Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Fakultas : Sains dan Teknologi
Jurusan : Teknik Informatika
Mata Kuliah : Linier Algebra
Inflow merupakan uang yang masuk ke BI melalui kegiatan penyetoran, sedangkan outflow merupakan uang yang keluar dari BI melalui kegiatan penarikan. Adapun contoh penerapan visualisasi prediksi data inflow & outflow pada Sumatera Utara dengan menggunakan pemerograman pada Bahasa R adalah sebagai berikut:
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflow sumatera.xlsx")
datainflow
## # A tibble: 11 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 57900. 2308. 23238. 9385. 3012. 1426.
## 2 2012 65911. 2620. 25981. 11192. 4447. 2236.
## 3 2013 98369. 36337. 18120. 14056. 8933. 3378.
## 4 2014 86024. 4567. 30503. 14103. 6358. 2563.
## 5 2015 86549. 4710. 30254. 13309. 7156. 3218.
## 6 2016 97764. 5775. 34427. 14078. 8211. 4317.
## 7 2017 103748. 5514. 35617. 15312. 8553. 4412.
## 8 2018 117495. 5799. 41769. 15058. 10730. 5134.
## 9 2019 133762. 7509. 47112. 14750. 10915. 6077.
## 10 2020 109345. 6641. 36609. 10696. 9148. 6175.
## 11 2021 89270. 3702. 31840. 10748. 7769. 5009.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Bellitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path = "outflow sumatera.xlsx")
dataoutflow
## # A tibble: 11 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 80092. 6338. 22176. 5300. 12434. 5819.
## 2 2012 85235. 6378. 22495. 6434. 13014. 6966.
## 3 2013 103288. 23278. 19235. 6511. 15460. 8747.
## 4 2014 102338. 8630. 26391. 7060. 15158. 10122.
## 5 2015 109186. 9637. 27877. 7471. 15789. 9803.
## 6 2016 121992. 11311. 31959. 9198. 17645. 10068.
## 7 2017 133606. 11760. 35243. 10754. 18128. 10749.
## 8 2018 135676. 11450. 36908. 8447. 17926. 12597.
## 9 2019 153484. 13087. 44051. 9465. 19277. 12644.
## 10 2020 140589. 12874. 39758. 8763. 19139. 8461.
## 11 2021 86627. 5770. 23453. 5941. 12631. 5128.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Bellitung` <dbl>
plot(datainflow$Tahun,datainflow$`Sumatera Utara`,type = "l", col= "steelblue")
plot(dataoutflow$Tahun,dataoutflow$`Sumatera Utara`,type = "l", col= "red")
plot(datainflow$Tahun,datainflow$`Sumatera Utara`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Sumatera Utara`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
## Bulanan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 4164. 124. 2068. 545. 94.2
## 2 2011-02-01 00:00:00 3338. 115. 1826. 450. 96.4
## 3 2011-03-01 00:00:00 4878. 154. 2028. 849. 288.
## 4 2011-04-01 00:00:00 3157. 122. 1429. 539. 160.
## 5 2011-05-01 00:00:00 3821. 123. 1539. 692. 195.
## 6 2011-06-01 00:00:00 3686. 151. 1637. 592. 101.
## 7 2011-07-01 00:00:00 4370. 107. 1791. 800. 143.
## 8 2011-08-01 00:00:00 3668. 184. 1256. 586. 134.
## 9 2011-09-01 00:00:00 12875. 606. 4172. 2176. 1014.
## 10 2011-10-01 00:00:00 4777. 158. 1941. 787. 341.
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## # `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
