The Zillow Home Price Data are time series datasets available online via this link. The datasets we will be focusing is updated monthly:
Home Values – Zillow Home Values Index (ZHVI) that tells us the typical home value in a given geography (metro area, city, ZIP code, etc., now and over time.).We are still focusing on home value monthly data in Cincinnati. To perform Prophet Model, we need to change name to our dataset: name our date variable –ds; name our time series variable (home_value) –y.
cin_home_value<- home_value%>%
filter(RegionID==394466)%>%
pivot_longer(6:269,names_to="date",values_to="home_value")%>%
mutate(new_month= as.Date(date, "%Y-%m-%d"))
#change to prophet format data
prophet_data = cin_home_value %>%
rename(ds = new_month, # Have to name our date variable "ds"
y = home_value) # Have to name our time series "y"
prophet_data%>%
head(5)%>%
kbl(caption = "Table 1: Prophet Format Data: Cincinnati Home Value")%>%
kable_classic(full_width = F, html_font = "Cambria")
| RegionID | SizeRank | RegionName | RegionType | StateName | date | y | ds |
|---|---|---|---|---|---|---|---|
| 394466 | 28 | Cincinnati, OH | Msa | OH | 2000-01-31 | 129379 | 2000-01-31 |
| 394466 | 28 | Cincinnati, OH | Msa | OH | 2000-02-29 | 129364 | 2000-02-29 |
| 394466 | 28 | Cincinnati, OH | Msa | OH | 2000-03-31 | 129290 | 2000-03-31 |
| 394466 | 28 | Cincinnati, OH | Msa | OH | 2000-04-30 | 129780 | 2000-04-30 |
| 394466 | 28 | Cincinnati, OH | Msa | OH | 2000-05-31 | 130454 | 2000-05-31 |
Prophet model is usually used for daily data, fitting monthly data in this model is also applicable but we are asking for daily forecasts in this case. We will start with a basic forecasting using Prophet with frequency as daily.
We took months before “2017-08-31” as train dataset (approximately 80%) and time at “2017-08-31” and after as test dataset (approximately 20%). We can plot an interactive plot for forecasting after modeling.
Additionally, we will plot lines of forecast home value with actual Home value for comparison.
train1 = prophet_data %>%
filter(ds<ymd("2017-08-31"))
test1 = prophet_data %>%
filter(ds>=ymd("2017-08-31"))
model1 = prophet(train1)
future1 = make_future_dataframe(model1,periods = 1583)#freq=daily; 53 month ahead
forecast1 = predict(model1,future1)
#plot interactive forecast plot
dyplot.prophet(model1,forecast1)
#plot actual vs forecast line for comparision
ggplot()+
geom_line(data=forecast1,aes(x=as.Date(ds),y=yhat,col="blue"))+
geom_line(data=cin_home_value,aes(x=as.Date(new_month),y=home_value,col="red"))+
scale_color_identity(name = "Legend", #for manual legend
breaks = c("red","blue"),
labels = c("Actual","Forecast"),
guide = "legend")+
labs(title = "Cincy Home Value: Actual value vs Prophet basic forecast",
x = "Date",
y = "Cincinnati Home Value")
As we noticed from above that the output is strange as the forecast is not smooth and it generates daily instead of monthly forecast. Now we will change the frequency to month.
train = prophet_data %>%
filter(ds<ymd("2017-08-31"))
test = prophet_data %>%
filter(ds>=ymd("2017-08-31"))
model = prophet(train)
future = make_future_dataframe(model,periods = 53,freq = 'month')
forecast = predict(model,future)
#plot interactive forecast plot
dyplot.prophet(model,forecast)
#plot actual vs forecast line for comparision
ggplot()+
geom_line(data=forecast,aes(x=as.Date(ds),y=yhat,col="blue"))+
geom_line(data=cin_home_value,aes(x=as.Date(new_month),y=home_value,col="red"))+
scale_color_identity(name = "Legend", #for manual legend
breaks = c("red","blue"),
labels = c("Actual","Forecast"),
guide = "legend")+
labs(title = "Cincy Home Value: Actual value vs Prophet basic forecast",
x = "Date",
y = "Cincinnati Home Value")
The plots looks more smooth. However, we can notice from the plots that predicted home value is clearly lower than actual home value after the time of “2017-08-31”. Thus, we will look into trend and seasonality impact on home_value:
prophet_plot_components(model,forecast)
We can see from the decompose plot above that there’s a clear trend but seasonality is less clear. It might because this home value dataset is seasonally adjusted and only includes the middle price tier of homes. However, there might be cyclical component that follows the economic patterns (eg: 2008 financial crisis; 2019 COVID, etc). Now let’s check the change points:
The input of changepoints allowed us to increase the fit and its flexibility. We can examine the changepoints identified for the “trend” part of the time series from home value plot above. There is at least 5 change point (1 around 2005, 2 around 2010, 1 around 2015, 1 around 2019):
model_changepoint = prophet(train,n.changepoints=5)
future_changepoint = make_future_dataframe(model,periods = 53,freq = 'month')
forecast_changepoint = predict(model_changepoint,future_changepoint)
plot(model_changepoint,forecast_changepoint)+
add_changepoints_to_plot(model_changepoint)+
theme_bw()+xlab("Date")+ylab("Home value")
prophet_plot_components(model_changepoint,forecast_changepoint)
We noticed from the trend plot that setting changepoint 5 roghtly captured trend changes. If we set higher changepoint number, there’s chance of overfitting.
From the forecast output above, the predicted values are all above 0. In our model, we do not need to take into account a saturating maximum point as the home value. However, we must also specify a maximum capacity if using logistic growth with a minimum. Thus, we could set a reasonable minimun and maximum value: usually home value ( Cincinnati median home value) is unlikely to go below 0 dollar and go above $0.3 million.
train_saturation = prophet_data %>%
filter(ds<ymd("2017-08-31"))
test_saturation = prophet_data %>%
filter(ds>=ymd("2017-08-31"))
model_saturation = prophet(train_saturation)
future_saturation = make_future_dataframe(model_saturation,periods = 53,freq = 'month')#freq=monthly; 53 month ahead
# Set "floor" in training data
train_saturation$floor = 0
train_saturation$cap=300000
future_saturation$floor = 0
future_saturation$cap=300000
# Set floor in forecast data
future_saturation$floor = 0
future_saturation$cap=300000
sat_model = prophet(train_saturation,growth='logistic')
sat_forecast = predict(sat_model,future_saturation)
plot(sat_model,sat_forecast)+ylim(0,300000)+
theme_bw()+xlab("Date")+ylab("Home Value")
From the plot, we noticed that all the home values are within the range of (0.1,0.3) million. Therefore, we do not need to specify the saturating points.
From above decomposition, we noticed that we do not have yearly seasonality. It might because this value is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. Now we will try to identity daily, weekly, as well as additibe/ multiplicative seasonality:
model_season with daily.seasonality and weekly.seasonality option set to TURE to check daily and weekly seasonality:model_season = prophet(train, daily.seasonality = TRUE, weekly.seasonality = TRUE)
future_season = make_future_dataframe(model_season,periods = 1583)#freq=daily; 53 month ahead
forecast_season = predict(model_season,future_season)
#plot interactive forecast plot
dyplot.prophet(model_season,forecast_season)
#decompose
prophet_plot_components(model_season,forecast_season)
Daily or weekly seasonality also not very obvious. Now we will dive into additive/ multiplicative seasonality:
additive = prophet(train)
add_fcst = predict(additive,future)
plot(additive,add_fcst)
prophet_plot_components(additive,add_fcst)
multi = prophet(train,seasonality.mode = 'multiplicative')
multi_fcst = predict(multi,future)
plot(multi,multi_fcst)
prophet_plot_components(multi,multi_fcst)
Decompose plots of additive or multiplicative seasonality appear to be similar: seasonality is not obvious. Thus, we might only have trend and no seasonality.
