Datos equipo Jessica y Paola

Crear entorno

library(tidyverse)
library(readxl)

Cargando los datos

basecompleta_copia <- read_excel("basecompleta - copia.xlsx")

Análisis descriptivo

basecompleta_copia %>% summary()
     codigo         edad1           edad2         n_hijos1        n_hijos2       a_escolar1      a_escolar2       brif-p1         brif-p2     
 Min.   : 1.0   Min.   :21.00   Min.   :20.0   Min.   :1.000   Min.   :0.000   Min.   : 5.00   Min.   : 5.00   Min.   :14.00   Min.   : 3.00  
 1st Qu.:23.5   1st Qu.:27.00   1st Qu.:27.0   1st Qu.:1.000   1st Qu.:1.500   1st Qu.:11.00   1st Qu.:11.00   1st Qu.:25.00   1st Qu.:20.00  
 Median :46.0   Median :32.00   Median :30.0   Median :2.000   Median :2.000   Median :11.00   Median :11.00   Median :40.00   Median :33.00  
 Mean   :46.0   Mean   :33.25   Mean   :31.6   Mean   :1.902   Mean   :2.099   Mean   :10.05   Mean   :10.63   Mean   :40.33   Mean   :34.76  
 3rd Qu.:68.5   3rd Qu.:38.00   3rd Qu.:35.5   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:11.00   3rd Qu.:13.00   3rd Qu.:52.00   3rd Qu.:44.50  
 Max.   :91.0   Max.   :50.00   Max.   :50.0   Max.   :4.000   Max.   :5.000   Max.   :15.00   Max.   :15.00   Max.   :86.00   Max.   :79.00  
                NA's   :30                     NA's   :30                      NA's   :30                      NA's   :31                     
   upnt3.2_1      upnt3.2_2       upnt3.3_1      upnt3.3_2       upnt5.3_1      upnt5.3_2       upnt5.4_1      upnt5.4_2         tienda      
 Min.   : 2.0   Min.   :1.000   Min.   :1.00   Min.   :0.000   Min.   : 2.0   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   : 4.000  
 1st Qu.: 5.0   1st Qu.:2.000   1st Qu.:2.00   1st Qu.:2.000   1st Qu.: 5.0   1st Qu.:2.000   1st Qu.:2.00   1st Qu.:2.000   1st Qu.: 9.000  
 Median :10.0   Median :3.000   Median :2.00   Median :3.000   Median :10.0   Median :3.000   Median :3.00   Median :3.000   Median :10.000  
 Mean   :10.2   Mean   :2.747   Mean   :2.48   Mean   :3.121   Mean   : 9.6   Mean   :3.022   Mean   :2.76   Mean   :3.571   Mean   : 9.648  
 3rd Qu.:15.0   3rd Qu.:4.000   3rd Qu.:3.00   3rd Qu.:5.000   3rd Qu.:15.0   3rd Qu.:4.000   3rd Qu.:3.00   3rd Qu.:5.000   3rd Qu.:11.000  
 Max.   :17.0   Max.   :4.000   Max.   :6.00   Max.   :7.000   Max.   :18.0   Max.   :4.000   Max.   :6.00   Max.   :7.000   Max.   :12.000  
 NA's   :66                     NA's   :66                     NA's   :66                     NA's   :66                                     

Análisis de datos de san luis

basecompleta_copia %>% 
  names() %>% 
  tibble() %>% 
  rename(. = names ) 
Error in UseMethod("rename") : 
  no applicable method for 'rename' applied to an object of class "function"

Filtrar solo datos de la union

basecompleta_san_luis <- 
  basecompleta_copia %>% 
  select(data_2$names) %>% 
  filter(!(is.na(edad2)))

Gráficas

basecompleta_san_luis %>% 
  ggplot(aes(x = edad2)) +
  geom_histogram()
range(basecompleta_san_luis$edad2)

Dónde hay mayor consumo del smartphone?

Boxplot

boxplot(basecompleta_copia$upnt3.2_1)
boxplot(basecompleta_copia$upnt3.2_2)

Es necesario comparar entre colegios cada una de las variables a través de un boxplot para entender si hay diferencias. La primera variable es upnt3.2_1 que significa el uso del internet a la semana y entre más alto el valor quiere decir que le dedica más tiempo. Para analizar esto es necesario transformar los datos. La gráfica muestra que parece que hay diferencia significativas entres las dos poblaciones en cuanto al uso del internet donde la población 1 muestra un uso mucho mayor.

basecompleta_copia %>% 
  select(upnt3.2_1, 
         upnt3.2_2) %>% 
  pivot_longer(cols = c("upnt3.2_1", 
                        "upnt3.2_2")
               ) %>% 
  ggplot(aes(x = value, fill = name)) +
  geom_boxplot()
Warning: Removed 66 rows containing non-finite values (stat_boxplot).

Ahora es necesario realizar un test para identificar si hay diferencias significativas. La prueba t determina si hay diferencias significativas del promedio de uso del internet entre las dos poblaciones.

t.test(basecompleta_copia$upnt3.2_1, basecompleta_copia$upnt3.2_2)

    Welch Two Sample t-test

data:  basecompleta_copia$upnt3.2_1 and basecompleta_copia$upnt3.2_2
t = 8.5627, df = 24.704, p-value = 7.337e-09
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 5.659081 9.246413
sample estimates:
mean of x mean of y 
10.200000  2.747253 

el p-valor muestra que las diferencias son significativas.

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKRGF0b3MgZXF1aXBvIEplc3NpY2EgeSBQYW9sYQoKIyBDcmVhciBlbnRvcm5vCgpgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkocmVhZHhsKQpgYGAKCiMgQ2FyZ2FuZG8gbG9zIGRhdG9zCgpgYGB7cn0KYmFzZWNvbXBsZXRhX2NvcGlhIDwtIHJlYWRfZXhjZWwoImJhc2Vjb21wbGV0YSAtIGNvcGlhLnhsc3giKQpgYGAKCiMgQW7DoWxpc2lzIGRlc2NyaXB0aXZvCgpgYGB7cn0KYmFzZWNvbXBsZXRhX2NvcGlhICU+JSBzdW1tYXJ5KCkKYGBgCgpBbsOhbGlzaXMgZGUgZGF0b3MgZGUgc2FuIGx1aXMKCmBgYHtyfQpkYXRhXzIgPC0gCiAgYmFzZWNvbXBsZXRhX2NvcGlhICU+JSAKICBuYW1lcygpICU+JSAKICB0aWJibGUoKSAlPiUgCiAgZmlsdGVyKCFzdHJfZGV0ZWN0KC4sICIuKjEiKSkgJT4lIAogIHJlbmFtZShuYW1lcyAgPSAiLiIpCgpgYGAKCkZpbHRyYXIgc29sbyBkYXRvcyBkZSBsYSB1bmlvbgoKYGBge3J9CmJhc2Vjb21wbGV0YV9zYW5fbHVpcyA8LSAKICBiYXNlY29tcGxldGFfY29waWEgJT4lIAogIHNlbGVjdChkYXRhXzIkbmFtZXMpICU+JSAKICBmaWx0ZXIoIShpcy5uYShlZGFkMikpKQpgYGAKCkdyw6FmaWNhcwoKYGBge3J9CmJhc2Vjb21wbGV0YV9zYW5fbHVpcyAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZWRhZDIpKSArCiAgZ2VvbV9oaXN0b2dyYW0oKQpgYGAKCmBgYHtyfQpyYW5nZShiYXNlY29tcGxldGFfc2FuX2x1aXMkZWRhZDIpCmBgYAoKRMOzbmRlIGhheSBtYXlvciBjb25zdW1vIGRlbCBzbWFydHBob25lPwoKQm94cGxvdAoKYGBge3J9CmJveHBsb3QoYmFzZWNvbXBsZXRhX2NvcGlhJHVwbnQzLjJfMSkKYGBgCgpgYGB7cn0KYm94cGxvdChiYXNlY29tcGxldGFfY29waWEkdXBudDMuMl8yKQpgYGAKCkVzIG5lY2VzYXJpbyBjb21wYXJhciBlbnRyZSBjb2xlZ2lvcyBjYWRhIHVuYSBkZSBsYXMgdmFyaWFibGVzIGEgdHJhdsOpcyBkZSB1biBib3hwbG90IHBhcmEgZW50ZW5kZXIgc2kgaGF5IGRpZmVyZW5jaWFzLiBMYSBwcmltZXJhIHZhcmlhYmxlIGVzIHVwbnQzLjJfMSBxdWUgc2lnbmlmaWNhIGVsIHVzbyBkZWwgaW50ZXJuZXQgYSBsYSBzZW1hbmEgeSBlbnRyZSBtw6FzIGFsdG8gZWwgdmFsb3IgcXVpZXJlIGRlY2lyIHF1ZSBsZSBkZWRpY2EgbcOhcyB0aWVtcG8uIFBhcmEgYW5hbGl6YXIgZXN0byBlcyBuZWNlc2FyaW8gdHJhbnNmb3JtYXIgbG9zIGRhdG9zLiBMYSBncsOhZmljYSBtdWVzdHJhIHF1ZSBwYXJlY2UgcXVlIGhheSBkaWZlcmVuY2lhIHNpZ25pZmljYXRpdmFzIGVudHJlcyBsYXMgZG9zIHBvYmxhY2lvbmVzIGVuIGN1YW50byBhbCB1c28gZGVsIGludGVybmV0IGRvbmRlIGxhIHBvYmxhY2nDs24gMSBtdWVzdHJhIHVuIHVzbyBtdWNobyBtYXlvci4KCmBgYHtyfQpiYXNlY29tcGxldGFfY29waWEgJT4lIAogIHNlbGVjdCh1cG50My4yXzEsIAogICAgICAgICB1cG50My4yXzIpICU+JSAKICBwaXZvdF9sb25nZXIoY29scyA9IGMoInVwbnQzLjJfMSIsIAogICAgICAgICAgICAgICAgICAgICAgICAidXBudDMuMl8yIikKICAgICAgICAgICAgICAgKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gdmFsdWUsIGZpbGwgPSBuYW1lKSkgKwogIGdlb21fYm94cGxvdCgpCiAgCmBgYAoKQWhvcmEgZXMgbmVjZXNhcmlvIHJlYWxpemFyIHVuIHRlc3QgcGFyYSBpZGVudGlmaWNhciBzaSBoYXkgZGlmZXJlbmNpYXMgc2lnbmlmaWNhdGl2YXMuIExhIHBydWViYSB0IGRldGVybWluYSBzaSBoYXkgZGlmZXJlbmNpYXMgc2lnbmlmaWNhdGl2YXMgZGVsIHByb21lZGlvIGRlIHVzbyBkZWwgaW50ZXJuZXQgZW50cmUgbGFzIGRvcyBwb2JsYWNpb25lcy4KCmBgYHtyfQp0LnRlc3QoYmFzZWNvbXBsZXRhX2NvcGlhJHVwbnQzLjJfMSwgYmFzZWNvbXBsZXRhX2NvcGlhJHVwbnQzLjJfMikKYGBgCgplbCBwLXZhbG9yIG11ZXN0cmEgcXVlIGxhcyBkaWZlcmVuY2lhcyBzb24gc2lnbmlmaWNhdGl2YXMuCg==