The first thing to do is to merge the size (weight) data into Avika’s dataset. This is in data_forage
.
load('../data/data_forage.Rda')
kable(head(data_forage))
Population | ID | Sex | Mom_ID | Litter | Treatment | Pred_Tutor | Pred | Tutor_pop | Birth.Day | Day | Date | Time | Water | Weight | Run | Latency | Attempts | Notes | Tutor | event | time2peck | Predator |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AH | AHF2_1G4G.3.3 | F | AHF2_1G4G | 3 | pred-/same | pred-/AH | pred- | AH | 2-Feb | 2 | 22-Mar | 15:47 | pred- | 0.133 | 1 | 16 | 17 | AH | 1 | 16 | pred- | |
AH | AHF2_1G4G.3.3 | F | AHF2_1G4G | 3 | pred-/same | pred-/AH | pred- | AH | 2-Feb | 1 | 21-Mar | 15:06 | pred+ | 0.133 | 1 | 73 | 99 | AH | 1 | 73 | pred- | |
AH | AHF2_1G4G.6.2 | F | AHF2_1G4G | 6 | pred-/same | pred-/AH | pred- | AH | 14-Aug | 1 | 29-Sep | 15:17 | pred- | 0.144 | 1 | 35 | 166 | first few in middle | AH | 1 | 35 | pred- |
AH | AHF2_1G4G.6.2 | F | AHF2_1G4G | 6 | pred-/same | pred-/AH | pred- | AH | 14-Aug | 2 | 30-Sep | 15:06 | pred+ | 0.144 | 1 | 58 | 7 | AH | 1 | 58 | pred- | |
AH | AHF2_1G4P.2.1 | F | AHF2_1G4P | 2 | pred-/same | pred-/AH | pred- | AH | 15-Jan | 1 | 2-Mar | 15:30 | pred+ | 0.128 | 1 | 39 | 55 | AH | 1 | 39 | pred- | |
AH | AHF2_1G4P.2.1 | F | AHF2_1G4P | 2 | pred-/same | pred-/AH | pred- | AH | 15-Jan | 2 | 3-Mar | 16:04 | pred- | 0.128 | 1 | 310 | 72 | AH | 1 | 310 | pred- |
Avika’s data needs to be read.
data_move <- read.csv('../data_raw/Avika Video Analysis.csv')
data_move <- left_join(data_move, data_forage)
Now we can run the binomial models
model_still <- glmer(I(Unmoving/180) ~ Weight + Sex + Population + Water +
(1|ID),
data = data_move,
family = binomial)
kable(summary(model_still)$coefficients)
Estimate | Std. Error | z value | Pr(>|z|) | |
---|---|---|---|---|
(Intercept) | -0.7246707 | 1.2975763 | -0.5584803 | 0.5765165 |
Weight | -8.1808092 | 10.0257658 | -0.8159785 | 0.4145124 |
SexM | -0.0867994 | 0.5339582 | -0.1625584 | 0.8708661 |
PopulationAL | 0.8128290 | 0.5065703 | 1.6045729 | 0.1085878 |
Waterpred+ | 0.4266785 | 0.4847596 | 0.8801858 | 0.3787586 |
model_slow <- glmer(I((Slow+Unmoving)/180) ~ Weight + Sex + Population + Water
+(1|ID),
data = data_move,
family = binomial)
kable(summary(model_slow)$coefficients)
Estimate | Std. Error | z value | Pr(>|z|) | |
---|---|---|---|---|
(Intercept) | -2.4652368 | 1.2716807 | -1.9385659 | 0.0525542 |
Weight | 11.2148840 | 9.5925935 | 1.1691191 | 0.2423557 |
SexM | 0.6569701 | 0.5012864 | 1.3105684 | 0.1900036 |
PopulationAL | 1.5514885 | 0.4702010 | 3.2996282 | 0.0009681 |
Waterpred+ | 0.2375094 | 0.4589836 | 0.5174682 | 0.6048294 |
LP guppies spend a higher proportion of time with low activity than HP but predator water has no effect.
model_fast <- glmer(I((Fast+Moderate)/180) ~ Weight + Sex + Population + Water +
(1|ID),
data = data_move,
family = binomial)
kable(summary(model_fast)$coefficients)
Estimate | Std. Error | z value | Pr(>|z|) | |
---|---|---|---|---|
(Intercept) | 2.1474237 | 1.2518209 | 1.7154400 | 0.0862646 |
Weight | -9.6915104 | 9.5165634 | -1.0183834 | 0.3084958 |
SexM | -0.6166941 | 0.4994182 | -1.2348250 | 0.2168956 |
PopulationAL | -1.4942384 | 0.4672070 | -3.1982365 | 0.0013827 |
Waterpred+ | -0.2094753 | 0.4593164 | -0.4560588 | 0.6483477 |
HP guppies spend a higher proportion of time with high activity than LP but predator water has no effect.
Low Activity
plot_still <- ggplot(data = data_move,
aes(y = (Unmoving+Slow)/180, x = Water, group = Population)) +
geom_jitter(aes(col = Population), width = 0.2)
plot_still
High Activity
plot_fast <- ggplot(data = data_move,
aes(y = (Fast+Moderate)/180, x = Water, group = Population)) +
geom_jitter(aes(col = Population), width = 0.2)
plot_fast
## Warning: Removed 1 rows containing missing values (geom_point).