Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Fakultas : Sains dan Teknologi

Jurusan : Teknik Informatika

Mata Kuliah : Linier Algebra

0.1 Pengertian inflow dan outflow Uang Kartal

Inflow merupakan uang yang masuk ke BI melalui kegiatan penyetoran, sedangkan outflow merupakan uang yang keluar dari BI melalui kegiatan penarikan.Adapun contoh penerapan visualisasi prediksi data inflow & outflow pada provinsi Aceh dengan menggunakan pemerograman pada Bahasa R adalah sebagai berikut:

library(readxl)

## Warning: package 'readxl' was built under R version 4.1.2

datainflow <- read_excel(path = "inflow sumatera.xlsx")
datainflow

## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Bellitung` <dbl>

library(readxl)
dataoutflow <- read_excel(path = "outflow sumatera.xlsx")
dataoutflow

## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Bellitung` <dbl>

0.2 Visualisasi Prediksi Data Inflow Uang Kartal Aceh Setiap Periode

plot(datainflow$Tahun,datainflow$Aceh,type = "l", col= "steelblue")

0.3 Visualisasi Prediksi Data Outflow Uang Kartal di Aceh Setiap Periode

plot(dataoutflow$Tahun,dataoutflow$Aceh,type = "l", col= "red")

0.4 Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Aceh Setiap Periode

plot(datainflow$Tahun,datainflow$Aceh,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$Aceh,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

0.5 Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Aceh Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
datainflowperbulan

## # A tibble: 128 x 12
##    Bulanan             Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>

dataoutflowperbulan

## # A tibble: 128 x 12
##    Bulanan             Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>

plot(datainflowperbulan$Aceh, type = "l", col = "red")
lines(dataoutflowperbulan$Aceh,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("red","yellow"))

Acehtimeseries <- datainflowperbulan$Aceh
plot.ts(Acehtimeseries , type = "l", col = "green")

logAceh <- log(datainflowperbulan$Aceh)
plot.ts(logAceh)

0.6 Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Aceh

Acehinflowtimeseries <- ts(datainflowperbulan$Aceh, frequency=12, start=c(2011,1))
Acehinflowtimeseries

##             Jan        Feb        Mar        Apr        May        Jun
## 2011  124.33329  115.14321  154.41614  122.18349  122.75253  151.37534
## 2012  315.65341  292.57807  170.13069  139.33374  167.56600  119.32971
## 2013 5571.15653 3457.27812 3253.57336 3775.08977 3705.38033 3449.77565
## 2014  779.00596  332.03457  248.89939  260.82180  168.17801  194.97802
## 2015  836.57498  376.45107  317.53476  263.06848  256.64615  398.59527
## 2016  883.11220  498.41373  242.45180  218.98473  298.46423  450.32018
## 2017 1120.37553  452.83734  347.32016  240.71874  299.60563  194.84441
## 2018 1279.35872  366.57150  278.86587  262.95066  288.49282 1005.08498
## 2019 1293.88334  565.87121  397.27368  342.84300  420.44274 1554.92585
## 2020 1641.95487  692.74998  297.06861  281.42142  489.21304 1095.11262
## 2021  762.78539  487.91516  368.91965  308.33410  566.54102  502.60975
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  107.22432  183.84525  605.62334  157.64630  287.24653  176.19523
## 2012  196.61835  420.06418  286.31394  142.89984  288.58842   80.49051
## 2013 3456.32173 8516.17096  243.91990  379.41362  322.99838  205.46842
## 2014  173.99322 1306.11875  271.45458  454.45573  219.11177  157.53593
## 2015  977.94399  495.56495  179.23767  257.65850  227.20326  123.34945
## 2016 1374.47417  310.75050  538.99459  432.31664  301.61184  225.04199
## 2017 1149.75614  264.01934  627.70230  365.36280  275.68807  175.99260
## 2018  784.64208  369.23511  426.04458  344.08223  243.18631  150.59965
## 2019  473.28934  684.81679  405.51614  467.20195  436.23339  466.53727
## 2020  257.81810  592.86464  410.39330  273.60601  438.09977  170.52803
## 2021  280.32142  424.17610

