", "Susan"),
NIM = c(210605110010, 210605110011, 210605110012, 210605110013, 210605110014, 210605110015, 210605110016, 210605110017, 210605110018,210605110019, 210605110020, 210605110021),
stringsAsFactors = FALSE)
Nim
## Nama NIM
## 1 Budi 210605110010
## 2 Amirul 210605110011
## 3 Pian 210605110012
## 4 Rizky 210605110013
## 5 Danu 210605110014
## 6 Yuni 210605110015
## 7 Sita 210605110016
## 8 Tika 210605110017
## 9 Nana 210605110018
## 10 Beta 210605110019
## 11 Moat 210605110020
## 12 Susan 210605110021
innerjoin <- Mahasiswa1 %>%
inner_join(Nim, by = "Nama")
innerjoin
## Nama Umur NIM.x asal NIM.y
## 1 Amirul 18 210605110011 Bekasi 210605110011
## 2 Beta 20 210605110019 Palembang 210605110019
## 3 Budi 17 210605110010 Malang 210605110010
## 4 Danu 20 210605110014 Pekalongan 210605110014
## 5 Moat 17 210605110020 Papua 210605110020
## 6 Nana 19 210605110018 Lombok 210605110018
## 7 Pian 18 210605110012 Bogor 210605110012
## 8 Rizky 19 210605110013 Bandung 210605110013
## 9 Sita 17 210605110016 NTB 210605110016
## 10 Susan 18 210605110021 Aceh 210605110021
## 11 Tika 17 210605110017 NTT 210605110017
## 12 Yuni 18 210605110015 Sumba 210605110015
leftjoin <- left_join(Mahasiswa1,Nim)
## Joining, by = c("Nama", "NIM")
leftjoin
## Nama Umur NIM asal
## 1 Amirul 18 210605110011 Bekasi
## 2 Beta 20 210605110019 Palembang
## 3 Budi 17 210605110010 Malang
## 4 Danu 20 210605110014 Pekalongan
## 5 Moat 17 210605110020 Papua
## 6 Nana 19 210605110018 Lombok
## 7 Pian 18 210605110012 Bogor
## 8 Rizky 19 210605110013 Bandung
## 9 Sita 17 210605110016 NTB
## 10 Susan 18 210605110021 Aceh
## 11 Tika 17 210605110017 NTT
## 12 Yuni 18 210605110015 Sumba
rightjoin <- right_join(Mahasiswa1,Nim)
## Joining, by = c("Nama", "NIM")
rightjoin
## Nama Umur NIM asal
## 1 Amirul 18 210605110011 Bekasi
## 2 Beta 20 210605110019 Palembang
## 3 Budi 17 210605110010 Malang
## 4 Danu 20 210605110014 Pekalongan
## 5 Moat 17 210605110020 Papua
## 6 Nana 19 210605110018 Lombok
## 7 Pian 18 210605110012 Bogor
## 8 Rizky 19 210605110013 Bandung
## 9 Sita 17 210605110016 NTB
## 10 Susan 18 210605110021 Aceh
## 11 Tika 17 210605110017 NTT
## 12 Yuni 18 210605110015 Sumba
fulljoin <- full_join(Mahasiswa1,Nim)
## Joining, by = c("Nama", "NIM")
fulljoin
## Nama Umur NIM asal
## 1 Amirul 18 210605110011 Bekasi
## 2 Beta 20 210605110019 Palembang
## 3 Budi 17 210605110010 Malang
## 4 Danu 20 210605110014 Pekalongan
## 5 Moat 17 210605110020 Papua
## 6 Nana 19 210605110018 Lombok
## 7 Pian 18 210605110012 Bogor
## 8 Rizky 19 210605110013 Bandung
## 9 Sita 17 210605110016 NTB
## 10 Susan 18 210605110021 Aceh
## 11 Tika 17 210605110017 NTT
## 12 Yuni 18 210605110015 Sumba