## Bulanan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 3442. 350. 941. 307. 478.
## 2 2011-02-01 00:00:00 3989. 193. 990. 228. 400.
## 3 2011-03-01 00:00:00 4229. 230. 1209. 347. 621.
## 4 2011-04-01 00:00:00 6721. 529. 1653. 336. 1006.
## 5 2011-05-01 00:00:00 5787. 523. 1465. 328. 1000.
## 6 2011-06-01 00:00:00 7395. 406. 2167. 399. 1366.
## 7 2011-07-01 00:00:00 7154. 958. 1695. 449. 815.
## 8 2011-08-01 00:00:00 16043. 1046. 4104. 1376. 2729.
## 9 2011-09-01 00:00:00 1915. 124. 824. 148. 154.
## 10 2011-10-01 00:00:00 5174. 634. 1392. 299. 830.
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## # `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$`Sumatera Utara`, type = "l", col = "red")
lines(dataoutflowperbulan$`Sumatera Utara`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("red","yellow"))
SumateraUtaratimeseries <- datainflowperbulan$`Sumatera Utara`
plot.ts(SumateraUtaratimeseries , type = "l", col = "green")
logSumateraUtara <- log(datainflowperbulan$`Sumatera Utara`)
plot.ts(logSumateraUtara)
SumateraUtarainflowtimeseries <- ts(datainflowperbulan$`Sumatera Utara`, frequency=12, start=c(2011,1))
SumateraUtarainflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 2068.3243 1826.2643 2027.5207 1429.1551 1539.2862 1636.5456 1791.1685
## 2012 2979.0495 2137.5356 2034.3183 1958.6650 2340.7850 1763.7063 2418.6288
## 2013 2011.8480 1284.0139 986.4736 1005.6172 965.7285 915.6734 1064.5788
## 2014 3915.7218 2518.0923 1977.0690 2412.9589 2104.0928 2277.4757 1289.7373
## 2015 4313.0187 1833.3080 2167.4386 2118.8912 2064.3412 2195.4568 4316.3041
## 2016 4181.4312 2940.6137 2494.2178 2178.8535 2934.5122 1934.5506 6145.8753
## 2017 4297.6567 2983.0020 2741.7477 2445.6147 2868.9780 1696.6538 5829.4896
## 2018 5434.8880 2756.8291 2766.0818 3252.3518 2292.8486 5954.2310 4699.5902
## 2019 5704.4344 3720.4500 3145.5627 3839.8883 3018.5163 7840.8944 4193.3568
## 2020 6476.7265 3659.4621 2723.3467 2035.7135 2380.0784 4344.0487 3057.1278
## 2021 7420.0889 3749.5795 3470.9778 3669.9855 4948.0587 3752.2078 2368.1586
## Aug Sep Oct Nov Dec
## 2011 1255.7771 4171.7420 1940.8248 1942.8641 1608.2825
## 2012 3146.4553 2265.7190 1794.1134 1956.5636 1185.1042
## 2013 2923.1453 1883.2831 2061.2406 1888.7141 1129.7521
## 2014 6180.5783 2309.9967 2132.9841 1911.6489 1472.3948
## 2015 3070.8514 2205.2647 2172.2108 2272.4471 1524.0474
## 2016 2599.2919 2611.1014 2470.8154 2171.7520 1763.8555
## 2017 2961.9966 2729.2401 2687.0436 2706.0655 1669.2277
## 2018 3350.3244 3165.3554 3165.9388 3130.5635 1799.6573
## 2019 3573.5657 3295.2926 3680.2501 3329.0633 1771.0466
## 2020 2370.7092 2391.4783 1908.7555 2826.9792 2434.8872
## 2021 2461.1935
SumateraUtaraoutflowtimeseries <- ts(dataoutflowperbulan$`Sumatera Utara`, frequency=12, start=c(2011,1))
SumateraUtaraoutflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 940.7270 990.2344 1208.7307 1652.7141 1464.7969 2167.0247 1695.1657
## 2012 984.0324 1216.1279 1787.1988 1807.6206 1874.7360 2688.0924 1964.9303
## 2013 385.7855 571.1485 981.3722 840.9738 1249.0038 1329.4347 3110.4414
## 2014 1386.2664 1401.1061 1758.2459 2054.0262 1829.6144 1703.7050 6389.1018
## 2015 572.9684 1763.7684 1389.7572 2303.6786 1510.8211 3233.5680 5255.8327
## 2016 1101.0264 1436.2692 1955.5644 2261.7604 2799.0006 7101.1630 1545.3956
## 2017 1381.2569 1585.6275 2219.8469 2436.9895 2995.6336 6666.8397 900.1986
## 2018 464.9380 2187.8200 2554.5897 2824.5938 4441.1976 6066.3074 2069.7335
## 2019 1254.4764 2323.8685 3046.6558 4576.5874 8856.8881 780.2976 3028.1933
## 2020 1456.3547 2150.2914 3244.4160 3371.2418 4147.5741 1473.5355 3525.8830
## 2021 767.5072 1758.2828 2249.6110 5490.0438 5183.1904 2210.7195 3486.2112
## Aug Sep Oct Nov Dec
## 2011 4103.7915 824.0580 1392.1819 1597.5122 4139.5386
## 2012 3120.9933 821.0337 1242.4665 1443.9081 3543.4771
## 2013 1837.2198 1362.0435 1608.7270 1880.8227 4077.7257
## 2014 793.8406 1397.2762 1888.7593 1700.0491 4088.9477
## 2015 982.1728 1852.0552 1907.6366 2126.0199 4978.8323
## 2016 1765.1649 2518.4152 2080.3687 2207.2962 5187.3478
## 2017 2908.6280 2161.4140 2247.3297 3283.9796 6455.4113
## 2018 2934.9619 1924.2260 2159.8890 2921.3840 6358.6489
## 2019 3577.9976 2629.2801 2576.9991 3782.3821 7617.2698
## 2020 3053.7066 2141.8995 3856.8591 2151.2443 9184.5577
## 2021 2307.3456
plot.ts(SumateraUtarainflowtimeseries)