We want to try with inclusion of holidays. The result might not be very accurate with important holidays as we are examining monthly rather than daily data:
#Can use built-in holidays, or specify our own
model_holiday = prophet(train,fit=FALSE,daily.seasonality = TRUE, weekly.seasonality = TRUE)
model_holiday = add_country_holidays(model_holiday,country_name = 'US')
model_holiday = fit.prophet(model_holiday,train)
forecast_holiday = predict(model_holiday,future1)
dyplot.prophet(model_holiday,forecast_holiday)
prophet_plot_components(model_holiday,forecast_holiday)
The fitted line looks very well. Additionally, the plots indicated a few import days over years. These days maybe corresponding to our changing points in trend. Now we can look into those days:
forecast_holiday %>%
filter(holidays != 0) %>%
select_if(~ !is.numeric(.) || sum(.) != 0)%>%
select(ds,holidays,`Memorial Day`,`New Year's Day (Observed)`)%>%
kbl(caption = "Table 2: Important Holidays")%>%
kable_classic(full_width = F, html_font = "Cambria")
| ds | holidays | Memorial Day | New Year’s Day (Observed) |
|---|---|---|---|
| 2004-05-31 | 1267.9140 | 1267.914 | 0.0000 |
| 2004-12-31 | -399.0302 | 0.000 | -399.0302 |
| 2010-05-31 | 1267.9140 | 1267.914 | 0.0000 |
| 2010-12-31 | -399.0302 | 0.000 | -399.0302 |
| 2018-05-28 | 1267.9140 | 1267.914 | 0.0000 |
| 2019-05-27 | 1267.9140 | 1267.914 | 0.0000 |
| 2020-05-25 | 1267.9140 | 1267.914 | 0.0000 |
| 2021-05-31 | 1267.9140 | 1267.914 | 0.0000 |
We may notice that the returning result is reasonable:
Important positive influential holiday is Memorial day which is in May when the market is in peak season and buyers are active. On the contrary, negative correlated holiday is New Year’s day, which is when the housing market is in slow season. Moreover, we can see decrease in 2004 and 2010. As for 2010-2011, we had the housing market crash after the 2008 financial crisis.
forecast_holiday %>%
filter(holidays != 0) %>%
dplyr::select(-ds:-additive_terms_upper, -holidays:-holidays_upper, -weekly:-yhat, -contains("upper"), -contains("lower")) %>%
mutate_all(~ if_else(. == 0, as.numeric(NA), .)) %>%
summarize_if(is.numeric, ~ max(., na.rm = T)) %>%
pivot_longer(
cols = `Christmas Day`:`Washington's Birthday`,
names_to = 'holiday',
values_to = 'effect'
) %>%
ggplot() +
geom_col(aes(effect,holiday))+
theme_bw()
anom_train = prophet_data %>%
filter(ds<ymd("2017-08-31"))
anom_test = prophet_data %>%
filter(ds>=ymd("2017-08-31"))
anom_model = prophet(anom_train)
anom_future = make_future_dataframe(anom_model,periods = 53,freq = 'month')
forecast = predict(anom_model,anom_future)
forecast_plot_data = forecast %>%
as_tibble() %>%
mutate(ds = as.Date(ds)) %>%
filter(ds>=ymd("2017-08-31")) %>%
mutate(y = anom_test$y) %>%
mutate(anomaly = if_else(y>yhat_upper | y<yhat_lower,TRUE,as.logical(NA)))
forecast_plot_data %>%
ggplot()+
geom_line(aes(ds,y))+
geom_point(aes(ds,y,color=anomaly))+
geom_line(aes(ds,yhat),color='red')+
geom_ribbon(aes(ds,ymin=yhat_lower,ymax=yhat_upper),alpha=0.4,fill='blue') +
scale_colour_discrete(na.translate = F)
We can see that our actual values in test dataset are much higher than the predicted values. Therefore, all points are detected anomaly. However, we can not delete these data, as they are generated under COVID situation which is an anomaly period of time and business trend.
We want to use rolling window cross-validation to assess performance of the model at meaningful thresholds depending on the data (eg: 1 year out for monthly data) and then use various metrics (eg: RMSE,MAE,MAPE).
df.cv_holiday <- cross_validation(model_holiday, initial = 4*365,horizon = 365, units = 'days')
unique(df.cv_holiday$cutoff)%>%
kbl(caption = "Table 3: Holidays model CV cutoff")%>%
kable_classic(full_width = F, html_font = "Cambria")
| x |
|---|
| 2004-02-02 12:00:00 |
| 2004-08-03 00:00:00 |
| 2005-02-01 12:00:00 |
| 2005-08-03 00:00:00 |
| 2006-02-01 12:00:00 |
| 2006-08-03 00:00:00 |
| 2007-02-01 12:00:00 |
| 2007-08-03 00:00:00 |
| 2008-02-01 12:00:00 |
| 2008-08-02 00:00:00 |
| 2009-01-31 12:00:00 |
| 2009-08-02 00:00:00 |
| 2010-01-31 12:00:00 |
| 2010-08-02 00:00:00 |
| 2011-01-31 12:00:00 |
| 2011-08-02 00:00:00 |
| 2012-01-31 12:00:00 |
| 2012-08-01 00:00:00 |
| 2013-01-30 12:00:00 |
| 2013-08-01 00:00:00 |
| 2014-01-30 12:00:00 |
| 2014-08-01 00:00:00 |
| 2015-01-30 12:00:00 |
| 2015-08-01 00:00:00 |
| 2016-01-30 12:00:00 |
| 2016-07-31 00:00:00 |
df.cv_holiday %>%
ggplot()+
geom_point(aes(ds,y)) +
geom_point(aes(ds,yhat,color=factor(cutoff)))+
theme_bw()+
xlab("Date")+
ylab("Home value")+
scale_color_discrete(name = 'Cutoff')
performance_metrics(df.cv_holiday)%>%
kbl(caption = "Table 4: Holidays model CV performance metrics")%>%
kable_classic(full_width = F, html_font = "Cambria")
| horizon | mse | rmse | mae | mape | mdape | smape | coverage |
|---|---|---|---|---|---|---|---|
| 1380 hours | 7085812 | 2661.919 | 1847.714 | 0.0127661 | 0.0088902 | 0.0128621 | 0.1693548 |
| 1392 hours | 6830350 | 2613.494 | 1828.086 | 0.0125604 | 0.0088902 | 0.0126436 | 0.1935484 |
| 1404 hours | 7929313 | 2815.904 | 2004.096 | 0.0137685 | 0.0089556 | 0.0138474 | 0.1935484 |
| 1416 hours | 8326729 | 2885.607 | 2134.955 | 0.0147409 | 0.0099573 | 0.0148185 | 0.2258065 |
| 1428 hours | 8925242 | 2987.514 | 2227.183 | 0.0154213 | 0.0099573 | 0.0155174 | 0.2338710 |
| 1440 hours | 9782313 | 3127.669 | 2321.821 | 0.0161352 | 0.0109473 | 0.0162752 | 0.2338710 |
| 1452 hours | 9628944 | 3103.054 | 2311.548 | 0.0160471 | 0.0109473 | 0.0161895 | 0.2258065 |
| 1464 hours | 9701966 | 3114.798 | 2331.786 | 0.0161688 | 0.0121212 | 0.0163127 | 0.2258065 |
| 2100 hours | 8151873 | 2855.149 | 2072.723 | 0.0142187 | 0.0109473 | 0.0143113 | 0.2903226 |
| 2124 hours | 10653239 | 3263.930 | 2488.605 | 0.0170862 | 0.0125826 | 0.0171767 | 0.2419355 |
| 2136 hours | 10717861 | 3273.815 | 2522.003 | 0.0172941 | 0.0137316 | 0.0173834 | 0.2338710 |
| 2148 hours | 11607770 | 3407.018 | 2606.955 | 0.0180729 | 0.0128247 | 0.0182391 | 0.2580645 |
| 2160 hours | 11352351 | 3369.325 | 2607.621 | 0.0180847 | 0.0137316 | 0.0182502 | 0.2338710 |
| 2172 hours | 11216270 | 3349.070 | 2586.079 | 0.0179203 | 0.0128247 | 0.0180888 | 0.2258065 |
| 2184 hours | 11792074 | 3433.959 | 2619.637 | 0.0181315 | 0.0128247 | 0.0183149 | 0.2258065 |
| 2208 hours | 11505619 | 3391.993 | 2605.975 | 0.0179717 | 0.0128247 | 0.0181463 | 0.2177419 |
| 2844 hours | 10081178 | 3175.087 | 2346.764 | 0.0160457 | 0.0128247 | 0.0161706 | 0.2903226 |
| 2856 hours | 10113834 | 3180.225 | 2369.322 | 0.0161690 | 0.0128247 | 0.0162876 | 0.2822581 |
| 2868 hours | 10650577 | 3263.522 | 2476.660 | 0.0169122 | 0.0128247 | 0.0170360 | 0.2580645 |
| 2880 hours | 10977307 | 3313.202 | 2621.293 | 0.0180028 | 0.0151552 | 0.0181192 | 0.2338710 |
| 2892 hours | 12358409 | 3515.453 | 2777.737 | 0.0191477 | 0.0151552 | 0.0193032 | 0.2338710 |
| 2904 hours | 14357527 | 3789.133 | 2931.750 | 0.0202899 | 0.0172276 | 0.0205209 | 0.2258065 |
| 2916 hours | 14253307 | 3775.355 | 2913.183 | 0.0201432 | 0.0150671 | 0.0203787 | 0.2258065 |
| 2928 hours | 14524051 | 3811.043 | 2968.882 | 0.0204882 | 0.0172276 | 0.0207292 | 0.2258065 |
| 3564 hours | 12279925 | 3504.272 | 2647.313 | 0.0180714 | 0.0150671 | 0.0182375 | 0.2903226 |
| 3588 hours | 15215440 | 3900.697 | 3084.814 | 0.0211192 | 0.0181413 | 0.0212932 | 0.2177419 |
| 3600 hours | 15354601 | 3918.495 | 3130.387 | 0.0214060 | 0.0182110 | 0.0215772 | 0.2096774 |
| 3612 hours | 17190227 | 4146.110 | 3253.759 | 0.0224584 | 0.0182110 | 0.0227317 | 0.2258065 |
| 3624 hours | 16918182 | 4113.172 | 3218.015 | 0.0222109 | 0.0187418 | 0.0224809 | 0.2580645 |
| 3636 hours | 16781197 | 4096.486 | 3194.597 | 0.0220248 | 0.0152658 | 0.0223010 | 0.2580645 |
| 3648 hours | 17269927 | 4155.710 | 3217.739 | 0.0221652 | 0.0156254 | 0.0224531 | 0.2580645 |
| 3672 hours | 17037972 | 4127.708 | 3227.050 | 0.0221259 | 0.0156254 | 0.0224043 | 0.2580645 |
| 4308 hours | 14889876 | 3858.740 | 2929.773 | 0.0199010 | 0.0156254 | 0.0201010 | 0.3548387 |
| 4332 hours | 17594367 | 4194.564 | 3322.505 | 0.0226795 | 0.0203274 | 0.0228883 | 0.2822581 |
| 4344 hours | 15710286 | 3963.620 | 3077.467 | 0.0209027 | 0.0172238 | 0.0210921 | 0.3225806 |
| 4356 hours | 19101619 | 4370.540 | 3391.115 | 0.0233096 | 0.0187418 | 0.0236241 | 0.3064516 |
| 4368 hours | 17969227 | 4239.013 | 3358.235 | 0.0230029 | 0.0222755 | 0.0232267 | 0.2983871 |
| 4380 hours | 17227279 | 4150.576 | 3303.528 | 0.0225634 | 0.0222755 | 0.0227665 | 0.2903226 |
| 4392 hours | 19851147 | 4455.463 | 3518.704 | 0.0241879 | 0.0175517 | 0.0245044 | 0.2580645 |
| 4416 hours | 20588467 | 4537.452 | 3617.151 | 0.0247918 | 0.0234997 | 0.0251231 | 0.2580645 |
| 5016 hours | 18019475 | 4244.935 | 3322.038 | 0.0225760 | 0.0175517 | 0.0228247 | 0.2983871 |
| 5040 hours | 19584840 | 4425.476 | 3542.102 | 0.0240430 | 0.0234997 | 0.0242296 | 0.2741935 |
| 5052 hours | 18301392 | 4278.013 | 3338.617 | 0.0225972 | 0.0197556 | 0.0227711 | 0.3225806 |
| 5064 hours | 21050377 | 4588.069 | 3610.164 | 0.0247866 | 0.0234997 | 0.0250675 | 0.2903226 |
| 5076 hours | 21696987 | 4658.003 | 3789.650 | 0.0259998 | 0.0259075 | 0.0262356 | 0.2419355 |
| 5088 hours | 20711486 | 4550.987 | 3754.801 | 0.0255614 | 0.0259075 | 0.0257638 | 0.2258065 |
| 5100 hours | 24205695 | 4919.928 | 3995.778 | 0.0273792 | 0.0259075 | 0.0277396 | 0.2258065 |
| 5124 hours | 24254011 | 4924.836 | 4004.360 | 0.0274321 | 0.0259075 | 0.0277935 | 0.2258065 |
| 5760 hours | 21769420 | 4665.771 | 3698.630 | 0.0251265 | 0.0197556 | 0.0254030 | 0.2903226 |
| 5772 hours | 20421540 | 4519.020 | 3499.653 | 0.0237404 | 0.0197556 | 0.0239631 | 0.3440860 |
| 5784 hours | 21911436 | 4680.965 | 3639.825 | 0.0247012 | 0.0191914 | 0.0249144 | 0.3306452 |
| 5796 hours | 23601327 | 4858.120 | 3958.128 | 0.0269945 | 0.0259075 | 0.0272247 | 0.2500000 |
| 5808 hours | 25180261 | 5017.994 | 4119.196 | 0.0281903 | 0.0223888 | 0.0284723 | 0.2258065 |
| 5820 hours | 27535914 | 5247.467 | 4224.078 | 0.0290345 | 0.0223888 | 0.0294426 | 0.2258065 |
| 5832 hours | 27644336 | 5257.788 | 4235.336 | 0.0290310 | 0.0223888 | 0.0294559 | 0.2258065 |
| 5844 hours | 27326546 | 5227.480 | 4203.571 | 0.0288354 | 0.0209749 | 0.0292542 | 0.2258065 |
| 6480 hours | 23858964 | 4884.564 | 3851.119 | 0.0261895 | 0.0205783 | 0.0264908 | 0.2661290 |
| 6504 hours | 26782552 | 5175.186 | 4169.212 | 0.0282877 | 0.0248724 | 0.0285277 | 0.2473118 |
| 6516 hours | 26994411 | 5195.615 | 4210.219 | 0.0285457 | 0.0260384 | 0.0287818 | 0.2177419 |
| 6528 hours | 29529574 | 5434.112 | 4456.319 | 0.0305953 | 0.0224780 | 0.0310035 | 0.1693548 |
| 6540 hours | 29242776 | 5407.659 | 4454.195 | 0.0306165 | 0.0260384 | 0.0310294 | 0.1612903 |
| 6552 hours | 29074404 | 5392.069 | 4442.977 | 0.0303074 | 0.0260384 | 0.0307263 | 0.1612903 |
| 6564 hours | 30811671 | 5550.826 | 4527.305 | 0.0308395 | 0.0260384 | 0.0313125 | 0.1612903 |
| 6588 hours | 29796426 | 5458.610 | 4469.971 | 0.0303514 | 0.0252500 | 0.0307951 | 0.1612903 |
| 7224 hours | 26723551 | 5169.483 | 4124.258 | 0.0278534 | 0.0252500 | 0.0281878 | 0.2258065 |
| 7236 hours | 26469106 | 5144.814 | 4052.574 | 0.0273652 | 0.0252500 | 0.0276596 | 0.2473118 |
| 7248 hours | 27369799 | 5231.615 | 4161.627 | 0.0281096 | 0.0224780 | 0.0284085 | 0.2338710 |
| 7260 hours | 28774453 | 5364.182 | 4437.877 | 0.0301684 | 0.0295566 | 0.0304749 | 0.1774194 |
| 7272 hours | 31675690 | 5628.116 | 4639.708 | 0.0316485 | 0.0273066 | 0.0320463 | 0.1612903 |
| 7284 hours | 36247338 | 6020.576 | 4872.729 | 0.0333665 | 0.0295566 | 0.0339473 | 0.1612903 |
| 7296 hours | 36729861 | 6060.517 | 4903.854 | 0.0334686 | 0.0295566 | 0.0340743 | 0.1612903 |
| 7308 hours | 36430203 | 6035.744 | 4890.075 | 0.0333955 | 0.0289497 | 0.0339958 | 0.1612903 |
| 7944 hours | 31867621 | 5645.141 | 4469.368 | 0.0302531 | 0.0252500 | 0.0306949 | 0.2258065 |
| 7968 hours | 34731632 | 5893.355 | 4790.511 | 0.0323881 | 0.0301323 | 0.0327692 | 0.2150538 |
| 7980 hours | 35127034 | 5926.806 | 4856.017 | 0.0328047 | 0.0319223 | 0.0331780 | 0.2096774 |
| 7992 hours | 39436339 | 6279.836 | 5174.038 | 0.0353709 | 0.0289497 | 0.0359697 | 0.1693548 |
| 8004 hours | 39089330 | 6252.146 | 5143.341 | 0.0352034 | 0.0319223 | 0.0357977 | 0.1612903 |
| 8016 hours | 38828669 | 6231.265 | 5147.085 | 0.0349462 | 0.0319223 | 0.0355429 | 0.1612903 |
| 8028 hours | 40680158 | 6378.100 | 5251.867 | 0.0356294 | 0.0319223 | 0.0362751 | 0.1612903 |
| 8052 hours | 39581249 | 6291.363 | 5210.728 | 0.0352145 | 0.0319223 | 0.0358262 | 0.1612903 |
| 8688 hours | 35425308 | 5951.916 | 4810.196 | 0.0323424 | 0.0319223 | 0.0328037 | 0.2258065 |
| 8712 hours | 38865763 | 6234.241 | 5151.744 | 0.0347855 | 0.0349362 | 0.0352124 | 0.2150538 |
| 8724 hours | 36237637 | 6019.770 | 4868.439 | 0.0327822 | 0.0264664 | 0.0331871 | 0.2338710 |
| 8736 hours | 42574661 | 6524.926 | 5351.314 | 0.0365124 | 0.0349362 | 0.0371695 | 0.1774194 |
| 8748 hours | 39604089 | 6293.178 | 5186.128 | 0.0352838 | 0.0332404 | 0.0357510 | 0.1612903 |
| 8760 hours | 39307861 | 6269.598 | 5196.775 | 0.0350580 | 0.0332404 | 0.0355287 | 0.1612903 |
plot_cross_validation_metric(df.cv_holiday, metric = 'rmse')
It does not look very well. Now Let’s compare other models:
Model Comparision
Model 1: changepoint in trend model with freq=‘monthly’, changepoint=5;
Model 2: seasonality model with freq=‘daily’ and week/daily seasonality=TRUE;
Model 3: Additive seasonality model;
Model 4: Multiplicative seasonality model.
