The KNN regression method seeks to predict Y for a given value X by considering the K nearest neighbors to X in the training data and taking the average of those responses.
The KNN classifier seeks to predict Y for a given X by classifying an observation to the class with the highest probability based on its closest neighbors.
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.1.2
data(Auto)
pairs(Auto)
names(Auto)
## [1] "mpg" "cylinders" "displacement" "horsepower" "weight"
## [6] "acceleration" "year" "origin" "name"
cor(Auto[1:8])
## mpg cylinders displacement horsepower weight
## mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
## cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
## weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
## year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
## origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054
## acceleration year origin
## mpg 0.4233285 0.5805410 0.5652088
## cylinders -0.5046834 -0.3456474 -0.5689316
## displacement -0.5438005 -0.3698552 -0.6145351
## horsepower -0.6891955 -0.4163615 -0.4551715
## weight -0.4168392 -0.3091199 -0.5850054
## acceleration 1.0000000 0.2903161 0.2127458
## year 0.2903161 1.0000000 0.1815277
## origin 0.2127458 0.1815277 1.0000000
lm.fit=lm(mpg~.-name, data=Auto)
summary(lm.fit)
##
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435 4.644294 -3.707 0.00024 ***
## cylinders -0.493376 0.323282 -1.526 0.12780
## displacement 0.019896 0.007515 2.647 0.00844 **
## horsepower -0.016951 0.013787 -1.230 0.21963
## weight -0.006474 0.000652 -9.929 < 2e-16 ***
## acceleration 0.080576 0.098845 0.815 0.41548
## year 0.750773 0.050973 14.729 < 2e-16 ***
## origin 1.426141 0.278136 5.127 4.67e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
Comment on the output. For instance:
Yes, the R-squared statistic suggests that around 82% of the variation in the response can be explained by the predictors.
The predictors with significant P values are displacement, weight, year, and origin.
For each increase in year, there is a 0.75 increase in mpg. Fuel efficiency increases with each year.
par(mfrow=c(2,2))
plot(lm.fit)
Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?
The observations at 323, 326, and 327 have the highest standardized residuals, and it appears the data is slightly skewed right.
The observation at 14 has unusually high leverage, but does not cross over the dashed line of Cook’s distance, so it is not an influential point.
summary(lm(mpg~cylinders*displacement, data = Auto))
##
## Call:
## lm(formula = mpg ~ cylinders * displacement, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.0432 -2.4308 -0.2263 2.2048 20.9051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 48.22040 2.34712 20.545 < 2e-16 ***
## cylinders -2.41838 0.53456 -4.524 8.08e-06 ***
## displacement -0.13436 0.01615 -8.321 1.50e-15 ***
## cylinders:displacement 0.01182 0.00207 5.711 2.24e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.454 on 388 degrees of freedom
## Multiple R-squared: 0.6769, Adjusted R-squared: 0.6744
## F-statistic: 271 on 3 and 388 DF, p-value: < 2.2e-16
summary(lm(mpg~displacement*weight, data = Auto))
##
## Call:
## lm(formula = mpg ~ displacement * weight, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.8664 -2.4801 -0.3355 1.8071 17.9429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.372e+01 1.940e+00 27.697 < 2e-16 ***
## displacement -7.831e-02 1.131e-02 -6.922 1.85e-11 ***
## weight -8.931e-03 8.474e-04 -10.539 < 2e-16 ***
## displacement:weight 1.744e-05 2.789e-06 6.253 1.06e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.097 on 388 degrees of freedom
## Multiple R-squared: 0.7265, Adjusted R-squared: 0.7244
## F-statistic: 343.6 on 3 and 388 DF, p-value: < 2.2e-16
summary(lm(mpg~horsepower*weight, data = Auto))
##
## Call:
## lm(formula = mpg ~ horsepower * weight, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.7725 -2.2074 -0.2708 1.9973 14.7314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.356e+01 2.343e+00 27.127 < 2e-16 ***
## horsepower -2.508e-01 2.728e-02 -9.195 < 2e-16 ***
## weight -1.077e-02 7.738e-04 -13.921 < 2e-16 ***
## horsepower:weight 5.355e-05 6.649e-06 8.054 9.93e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.93 on 388 degrees of freedom
## Multiple R-squared: 0.7484, Adjusted R-squared: 0.7465
## F-statistic: 384.8 on 3 and 388 DF, p-value: < 2.2e-16
Do any interactions appear to be statistically significant?
All of the interactions tested are significantly statistic according to their P values.
lm.fit2=lm(mpg~horsepower+log(horsepower), data=Auto)
lm.fit3=lm(mpg~horsepower+I(horsepower^2), data=Auto)
lm.fit4=lm(mpg~horsepower+sqrt(horsepower), data=Auto)
summary(lm.fit2)
##
## Call:
## lm(formula = mpg ~ horsepower + log(horsepower), data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.5118 -2.5018 -0.2533 2.4446 15.3102
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 156.04057 12.08267 12.914 < 2e-16 ***
## horsepower 0.11846 0.02929 4.044 6.34e-05 ***
## log(horsepower) -31.59815 3.28363 -9.623 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.415 on 389 degrees of freedom
## Multiple R-squared: 0.6817, Adjusted R-squared: 0.6801
## F-statistic: 416.6 on 2 and 389 DF, p-value: < 2.2e-16
summary(lm.fit3)
##
## Call:
## lm(formula = mpg ~ horsepower + I(horsepower^2), data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.7135 -2.5943 -0.0859 2.2868 15.8961
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.9000997 1.8004268 31.60 <2e-16 ***
## horsepower -0.4661896 0.0311246 -14.98 <2e-16 ***
## I(horsepower^2) 0.0012305 0.0001221 10.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.374 on 389 degrees of freedom
## Multiple R-squared: 0.6876, Adjusted R-squared: 0.686
## F-statistic: 428 on 2 and 389 DF, p-value: < 2.2e-16
summary(lm.fit4)
##
## Call:
## lm(formula = mpg ~ horsepower + sqrt(horsepower), data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.5479 -2.5677 -0.2663 2.2998 15.5098
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 105.31581 6.64657 15.845 < 2e-16 ***
## horsepower 0.41913 0.05867 7.144 4.49e-12 ***
## sqrt(horsepower) -12.48574 1.26337 -9.883 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.392 on 389 degrees of freedom
## Multiple R-squared: 0.685, Adjusted R-squared: 0.6834
## F-statistic: 423 on 2 and 389 DF, p-value: < 2.2e-16
Transforming the horsepower variable did not change its significance.
data(Carseats)
attach(Carseats)
fitA=lm(Sales~Price+Urban+US)
summary(fitA)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.043469 0.651012 20.036 < 2e-16 ***
## Price -0.054459 0.005242 -10.389 < 2e-16 ***
## UrbanYes -0.021916 0.271650 -0.081 0.936
## USYes 1.200573 0.259042 4.635 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
The observations with significance are Price and US. Urban is not significant related to Sales. For each $1 increase in Price, Sales go down $54. Sales inside the US are $1200 more than outside the US.
\(Sales = 13.043469 − 0.054459Price − 0.021916Urban_{Yes} + 1.200573 x US_{Yes}\)
Price and US
fitB=lm(Sales~Price+US)
summary(fitB)
##
## Call:
## lm(formula = Sales ~ Price + US)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9269 -1.6286 -0.0574 1.5766 7.0515
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.03079 0.63098 20.652 < 2e-16 ***
## Price -0.05448 0.00523 -10.416 < 2e-16 ***
## USYes 1.19964 0.25846 4.641 4.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
## F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
Neither fits very well as only around 24% of the variance in Sales can be explained by the predictors according to the R-square statistic.
confint(fitB)
## 2.5 % 97.5 %
## (Intercept) 11.79032020 14.27126531
## Price -0.06475984 -0.04419543
## USYes 0.69151957 1.70776632
par(mfrow=c(2,2))
plot(fitB)
library(MASS)
stud_res=studres(fitB)
plot(stud_res)
There does not seem to be evidence of outliers or high leverage points that would be influential. The studentized residuals plot shows that no values have an absolute value greater than 3, so there are no clear outliers. The leverage plot shows that no observations cross the Cook’s distance line.
They are the same if \(\sum_{j=1}^{n} x^2_j\) is equal to \(\sum_{j=1}^{n} y^2_j\)
set.seed(1)
x=rnorm(100)
y=rnorm(100)
sum(x^2)
## [1] 81.05509
sum(y^2)
## [1] 90.97864
fit1=lm(x~y+0)
fit2=lm(y~x+0)
summary(fit1)
##
## Call:
## lm(formula = x ~ y + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2182 -0.4973 0.1162 0.6898 2.4039
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## y -0.005456 0.094863 -0.058 0.954
##
## Residual standard error: 0.9048 on 99 degrees of freedom
## Multiple R-squared: 3.341e-05, Adjusted R-squared: -0.01007
## F-statistic: 0.003308 on 1 and 99 DF, p-value: 0.9543
summary(fit2)
##
## Call:
## lm(formula = y ~ x + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9154 -0.6472 -0.1771 0.5056 2.3109
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x -0.006124 0.106477 -0.058 0.954
##
## Residual standard error: 0.9586 on 99 degrees of freedom
## Multiple R-squared: 3.341e-05, Adjusted R-squared: -0.01007
## F-statistic: 0.003308 on 1 and 99 DF, p-value: 0.9543
x1=1:100
y1=100:1
sum(x1^2)
## [1] 338350
sum(y1^2)
## [1] 338350
fit3=lm(x1~y1+0)
fit4=lm(y1~x1+0)
summary(fit3)
##
## Call:
## lm(formula = x1 ~ y1 + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.75 -12.44 24.87 62.18 99.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## y1 0.5075 0.0866 5.86 6.09e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared: 0.2575, Adjusted R-squared: 0.25
## F-statistic: 34.34 on 1 and 99 DF, p-value: 6.094e-08
summary(fit4)
##
## Call:
## lm(formula = y1 ~ x1 + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.75 -12.44 24.87 62.18 99.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x1 0.5075 0.0866 5.86 6.09e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared: 0.2575, Adjusted R-squared: 0.25
## F-statistic: 34.34 on 1 and 99 DF, p-value: 6.094e-08