plot.ts(SumateraUtaraoutflowtimeseries)
SumateraUtaraintimeseriescomponents <- decompose(SumateraUtarainflowtimeseries)
SumateraUtaraintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## 2012 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## 2013 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## 2014 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## 2015 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## 2016 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## 2017 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## 2018 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## 2019 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## 2020 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## 2021 1833.10646 -89.51799 -440.43967 -408.46057 -443.36891 432.35660
## Jul Aug Sep Oct Nov Dec
## 2011 757.67593 390.04691 -64.40352 -381.18432 -392.47592 -1193.33500
## 2012 757.67593 390.04691 -64.40352 -381.18432 -392.47592 -1193.33500
## 2013 757.67593 390.04691 -64.40352 -381.18432 -392.47592 -1193.33500
## 2014 757.67593 390.04691 -64.40352 -381.18432 -392.47592 -1193.33500
## 2015 757.67593 390.04691 -64.40352 -381.18432 -392.47592 -1193.33500
## 2016 757.67593 390.04691 -64.40352 -381.18432 -392.47592 -1193.33500
## 2017 757.67593 390.04691 -64.40352 -381.18432 -392.47592 -1193.33500
## 2018 757.67593 390.04691 -64.40352 -381.18432 -392.47592 -1193.33500
## 2019 757.67593 390.04691 -64.40352 -381.18432 -392.47592 -1193.33500
## 2020 757.67593 390.04691 -64.40352 -381.18432 -392.47592 -1193.33500
## 2021 757.67593 390.04691
SumateraUtaraouttimeseriescomponents <- decompose(SumateraUtaraoutflowtimeseries)
SumateraUtaraouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## 2012 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## 2013 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## 2014 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## 2015 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## 2016 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## 2017 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## 2018 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## 2019 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## 2020 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## 2021 -1668.31245 -1004.32016 -452.48739 -76.68515 712.34043 835.13962
## Jul Aug Sep Oct Nov Dec
## 2011 389.85774 -53.26060 -805.47535 -492.84969 -310.99376 2927.04677
## 2012 389.85774 -53.26060 -805.47535 -492.84969 -310.99376 2927.04677
## 2013 389.85774 -53.26060 -805.47535 -492.84969 -310.99376 2927.04677
## 2014 389.85774 -53.26060 -805.47535 -492.84969 -310.99376 2927.04677
## 2015 389.85774 -53.26060 -805.47535 -492.84969 -310.99376 2927.04677
## 2016 389.85774 -53.26060 -805.47535 -492.84969 -310.99376 2927.04677
## 2017 389.85774 -53.26060 -805.47535 -492.84969 -310.99376 2927.04677
## 2018 389.85774 -53.26060 -805.47535 -492.84969 -310.99376 2927.04677
## 2019 389.85774 -53.26060 -805.47535 -492.84969 -310.99376 2927.04677
## 2020 389.85774 -53.26060 -805.47535 -492.84969 -310.99376 2927.04677
## 2021 389.85774 -53.26060
plot(SumateraUtaraintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(SumateraUtaraouttimeseriescomponents$seasonal,col="blue")
legend("top",c("Inflow","Outflow"),fill=c("orange","blue"))
plot(SumateraUtaraintimeseriescomponents$trend,type = "l", col = "orange")
lines(SumateraUtaraouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))
plot(SumateraUtaraintimeseriescomponents$random ,type = "l", col = "black")
lines(SumateraUtaraouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("black","grey"))
plot(SumateraUtaraintimeseriescomponents$figure ,type = "l", col = "orange")
lines(SumateraUtaraouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))
https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#:~:text=Inflow%20merupakan%20uang%20yang%20masuk,melalui%20kegiatan%20penarikan%20%5B2%5D.
https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx