# Carregar base de dados
library(readxl)
Cities_Brazil_IBGE <- read_excel("C:/Users/Rica Meira/Desktop/Base_de_dados-master/Cities_Brazil_IBGE.xlsx")# Bibliotecas carregadas para o trabalho
library(dplyr)##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(flextable)
library(ggplot2)
library(corrplot)## corrplot 0.92 loaded
Cities_Brazil_IBGE %>% select(RegiaoBrasil,PopEstimada_2018) %>%
group_by(RegiaoBrasil) %>%
summarise(Média=round(mean(PopEstimada_2018),2),DesvioPadrão=round(sd(PopEstimada_2018),2)) %>%
flextable() %>% theme_tron_legacy()RegiaoBrasil | Média | DesvioPadrão |
CO | 34,445.15 | 165,993.99 |
N | 40,405.01 | 134,377.17 |
NE | 31,639.23 | 118,227.95 |
SE | 52,585.10 | 358,236.60 |
SUL | 24,982.40 | 86,411.55 |
Cities_Brazil_IBGE %>% select(RegiaoBrasil,ReceitasRealizadas_2014) %>%
group_by(RegiaoBrasil) %>%
summarise(Média=round(mean(ReceitasRealizadas_2014),2),DesvioPadrão=round(sd(ReceitasRealizadas_2014),2)) %>%
flextable() %>% theme_zebra()RegiaoBrasil | Média | DesvioPadrão |
CO | 101,192.76 | 981,445.4 |
N | 64,904.52 | 262,879.9 |
NE | 57,592.43 | 250,444.1 |
SE | 141,651.28 | 1,271,318.2 |
SUL | 67,945.55 | 302,006.0 |
Cities_Brazil_IBGE %>% select(RegiaoBrasil,DespesasEmpenhadas_2014) %>%
group_by(RegiaoBrasil) %>%
summarise(Média=round(mean(DespesasEmpenhadas_2014),2),DesvioPadrão=round(sd(DespesasEmpenhadas_2014),2)) %>%
flextable() %>% theme_vader()RegiaoBrasil | Média | DesvioPadrão |
CO | 93,178.11 | 904,904.9 |
N | 61,199.82 | 241,413.5 |
NE | 55,198.12 | 235,150.2 |
SE | 135,587.00 | 1,267,828.2 |
SUL | 58,621.49 | 271,263.2 |
Cities_Brazil_IBGE %>% select(RegiaoBrasil,`PopCenso 2010`) %>%
group_by(RegiaoBrasil) %>%
summarise(Média=round(mean(`PopCenso 2010`),2),DesvioPadrão=round(sd(`PopCenso 2010`),2)) %>%
flextable() %>% theme_vanilla()RegiaoBrasil | Média | DesvioPadrão |
CO | 30,102.99 | 143,677.96 |
N | 35,254.34 | 116,550.28 |
NE | 29,584.10 | 109,758.80 |
SE | 48,180.10 | 332,460.07 |
SUL | 22,994.87 | 79,141.16 |
# Diagrama de dispersão
par(bg="lightyellow")
plot(Cities_Brazil_IBGE$ReceitasRealizadas_2014,Cities_Brazil_IBGE$DespesasEmpenhadas_2014,
pch=16,col="blue",
main="Diagrama de dispersão - Receitas e Despesas",
ylab = "Despesas",xlab = "Receitas")
abline(lsfit(Cities_Brazil_IBGE$ReceitasRealizadas_2014,Cities_Brazil_IBGE$DespesasEmpenhadas_2014)
,col="darkred")# Matriz de correlação
selecao<-c("ReceitasRealizadas_2014","PopCenso 2010",
"DespesasEmpenhadas_2014", "PopEstimada_2018")
cor_1 <- cor(Cities_Brazil_IBGE[,selecao])
cor_1## ReceitasRealizadas_2014 PopCenso 2010
## ReceitasRealizadas_2014 1.0000000 0.9597765
## PopCenso 2010 0.9597765 1.0000000
## DespesasEmpenhadas_2014 0.9981605 0.9638095
## PopEstimada_2018 0.9607953 0.9996075
## DespesasEmpenhadas_2014 PopEstimada_2018
## ReceitasRealizadas_2014 0.9981605 0.9607953
## PopCenso 2010 0.9638095 0.9996075
## DespesasEmpenhadas_2014 1.0000000 0.9642668
## PopEstimada_2018 0.9642668 1.0000000
library(corrplot)
par(cex=0.5)
corrplot(cor_1)wilcox.test( Cities_Brazil_IBGE$DespesasEmpenhadas_2014,
Cities_Brazil_IBGE$PopEstimada_2018)##
## Wilcoxon rank sum test with continuity correction
##
## data: Cities_Brazil_IBGE$DespesasEmpenhadas_2014 and Cities_Brazil_IBGE$PopEstimada_2018
## W = 19080618, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Cities_Brazil_IBGE$ReceitasRealizadas_2014,
Cities_Brazil_IBGE$PopEstimada_2018)##
## Wilcoxon rank sum test with continuity correction
##
## data: Cities_Brazil_IBGE$ReceitasRealizadas_2014 and Cities_Brazil_IBGE$PopEstimada_2018
## W = 19602911, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Cities_Brazil_IBGE$`PopCenso 2010`,Cities_Brazil_IBGE$PopEstimada_2018)##
## Wilcoxon rank sum test with continuity correction
##
## data: Cities_Brazil_IBGE$`PopCenso 2010` and Cities_Brazil_IBGE$PopEstimada_2018
## W = 15086063, p-value = 0.01199
## alternative hypothesis: true location shift is not equal to 0