Acehoutflowtimeseries <- ts(dataoutflowperbulan$Aceh, frequency=12, start=c(2011,1))
Acehoutflowtimeseries

##             Jan        Feb        Mar        Apr        May        Jun
## 2011  349.57673  192.62487  230.35748  528.59007  523.47023  405.84701
## 2012  420.97459  217.70857  503.88607  600.25342  429.26734  606.25526
## 2013  758.75245 1850.82994 2442.65886 1618.83372 2777.13063 2209.74012
## 2014  288.10448  489.92887  504.83732  773.93194  485.84142  912.38357
## 2015  269.29171  255.71308  521.69449 1125.85624  564.44034 1011.07770
## 2016  307.32375  172.45727  730.75026  667.74179 1079.70825 2642.66616
## 2017  247.27680  344.01370  677.88709  850.88747 1157.54011 2346.78323
## 2018  120.03917  266.02669  996.17473  707.23188 1634.43230 1889.68997
## 2019   85.36298  400.92165  964.22663 1218.54729 3312.30047  122.91218
## 2020  182.38950  426.10026 1433.83382 1432.33902 1689.68700  436.00470
## 2021   56.98918   60.56520  591.41875 1789.00566 2112.99646  176.09492
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  957.58488 1046.09243  123.98156  634.45751  595.14381  750.32697
## 2012  600.85083  791.04331  303.81795  854.83456  207.40890  841.70726
## 2013 5383.25551 2570.21842  566.69494  895.80335  699.91951 1504.22825
## 2014 1538.16507  285.80192  611.06198  902.31059  586.60778 1250.89508
## 2015 1558.53777  301.57675 1040.79937  316.39942  824.14892 1847.02405
## 2016  692.69059  653.34617 1027.41562  515.70143  962.49370 1858.31057
## 2017  282.09425 1520.49864  354.31840  667.42332  766.85433 2544.67010
## 2018  278.98765 1155.80705  609.61619  549.33587  622.53291 2619.93560
## 2019  687.35821 1230.78590  600.44006  552.87679 1055.67352 2855.56524
## 2020 1768.67777  455.94178  829.58521 1174.85940  774.36491 2269.89617
## 2021  662.04381  320.71844

plot.ts(Acehinflowtimeseries)

plot.ts(Acehoutflowtimeseries)

Acehintimeseriescomponents <- decompose(Acehinflowtimeseries)
Acehintimeseriescomponents$seasonal

##             Jan        Feb        Mar        Apr        May        Jun
## 2011  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2012  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2013  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2014  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2015  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2016  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2017  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2018  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2019  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2020  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2021  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2012  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2013  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2014  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2015  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2016  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2017  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2018  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2019  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2020  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2021  209.38959  624.31306

Acehouttimeseriescomponents <- decompose(Acehoutflowtimeseries)
Acehouttimeseriescomponents$seasonal

##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2012 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2013 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2014 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2015 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2016 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2017 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2018 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2019 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2020 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2021 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2012  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2013  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2014  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2015  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2016  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2017  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2018  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2019  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2020  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2021  414.184121   42.244469

plot(Acehintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(Acehouttimeseriescomponents$seasonal,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("orange","blue"))

plot(Acehintimeseriescomponents$trend,type = "l", col = "orange")
lines(Acehouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Acehintimeseriescomponents$random ,type = "l", col = "black")
lines(Acehouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("black","grey"))

plot(Acehintimeseriescomponents$figure ,type = "l", col = "orange")
lines(Acehouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

#Referensi

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#:~:text=Inflow%20merupakan%20uang%20yang%20masuk,melalui%20kegiatan%20penarikan%20%5B2%5D.

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx

https://rpubs.com/suhartono-uinmaliki/861286