#mod1
mod1 = prophet(train,n.changepoints=5)
mod1_future = make_future_dataframe(mod1,periods = 53,freq = 'month')
mod1_forecast = predict(mod1,mod1_future)
df_cv_mod1 <- cross_validation(mod1, initial = 4*365,horizon = 365, units = 'days')
metrics1 = performance_metrics(df_cv_mod1) %>%
mutate(model = 'mod1')
#mod2
mod2 = prophet(train, daily.seasonality = TRUE, weekly.seasonality = TRUE)
mod2_future = make_future_dataframe(mod2,periods = 1583)#freq=daily; 53 month ahead
mod2_forecast = predict(mod2,mod2_future)
df_cv_mod2 <- cross_validation(mod2, initial = 4*365,horizon = 365, units = 'days')
metrics2 = performance_metrics(df_cv_mod2) %>%
mutate(model = "mod2")
metrics1 %>%
bind_rows(metrics2) %>%
ggplot()+
geom_line(aes(horizon,rmse,color=model))
#mod3
mod3 = prophet(train,seasonality.mode='additive')
mod3_forecast = predict(mod3,future)
df_cv_mod3 <- cross_validation(mod3, initial = 4*365,horizon = 365, units = 'days')
metrics3 = performance_metrics(df_cv_mod3) %>%
mutate(model = 'mod3')
#mod4
mod4 = prophet(train,seasonality.mode='multiplicative')
forecast4 = predict(mod4,future)
df_cv_mod4 <- cross_validation(mod4, initial = 4*365,horizon = 365, units = 'days')
metrics4 = performance_metrics(df_cv_mod4) %>%
mutate(model = "mod4")
metrics3 %>%
bind_rows(metrics4) %>%
ggplot()+
geom_line(aes(horizon,rmse,color=model))
performance_metrics(df.cv_holiday)%>%
kbl(caption = "Table 5: Model 1 CV performance metrics")%>%
kable_classic(full_width = F, html_font = "Cambria")
| horizon | mse | rmse | mae | mape | mdape | smape | coverage |
|---|---|---|---|---|---|---|---|
| 1380 hours | 7085812 | 2661.919 | 1847.714 | 0.0127661 | 0.0088902 | 0.0128621 | 0.1693548 |
| 1392 hours | 6830350 | 2613.494 | 1828.086 | 0.0125604 | 0.0088902 | 0.0126436 | 0.1935484 |
| 1404 hours | 7929313 | 2815.904 | 2004.096 | 0.0137685 | 0.0089556 | 0.0138474 | 0.1935484 |
| 1416 hours | 8326729 | 2885.607 | 2134.955 | 0.0147409 | 0.0099573 | 0.0148185 | 0.2258065 |
| 1428 hours | 8925242 | 2987.514 | 2227.183 | 0.0154213 | 0.0099573 | 0.0155174 | 0.2338710 |
| 1440 hours | 9782313 | 3127.669 | 2321.821 | 0.0161352 | 0.0109473 | 0.0162752 | 0.2338710 |
| 1452 hours | 9628944 | 3103.054 | 2311.548 | 0.0160471 | 0.0109473 | 0.0161895 | 0.2258065 |
| 1464 hours | 9701966 | 3114.798 | 2331.786 | 0.0161688 | 0.0121212 | 0.0163127 | 0.2258065 |
| 2100 hours | 8151873 | 2855.149 | 2072.723 | 0.0142187 | 0.0109473 | 0.0143113 | 0.2903226 |
| 2124 hours | 10653239 | 3263.930 | 2488.605 | 0.0170862 | 0.0125826 | 0.0171767 | 0.2419355 |
| 2136 hours | 10717861 | 3273.815 | 2522.003 | 0.0172941 | 0.0137316 | 0.0173834 | 0.2338710 |
| 2148 hours | 11607770 | 3407.018 | 2606.955 | 0.0180729 | 0.0128247 | 0.0182391 | 0.2580645 |
| 2160 hours | 11352351 | 3369.325 | 2607.621 | 0.0180847 | 0.0137316 | 0.0182502 | 0.2338710 |
| 2172 hours | 11216270 | 3349.070 | 2586.079 | 0.0179203 | 0.0128247 | 0.0180888 | 0.2258065 |
| 2184 hours | 11792074 | 3433.959 | 2619.637 | 0.0181315 | 0.0128247 | 0.0183149 | 0.2258065 |
| 2208 hours | 11505619 | 3391.993 | 2605.975 | 0.0179717 | 0.0128247 | 0.0181463 | 0.2177419 |
| 2844 hours | 10081178 | 3175.087 | 2346.764 | 0.0160457 | 0.0128247 | 0.0161706 | 0.2903226 |
| 2856 hours | 10113834 | 3180.225 | 2369.322 | 0.0161690 | 0.0128247 | 0.0162876 | 0.2822581 |
| 2868 hours | 10650577 | 3263.522 | 2476.660 | 0.0169122 | 0.0128247 | 0.0170360 | 0.2580645 |
| 2880 hours | 10977307 | 3313.202 | 2621.293 | 0.0180028 | 0.0151552 | 0.0181192 | 0.2338710 |
| 2892 hours | 12358409 | 3515.453 | 2777.737 | 0.0191477 | 0.0151552 | 0.0193032 | 0.2338710 |
| 2904 hours | 14357527 | 3789.133 | 2931.750 | 0.0202899 | 0.0172276 | 0.0205209 | 0.2258065 |
| 2916 hours | 14253307 | 3775.355 | 2913.183 | 0.0201432 | 0.0150671 | 0.0203787 | 0.2258065 |
| 2928 hours | 14524051 | 3811.043 | 2968.882 | 0.0204882 | 0.0172276 | 0.0207292 | 0.2258065 |
| 3564 hours | 12279925 | 3504.272 | 2647.313 | 0.0180714 | 0.0150671 | 0.0182375 | 0.2903226 |
| 3588 hours | 15215440 | 3900.697 | 3084.814 | 0.0211192 | 0.0181413 | 0.0212932 | 0.2177419 |
| 3600 hours | 15354601 | 3918.495 | 3130.387 | 0.0214060 | 0.0182110 | 0.0215772 | 0.2096774 |
| 3612 hours | 17190227 | 4146.110 | 3253.759 | 0.0224584 | 0.0182110 | 0.0227317 | 0.2258065 |
| 3624 hours | 16918182 | 4113.172 | 3218.015 | 0.0222109 | 0.0187418 | 0.0224809 | 0.2580645 |
| 3636 hours | 16781197 | 4096.486 | 3194.597 | 0.0220248 | 0.0152658 | 0.0223010 | 0.2580645 |
| 3648 hours | 17269927 | 4155.710 | 3217.739 | 0.0221652 | 0.0156254 | 0.0224531 | 0.2580645 |
| 3672 hours | 17037972 | 4127.708 | 3227.050 | 0.0221259 | 0.0156254 | 0.0224043 | 0.2580645 |
| 4308 hours | 14889876 | 3858.740 | 2929.773 | 0.0199010 | 0.0156254 | 0.0201010 | 0.3548387 |
| 4332 hours | 17594367 | 4194.564 | 3322.505 | 0.0226795 | 0.0203274 | 0.0228883 | 0.2822581 |
| 4344 hours | 15710286 | 3963.620 | 3077.467 | 0.0209027 | 0.0172238 | 0.0210921 | 0.3225806 |
| 4356 hours | 19101619 | 4370.540 | 3391.115 | 0.0233096 | 0.0187418 | 0.0236241 | 0.3064516 |
| 4368 hours | 17969227 | 4239.013 | 3358.235 | 0.0230029 | 0.0222755 | 0.0232267 | 0.2983871 |
| 4380 hours | 17227279 | 4150.576 | 3303.528 | 0.0225634 | 0.0222755 | 0.0227665 | 0.2903226 |
| 4392 hours | 19851147 | 4455.463 | 3518.704 | 0.0241879 | 0.0175517 | 0.0245044 | 0.2580645 |
| 4416 hours | 20588467 | 4537.452 | 3617.151 | 0.0247918 | 0.0234997 | 0.0251231 | 0.2580645 |
| 5016 hours | 18019475 | 4244.935 | 3322.038 | 0.0225760 | 0.0175517 | 0.0228247 | 0.2983871 |
| 5040 hours | 19584840 | 4425.476 | 3542.102 | 0.0240430 | 0.0234997 | 0.0242296 | 0.2741935 |
| 5052 hours | 18301392 | 4278.013 | 3338.617 | 0.0225972 | 0.0197556 | 0.0227711 | 0.3225806 |
| 5064 hours | 21050377 | 4588.069 | 3610.164 | 0.0247866 | 0.0234997 | 0.0250675 | 0.2903226 |
| 5076 hours | 21696987 | 4658.003 | 3789.650 | 0.0259998 | 0.0259075 | 0.0262356 | 0.2419355 |
| 5088 hours | 20711486 | 4550.987 | 3754.801 | 0.0255614 | 0.0259075 | 0.0257638 | 0.2258065 |
| 5100 hours | 24205695 | 4919.928 | 3995.778 | 0.0273792 | 0.0259075 | 0.0277396 | 0.2258065 |
| 5124 hours | 24254011 | 4924.836 | 4004.360 | 0.0274321 | 0.0259075 | 0.0277935 | 0.2258065 |
| 5760 hours | 21769420 | 4665.771 | 3698.630 | 0.0251265 | 0.0197556 | 0.0254030 | 0.2903226 |
| 5772 hours | 20421540 | 4519.020 | 3499.653 | 0.0237404 | 0.0197556 | 0.0239631 | 0.3440860 |
| 5784 hours | 21911436 | 4680.965 | 3639.825 | 0.0247012 | 0.0191914 | 0.0249144 | 0.3306452 |
| 5796 hours | 23601327 | 4858.120 | 3958.128 | 0.0269945 | 0.0259075 | 0.0272247 | 0.2500000 |
| 5808 hours | 25180261 | 5017.994 | 4119.196 | 0.0281903 | 0.0223888 | 0.0284723 | 0.2258065 |
| 5820 hours | 27535914 | 5247.467 | 4224.078 | 0.0290345 | 0.0223888 | 0.0294426 | 0.2258065 |
| 5832 hours | 27644336 | 5257.788 | 4235.336 | 0.0290310 | 0.0223888 | 0.0294559 | 0.2258065 |
| 5844 hours | 27326546 | 5227.480 | 4203.571 | 0.0288354 | 0.0209749 | 0.0292542 | 0.2258065 |
| 6480 hours | 23858964 | 4884.564 | 3851.119 | 0.0261895 | 0.0205783 | 0.0264908 | 0.2661290 |
| 6504 hours | 26782552 | 5175.186 | 4169.212 | 0.0282877 | 0.0248724 | 0.0285277 | 0.2473118 |
| 6516 hours | 26994411 | 5195.615 | 4210.219 | 0.0285457 | 0.0260384 | 0.0287818 | 0.2177419 |
| 6528 hours | 29529574 | 5434.112 | 4456.319 | 0.0305953 | 0.0224780 | 0.0310035 | 0.1693548 |
| 6540 hours | 29242776 | 5407.659 | 4454.195 | 0.0306165 | 0.0260384 | 0.0310294 | 0.1612903 |
| 6552 hours | 29074404 | 5392.069 | 4442.977 | 0.0303074 | 0.0260384 | 0.0307263 | 0.1612903 |
| 6564 hours | 30811671 | 5550.826 | 4527.305 | 0.0308395 | 0.0260384 | 0.0313125 | 0.1612903 |
| 6588 hours | 29796426 | 5458.610 | 4469.971 | 0.0303514 | 0.0252500 | 0.0307951 | 0.1612903 |
| 7224 hours | 26723551 | 5169.483 | 4124.258 | 0.0278534 | 0.0252500 | 0.0281878 | 0.2258065 |
| 7236 hours | 26469106 | 5144.814 | 4052.574 | 0.0273652 | 0.0252500 | 0.0276596 | 0.2473118 |
| 7248 hours | 27369799 | 5231.615 | 4161.627 | 0.0281096 | 0.0224780 | 0.0284085 | 0.2338710 |
| 7260 hours | 28774453 | 5364.182 | 4437.877 | 0.0301684 | 0.0295566 | 0.0304749 | 0.1774194 |
| 7272 hours | 31675690 | 5628.116 | 4639.708 | 0.0316485 | 0.0273066 | 0.0320463 | 0.1612903 |
| 7284 hours | 36247338 | 6020.576 | 4872.729 | 0.0333665 | 0.0295566 | 0.0339473 | 0.1612903 |
| 7296 hours | 36729861 | 6060.517 | 4903.854 | 0.0334686 | 0.0295566 | 0.0340743 | 0.1612903 |
| 7308 hours | 36430203 | 6035.744 | 4890.075 | 0.0333955 | 0.0289497 | 0.0339958 | 0.1612903 |
| 7944 hours | 31867621 | 5645.141 | 4469.368 | 0.0302531 | 0.0252500 | 0.0306949 | 0.2258065 |
| 7968 hours | 34731632 | 5893.355 | 4790.511 | 0.0323881 | 0.0301323 | 0.0327692 | 0.2150538 |
| 7980 hours | 35127034 | 5926.806 | 4856.017 | 0.0328047 | 0.0319223 | 0.0331780 | 0.2096774 |
| 7992 hours | 39436339 | 6279.836 | 5174.038 | 0.0353709 | 0.0289497 | 0.0359697 | 0.1693548 |
| 8004 hours | 39089330 | 6252.146 | 5143.341 | 0.0352034 | 0.0319223 | 0.0357977 | 0.1612903 |
| 8016 hours | 38828669 | 6231.265 | 5147.085 | 0.0349462 | 0.0319223 | 0.0355429 | 0.1612903 |
| 8028 hours | 40680158 | 6378.100 | 5251.867 | 0.0356294 | 0.0319223 | 0.0362751 | 0.1612903 |
| 8052 hours | 39581249 | 6291.363 | 5210.728 | 0.0352145 | 0.0319223 | 0.0358262 | 0.1612903 |
| 8688 hours | 35425308 | 5951.916 | 4810.196 | 0.0323424 | 0.0319223 | 0.0328037 | 0.2258065 |
| 8712 hours | 38865763 | 6234.241 | 5151.744 | 0.0347855 | 0.0349362 | 0.0352124 | 0.2150538 |
| 8724 hours | 36237637 | 6019.770 | 4868.439 | 0.0327822 | 0.0264664 | 0.0331871 | 0.2338710 |
| 8736 hours | 42574661 | 6524.926 | 5351.314 | 0.0365124 | 0.0349362 | 0.0371695 | 0.1774194 |
| 8748 hours | 39604089 | 6293.178 | 5186.128 | 0.0352838 | 0.0332404 | 0.0357510 | 0.1612903 |
| 8760 hours | 39307861 | 6269.598 | 5196.775 | 0.0350580 | 0.0332404 | 0.0355287 | 0.1612903 |
plot_cross_validation_metric(df_cv_mod1, metric = 'rmse')
performance_metrics(df.cv_holiday)%>%
kbl(caption = "Table 6: Model 2 CV performance metrics")%>%
kable_classic(full_width = F, html_font = "Cambria")
| horizon | mse | rmse | mae | mape | mdape | smape | coverage |
|---|---|---|---|---|---|---|---|
| 1380 hours | 7085812 | 2661.919 | 1847.714 | 0.0127661 | 0.0088902 | 0.0128621 | 0.1693548 |
| 1392 hours | 6830350 | 2613.494 | 1828.086 | 0.0125604 | 0.0088902 | 0.0126436 | 0.1935484 |
| 1404 hours | 7929313 | 2815.904 | 2004.096 | 0.0137685 | 0.0089556 | 0.0138474 | 0.1935484 |
| 1416 hours | 8326729 | 2885.607 | 2134.955 | 0.0147409 | 0.0099573 | 0.0148185 | 0.2258065 |
| 1428 hours | 8925242 | 2987.514 | 2227.183 | 0.0154213 | 0.0099573 | 0.0155174 | 0.2338710 |
| 1440 hours | 9782313 | 3127.669 | 2321.821 | 0.0161352 | 0.0109473 | 0.0162752 | 0.2338710 |
| 1452 hours | 9628944 | 3103.054 | 2311.548 | 0.0160471 | 0.0109473 | 0.0161895 | 0.2258065 |
| 1464 hours | 9701966 | 3114.798 | 2331.786 | 0.0161688 | 0.0121212 | 0.0163127 | 0.2258065 |
| 2100 hours | 8151873 | 2855.149 | 2072.723 | 0.0142187 | 0.0109473 | 0.0143113 | 0.2903226 |
| 2124 hours | 10653239 | 3263.930 | 2488.605 | 0.0170862 | 0.0125826 | 0.0171767 | 0.2419355 |
| 2136 hours | 10717861 | 3273.815 | 2522.003 | 0.0172941 | 0.0137316 | 0.0173834 | 0.2338710 |
| 2148 hours | 11607770 | 3407.018 | 2606.955 | 0.0180729 | 0.0128247 | 0.0182391 | 0.2580645 |
| 2160 hours | 11352351 | 3369.325 | 2607.621 | 0.0180847 | 0.0137316 | 0.0182502 | 0.2338710 |
| 2172 hours | 11216270 | 3349.070 | 2586.079 | 0.0179203 | 0.0128247 | 0.0180888 | 0.2258065 |
| 2184 hours | 11792074 | 3433.959 | 2619.637 | 0.0181315 | 0.0128247 | 0.0183149 | 0.2258065 |
| 2208 hours | 11505619 | 3391.993 | 2605.975 | 0.0179717 | 0.0128247 | 0.0181463 | 0.2177419 |
| 2844 hours | 10081178 | 3175.087 | 2346.764 | 0.0160457 | 0.0128247 | 0.0161706 | 0.2903226 |
| 2856 hours | 10113834 | 3180.225 | 2369.322 | 0.0161690 | 0.0128247 | 0.0162876 | 0.2822581 |
| 2868 hours | 10650577 | 3263.522 | 2476.660 | 0.0169122 | 0.0128247 | 0.0170360 | 0.2580645 |
| 2880 hours | 10977307 | 3313.202 | 2621.293 | 0.0180028 | 0.0151552 | 0.0181192 | 0.2338710 |
| 2892 hours | 12358409 | 3515.453 | 2777.737 | 0.0191477 | 0.0151552 | 0.0193032 | 0.2338710 |
| 2904 hours | 14357527 | 3789.133 | 2931.750 | 0.0202899 | 0.0172276 | 0.0205209 | 0.2258065 |
| 2916 hours | 14253307 | 3775.355 | 2913.183 | 0.0201432 | 0.0150671 | 0.0203787 | 0.2258065 |
| 2928 hours | 14524051 | 3811.043 | 2968.882 | 0.0204882 | 0.0172276 | 0.0207292 | 0.2258065 |
| 3564 hours | 12279925 | 3504.272 | 2647.313 | 0.0180714 | 0.0150671 | 0.0182375 | 0.2903226 |
| 3588 hours | 15215440 | 3900.697 | 3084.814 | 0.0211192 | 0.0181413 | 0.0212932 | 0.2177419 |
| 3600 hours | 15354601 | 3918.495 | 3130.387 | 0.0214060 | 0.0182110 | 0.0215772 | 0.2096774 |
| 3612 hours | 17190227 | 4146.110 | 3253.759 | 0.0224584 | 0.0182110 | 0.0227317 | 0.2258065 |
| 3624 hours | 16918182 | 4113.172 | 3218.015 | 0.0222109 | 0.0187418 | 0.0224809 | 0.2580645 |
| 3636 hours | 16781197 | 4096.486 | 3194.597 | 0.0220248 | 0.0152658 | 0.0223010 | 0.2580645 |
| 3648 hours | 17269927 | 4155.710 | 3217.739 | 0.0221652 | 0.0156254 | 0.0224531 | 0.2580645 |
| 3672 hours | 17037972 | 4127.708 | 3227.050 | 0.0221259 | 0.0156254 | 0.0224043 | 0.2580645 |
| 4308 hours | 14889876 | 3858.740 | 2929.773 | 0.0199010 | 0.0156254 | 0.0201010 | 0.3548387 |
| 4332 hours | 17594367 | 4194.564 | 3322.505 | 0.0226795 | 0.0203274 | 0.0228883 | 0.2822581 |
| 4344 hours | 15710286 | 3963.620 | 3077.467 | 0.0209027 | 0.0172238 | 0.0210921 | 0.3225806 |
| 4356 hours | 19101619 | 4370.540 | 3391.115 | 0.0233096 | 0.0187418 | 0.0236241 | 0.3064516 |
| 4368 hours | 17969227 | 4239.013 | 3358.235 | 0.0230029 | 0.0222755 | 0.0232267 | 0.2983871 |
| 4380 hours | 17227279 | 4150.576 | 3303.528 | 0.0225634 | 0.0222755 | 0.0227665 | 0.2903226 |
| 4392 hours | 19851147 | 4455.463 | 3518.704 | 0.0241879 | 0.0175517 | 0.0245044 | 0.2580645 |
| 4416 hours | 20588467 | 4537.452 | 3617.151 | 0.0247918 | 0.0234997 | 0.0251231 | 0.2580645 |
| 5016 hours | 18019475 | 4244.935 | 3322.038 | 0.0225760 | 0.0175517 | 0.0228247 | 0.2983871 |
| 5040 hours | 19584840 | 4425.476 | 3542.102 | 0.0240430 | 0.0234997 | 0.0242296 | 0.2741935 |
| 5052 hours | 18301392 | 4278.013 | 3338.617 | 0.0225972 | 0.0197556 | 0.0227711 | 0.3225806 |
| 5064 hours | 21050377 | 4588.069 | 3610.164 | 0.0247866 | 0.0234997 | 0.0250675 | 0.2903226 |
| 5076 hours | 21696987 | 4658.003 | 3789.650 | 0.0259998 | 0.0259075 | 0.0262356 | 0.2419355 |
| 5088 hours | 20711486 | 4550.987 | 3754.801 | 0.0255614 | 0.0259075 | 0.0257638 | 0.2258065 |
| 5100 hours | 24205695 | 4919.928 | 3995.778 | 0.0273792 | 0.0259075 | 0.0277396 | 0.2258065 |
| 5124 hours | 24254011 | 4924.836 | 4004.360 | 0.0274321 | 0.0259075 | 0.0277935 | 0.2258065 |
| 5760 hours | 21769420 | 4665.771 | 3698.630 | 0.0251265 | 0.0197556 | 0.0254030 | 0.2903226 |
| 5772 hours | 20421540 | 4519.020 | 3499.653 | 0.0237404 | 0.0197556 | 0.0239631 | 0.3440860 |
| 5784 hours | 21911436 | 4680.965 | 3639.825 | 0.0247012 | 0.0191914 | 0.0249144 | 0.3306452 |
| 5796 hours | 23601327 | 4858.120 | 3958.128 | 0.0269945 | 0.0259075 | 0.0272247 | 0.2500000 |
| 5808 hours | 25180261 | 5017.994 | 4119.196 | 0.0281903 | 0.0223888 | 0.0284723 | 0.2258065 |
| 5820 hours | 27535914 | 5247.467 | 4224.078 | 0.0290345 | 0.0223888 | 0.0294426 | 0.2258065 |
| 5832 hours | 27644336 | 5257.788 | 4235.336 | 0.0290310 | 0.0223888 | 0.0294559 | 0.2258065 |
| 5844 hours | 27326546 | 5227.480 | 4203.571 | 0.0288354 | 0.0209749 | 0.0292542 | 0.2258065 |
| 6480 hours | 23858964 | 4884.564 | 3851.119 | 0.0261895 | 0.0205783 | 0.0264908 | 0.2661290 |
| 6504 hours | 26782552 | 5175.186 | 4169.212 | 0.0282877 | 0.0248724 | 0.0285277 | 0.2473118 |
| 6516 hours | 26994411 | 5195.615 | 4210.219 | 0.0285457 | 0.0260384 | 0.0287818 | 0.2177419 |
| 6528 hours | 29529574 | 5434.112 | 4456.319 | 0.0305953 | 0.0224780 | 0.0310035 | 0.1693548 |
| 6540 hours | 29242776 | 5407.659 | 4454.195 | 0.0306165 | 0.0260384 | 0.0310294 | 0.1612903 |
| 6552 hours | 29074404 | 5392.069 | 4442.977 | 0.0303074 | 0.0260384 | 0.0307263 | 0.1612903 |
| 6564 hours | 30811671 | 5550.826 | 4527.305 | 0.0308395 | 0.0260384 | 0.0313125 | 0.1612903 |
| 6588 hours | 29796426 | 5458.610 | 4469.971 | 0.0303514 | 0.0252500 | 0.0307951 | 0.1612903 |
| 7224 hours | 26723551 | 5169.483 | 4124.258 | 0.0278534 | 0.0252500 | 0.0281878 | 0.2258065 |
| 7236 hours | 26469106 | 5144.814 | 4052.574 | 0.0273652 | 0.0252500 | 0.0276596 | 0.2473118 |
| 7248 hours | 27369799 | 5231.615 | 4161.627 | 0.0281096 | 0.0224780 | 0.0284085 | 0.2338710 |
| 7260 hours | 28774453 | 5364.182 | 4437.877 | 0.0301684 | 0.0295566 | 0.0304749 | 0.1774194 |
| 7272 hours | 31675690 | 5628.116 | 4639.708 | 0.0316485 | 0.0273066 | 0.0320463 | 0.1612903 |
| 7284 hours | 36247338 | 6020.576 | 4872.729 | 0.0333665 | 0.0295566 | 0.0339473 | 0.1612903 |
| 7296 hours | 36729861 | 6060.517 | 4903.854 | 0.0334686 | 0.0295566 | 0.0340743 | 0.1612903 |
| 7308 hours | 36430203 | 6035.744 | 4890.075 | 0.0333955 | 0.0289497 | 0.0339958 | 0.1612903 |
| 7944 hours | 31867621 | 5645.141 | 4469.368 | 0.0302531 | 0.0252500 | 0.0306949 | 0.2258065 |
| 7968 hours | 34731632 | 5893.355 | 4790.511 | 0.0323881 | 0.0301323 | 0.0327692 | 0.2150538 |
| 7980 hours | 35127034 | 5926.806 | 4856.017 | 0.0328047 | 0.0319223 | 0.0331780 | 0.2096774 |
| 7992 hours | 39436339 | 6279.836 | 5174.038 | 0.0353709 | 0.0289497 | 0.0359697 | 0.1693548 |
| 8004 hours | 39089330 | 6252.146 | 5143.341 | 0.0352034 | 0.0319223 | 0.0357977 | 0.1612903 |
| 8016 hours | 38828669 | 6231.265 | 5147.085 | 0.0349462 | 0.0319223 | 0.0355429 | 0.1612903 |
| 8028 hours | 40680158 | 6378.100 | 5251.867 | 0.0356294 | 0.0319223 | 0.0362751 | 0.1612903 |
| 8052 hours | 39581249 | 6291.363 | 5210.728 | 0.0352145 | 0.0319223 | 0.0358262 | 0.1612903 |
| 8688 hours | 35425308 | 5951.916 | 4810.196 | 0.0323424 | 0.0319223 | 0.0328037 | 0.2258065 |
| 8712 hours | 38865763 | 6234.241 | 5151.744 | 0.0347855 | 0.0349362 | 0.0352124 | 0.2150538 |
| 8724 hours | 36237637 | 6019.770 | 4868.439 | 0.0327822 | 0.0264664 | 0.0331871 | 0.2338710 |
| 8736 hours | 42574661 | 6524.926 | 5351.314 | 0.0365124 | 0.0349362 | 0.0371695 | 0.1774194 |
| 8748 hours | 39604089 | 6293.178 | 5186.128 | 0.0352838 | 0.0332404 | 0.0357510 | 0.1612903 |
| 8760 hours | 39307861 | 6269.598 | 5196.775 | 0.0350580 | 0.0332404 | 0.0355287 | 0.1612903 |
plot_cross_validation_metric(df_cv_mod2, metric = 'rmse')
performance_metrics(df.cv_holiday)%>%
kbl(caption = "Table 7: Model 3 CV performance metrics")%>%
kable_classic(full_width = F, html_font = "Cambria")
| horizon | mse | rmse | mae | mape | mdape | smape | coverage |
|---|---|---|---|---|---|---|---|
| 1380 hours | 7085812 | 2661.919 | 1847.714 | 0.0127661 | 0.0088902 | 0.0128621 | 0.1693548 |
| 1392 hours | 6830350 | 2613.494 | 1828.086 | 0.0125604 | 0.0088902 | 0.0126436 | 0.1935484 |
| 1404 hours | 7929313 | 2815.904 | 2004.096 | 0.0137685 | 0.0089556 | 0.0138474 | 0.1935484 |
| 1416 hours | 8326729 | 2885.607 | 2134.955 | 0.0147409 | 0.0099573 | 0.0148185 | 0.2258065 |
| 1428 hours | 8925242 | 2987.514 | 2227.183 | 0.0154213 | 0.0099573 | 0.0155174 | 0.2338710 |
| 1440 hours | 9782313 | 3127.669 | 2321.821 | 0.0161352 | 0.0109473 | 0.0162752 | 0.2338710 |
| 1452 hours | 9628944 | 3103.054 | 2311.548 | 0.0160471 | 0.0109473 | 0.0161895 | 0.2258065 |
| 1464 hours | 9701966 | 3114.798 | 2331.786 | 0.0161688 | 0.0121212 | 0.0163127 | 0.2258065 |
| 2100 hours | 8151873 | 2855.149 | 2072.723 | 0.0142187 | 0.0109473 | 0.0143113 | 0.2903226 |
| 2124 hours | 10653239 | 3263.930 | 2488.605 | 0.0170862 | 0.0125826 | 0.0171767 | 0.2419355 |
| 2136 hours | 10717861 | 3273.815 | 2522.003 | 0.0172941 | 0.0137316 | 0.0173834 | 0.2338710 |
| 2148 hours | 11607770 | 3407.018 | 2606.955 | 0.0180729 | 0.0128247 | 0.0182391 | 0.2580645 |
| 2160 hours | 11352351 | 3369.325 | 2607.621 | 0.0180847 | 0.0137316 | 0.0182502 | 0.2338710 |
| 2172 hours | 11216270 | 3349.070 | 2586.079 | 0.0179203 | 0.0128247 | 0.0180888 | 0.2258065 |
| 2184 hours | 11792074 | 3433.959 | 2619.637 | 0.0181315 | 0.0128247 | 0.0183149 | 0.2258065 |
| 2208 hours | 11505619 | 3391.993 | 2605.975 | 0.0179717 | 0.0128247 | 0.0181463 | 0.2177419 |
| 2844 hours | 10081178 | 3175.087 | 2346.764 | 0.0160457 | 0.0128247 | 0.0161706 | 0.2903226 |
| 2856 hours | 10113834 | 3180.225 | 2369.322 | 0.0161690 | 0.0128247 | 0.0162876 | 0.2822581 |
| 2868 hours | 10650577 | 3263.522 | 2476.660 | 0.0169122 | 0.0128247 | 0.0170360 | 0.2580645 |
| 2880 hours | 10977307 | 3313.202 | 2621.293 | 0.0180028 | 0.0151552 | 0.0181192 | 0.2338710 |
| 2892 hours | 12358409 | 3515.453 | 2777.737 | 0.0191477 | 0.0151552 | 0.0193032 | 0.2338710 |
| 2904 hours | 14357527 | 3789.133 | 2931.750 | 0.0202899 | 0.0172276 | 0.0205209 | 0.2258065 |
| 2916 hours | 14253307 | 3775.355 | 2913.183 | 0.0201432 | 0.0150671 | 0.0203787 | 0.2258065 |
| 2928 hours | 14524051 | 3811.043 | 2968.882 | 0.0204882 | 0.0172276 | 0.0207292 | 0.2258065 |
| 3564 hours | 12279925 | 3504.272 | 2647.313 | 0.0180714 | 0.0150671 | 0.0182375 | 0.2903226 |
| 3588 hours | 15215440 | 3900.697 | 3084.814 | 0.0211192 | 0.0181413 | 0.0212932 | 0.2177419 |
| 3600 hours | 15354601 | 3918.495 | 3130.387 | 0.0214060 | 0.0182110 | 0.0215772 | 0.2096774 |
| 3612 hours | 17190227 | 4146.110 | 3253.759 | 0.0224584 | 0.0182110 | 0.0227317 | 0.2258065 |
| 3624 hours | 16918182 | 4113.172 | 3218.015 | 0.0222109 | 0.0187418 | 0.0224809 | 0.2580645 |
| 3636 hours | 16781197 | 4096.486 | 3194.597 | 0.0220248 | 0.0152658 | 0.0223010 | 0.2580645 |
| 3648 hours | 17269927 | 4155.710 | 3217.739 | 0.0221652 | 0.0156254 | 0.0224531 | 0.2580645 |
| 3672 hours | 17037972 | 4127.708 | 3227.050 | 0.0221259 | 0.0156254 | 0.0224043 | 0.2580645 |
| 4308 hours | 14889876 | 3858.740 | 2929.773 | 0.0199010 | 0.0156254 | 0.0201010 | 0.3548387 |
| 4332 hours | 17594367 | 4194.564 | 3322.505 | 0.0226795 | 0.0203274 | 0.0228883 | 0.2822581 |
| 4344 hours | 15710286 | 3963.620 | 3077.467 | 0.0209027 | 0.0172238 | 0.0210921 | 0.3225806 |
| 4356 hours | 19101619 | 4370.540 | 3391.115 | 0.0233096 | 0.0187418 | 0.0236241 | 0.3064516 |
| 4368 hours | 17969227 | 4239.013 | 3358.235 | 0.0230029 | 0.0222755 | 0.0232267 | 0.2983871 |
| 4380 hours | 17227279 | 4150.576 | 3303.528 | 0.0225634 | 0.0222755 | 0.0227665 | 0.2903226 |
| 4392 hours | 19851147 | 4455.463 | 3518.704 | 0.0241879 | 0.0175517 | 0.0245044 | 0.2580645 |
| 4416 hours | 20588467 | 4537.452 | 3617.151 | 0.0247918 | 0.0234997 | 0.0251231 | 0.2580645 |
| 5016 hours | 18019475 | 4244.935 | 3322.038 | 0.0225760 | 0.0175517 | 0.0228247 | 0.2983871 |
| 5040 hours | 19584840 | 4425.476 | 3542.102 | 0.0240430 | 0.0234997 | 0.0242296 | 0.2741935 |
| 5052 hours | 18301392 | 4278.013 | 3338.617 | 0.0225972 | 0.0197556 | 0.0227711 | 0.3225806 |
| 5064 hours | 21050377 | 4588.069 | 3610.164 | 0.0247866 | 0.0234997 | 0.0250675 | 0.2903226 |
| 5076 hours | 21696987 | 4658.003 | 3789.650 | 0.0259998 | 0.0259075 | 0.0262356 | 0.2419355 |
| 5088 hours | 20711486 | 4550.987 | 3754.801 | 0.0255614 | 0.0259075 | 0.0257638 | 0.2258065 |
| 5100 hours | 24205695 | 4919.928 | 3995.778 | 0.0273792 | 0.0259075 | 0.0277396 | 0.2258065 |
| 5124 hours | 24254011 | 4924.836 | 4004.360 | 0.0274321 | 0.0259075 | 0.0277935 | 0.2258065 |
| 5760 hours | 21769420 | 4665.771 | 3698.630 | 0.0251265 | 0.0197556 | 0.0254030 | 0.2903226 |
| 5772 hours | 20421540 | 4519.020 | 3499.653 | 0.0237404 | 0.0197556 | 0.0239631 | 0.3440860 |
| 5784 hours | 21911436 | 4680.965 | 3639.825 | 0.0247012 | 0.0191914 | 0.0249144 | 0.3306452 |
| 5796 hours | 23601327 | 4858.120 | 3958.128 | 0.0269945 | 0.0259075 | 0.0272247 | 0.2500000 |
| 5808 hours | 25180261 | 5017.994 | 4119.196 | 0.0281903 | 0.0223888 | 0.0284723 | 0.2258065 |
| 5820 hours | 27535914 | 5247.467 | 4224.078 | 0.0290345 | 0.0223888 | 0.0294426 | 0.2258065 |
| 5832 hours | 27644336 | 5257.788 | 4235.336 | 0.0290310 | 0.0223888 | 0.0294559 | 0.2258065 |
| 5844 hours | 27326546 | 5227.480 | 4203.571 | 0.0288354 | 0.0209749 | 0.0292542 | 0.2258065 |
| 6480 hours | 23858964 | 4884.564 | 3851.119 | 0.0261895 | 0.0205783 | 0.0264908 | 0.2661290 |
| 6504 hours | 26782552 | 5175.186 | 4169.212 | 0.0282877 | 0.0248724 | 0.0285277 | 0.2473118 |
| 6516 hours | 26994411 | 5195.615 | 4210.219 | 0.0285457 | 0.0260384 | 0.0287818 | 0.2177419 |
| 6528 hours | 29529574 | 5434.112 | 4456.319 | 0.0305953 | 0.0224780 | 0.0310035 | 0.1693548 |
| 6540 hours | 29242776 | 5407.659 | 4454.195 | 0.0306165 | 0.0260384 | 0.0310294 | 0.1612903 |
| 6552 hours | 29074404 | 5392.069 | 4442.977 | 0.0303074 | 0.0260384 | 0.0307263 | 0.1612903 |
| 6564 hours | 30811671 | 5550.826 | 4527.305 | 0.0308395 | 0.0260384 | 0.0313125 | 0.1612903 |
| 6588 hours | 29796426 | 5458.610 | 4469.971 | 0.0303514 | 0.0252500 | 0.0307951 | 0.1612903 |
| 7224 hours | 26723551 | 5169.483 | 4124.258 | 0.0278534 | 0.0252500 | 0.0281878 | 0.2258065 |
| 7236 hours | 26469106 | 5144.814 | 4052.574 | 0.0273652 | 0.0252500 | 0.0276596 | 0.2473118 |
| 7248 hours | 27369799 | 5231.615 | 4161.627 | 0.0281096 | 0.0224780 | 0.0284085 | 0.2338710 |
| 7260 hours | 28774453 | 5364.182 | 4437.877 | 0.0301684 | 0.0295566 | 0.0304749 | 0.1774194 |
| 7272 hours | 31675690 | 5628.116 | 4639.708 | 0.0316485 | 0.0273066 | 0.0320463 | 0.1612903 |
| 7284 hours | 36247338 | 6020.576 | 4872.729 | 0.0333665 | 0.0295566 | 0.0339473 | 0.1612903 |
| 7296 hours | 36729861 | 6060.517 | 4903.854 | 0.0334686 | 0.0295566 | 0.0340743 | 0.1612903 |
| 7308 hours | 36430203 | 6035.744 | 4890.075 | 0.0333955 | 0.0289497 | 0.0339958 | 0.1612903 |
| 7944 hours | 31867621 | 5645.141 | 4469.368 | 0.0302531 | 0.0252500 | 0.0306949 | 0.2258065 |
| 7968 hours | 34731632 | 5893.355 | 4790.511 | 0.0323881 | 0.0301323 | 0.0327692 | 0.2150538 |
| 7980 hours | 35127034 | 5926.806 | 4856.017 | 0.0328047 | 0.0319223 | 0.0331780 | 0.2096774 |
| 7992 hours | 39436339 | 6279.836 | 5174.038 | 0.0353709 | 0.0289497 | 0.0359697 | 0.1693548 |
| 8004 hours | 39089330 | 6252.146 | 5143.341 | 0.0352034 | 0.0319223 | 0.0357977 | 0.1612903 |
| 8016 hours | 38828669 | 6231.265 | 5147.085 | 0.0349462 | 0.0319223 | 0.0355429 | 0.1612903 |
| 8028 hours | 40680158 | 6378.100 | 5251.867 | 0.0356294 | 0.0319223 | 0.0362751 | 0.1612903 |
| 8052 hours | 39581249 | 6291.363 | 5210.728 | 0.0352145 | 0.0319223 | 0.0358262 | 0.1612903 |
| 8688 hours | 35425308 | 5951.916 | 4810.196 | 0.0323424 | 0.0319223 | 0.0328037 | 0.2258065 |
| 8712 hours | 38865763 | 6234.241 | 5151.744 | 0.0347855 | 0.0349362 | 0.0352124 | 0.2150538 |
| 8724 hours | 36237637 | 6019.770 | 4868.439 | 0.0327822 | 0.0264664 | 0.0331871 | 0.2338710 |
| 8736 hours | 42574661 | 6524.926 | 5351.314 | 0.0365124 | 0.0349362 | 0.0371695 | 0.1774194 |
| 8748 hours | 39604089 | 6293.178 | 5186.128 | 0.0352838 | 0.0332404 | 0.0357510 | 0.1612903 |
| 8760 hours | 39307861 | 6269.598 | 5196.775 | 0.0350580 | 0.0332404 | 0.0355287 | 0.1612903 |
plot_cross_validation_metric(df_cv_mod3, metric = 'rmse')
performance_metrics(df.cv_holiday)%>%
kbl(caption = "Table 8: Model 4 CV performance metrics")%>%
kable_classic(full_width = F, html_font = "Cambria")
| horizon | mse | rmse | mae | mape | mdape | smape | coverage |
|---|---|---|---|---|---|---|---|
| 1380 hours | 7085812 | 2661.919 | 1847.714 | 0.0127661 | 0.0088902 | 0.0128621 | 0.1693548 |
| 1392 hours | 6830350 | 2613.494 | 1828.086 | 0.0125604 | 0.0088902 | 0.0126436 | 0.1935484 |
| 1404 hours | 7929313 | 2815.904 | 2004.096 | 0.0137685 | 0.0089556 | 0.0138474 | 0.1935484 |
| 1416 hours | 8326729 | 2885.607 | 2134.955 | 0.0147409 | 0.0099573 | 0.0148185 | 0.2258065 |
| 1428 hours | 8925242 | 2987.514 | 2227.183 | 0.0154213 | 0.0099573 | 0.0155174 | 0.2338710 |
| 1440 hours | 9782313 | 3127.669 | 2321.821 | 0.0161352 | 0.0109473 | 0.0162752 | 0.2338710 |
| 1452 hours | 9628944 | 3103.054 | 2311.548 | 0.0160471 | 0.0109473 | 0.0161895 | 0.2258065 |
| 1464 hours | 9701966 | 3114.798 | 2331.786 | 0.0161688 | 0.0121212 | 0.0163127 | 0.2258065 |
| 2100 hours | 8151873 | 2855.149 | 2072.723 | 0.0142187 | 0.0109473 | 0.0143113 | 0.2903226 |
| 2124 hours | 10653239 | 3263.930 | 2488.605 | 0.0170862 | 0.0125826 | 0.0171767 | 0.2419355 |
| 2136 hours | 10717861 | 3273.815 | 2522.003 | 0.0172941 | 0.0137316 | 0.0173834 | 0.2338710 |
| 2148 hours | 11607770 | 3407.018 | 2606.955 | 0.0180729 | 0.0128247 | 0.0182391 | 0.2580645 |
| 2160 hours | 11352351 | 3369.325 | 2607.621 | 0.0180847 | 0.0137316 | 0.0182502 | 0.2338710 |
| 2172 hours | 11216270 | 3349.070 | 2586.079 | 0.0179203 | 0.0128247 | 0.0180888 | 0.2258065 |
| 2184 hours | 11792074 | 3433.959 | 2619.637 | 0.0181315 | 0.0128247 | 0.0183149 | 0.2258065 |
| 2208 hours | 11505619 | 3391.993 | 2605.975 | 0.0179717 | 0.0128247 | 0.0181463 | 0.2177419 |
| 2844 hours | 10081178 | 3175.087 | 2346.764 | 0.0160457 | 0.0128247 | 0.0161706 | 0.2903226 |
| 2856 hours | 10113834 | 3180.225 | 2369.322 | 0.0161690 | 0.0128247 | 0.0162876 | 0.2822581 |
| 2868 hours | 10650577 | 3263.522 | 2476.660 | 0.0169122 | 0.0128247 | 0.0170360 | 0.2580645 |
| 2880 hours | 10977307 | 3313.202 | 2621.293 | 0.0180028 | 0.0151552 | 0.0181192 | 0.2338710 |
| 2892 hours | 12358409 | 3515.453 | 2777.737 | 0.0191477 | 0.0151552 | 0.0193032 | 0.2338710 |
| 2904 hours | 14357527 | 3789.133 | 2931.750 | 0.0202899 | 0.0172276 | 0.0205209 | 0.2258065 |
| 2916 hours | 14253307 | 3775.355 | 2913.183 | 0.0201432 | 0.0150671 | 0.0203787 | 0.2258065 |
| 2928 hours | 14524051 | 3811.043 | 2968.882 | 0.0204882 | 0.0172276 | 0.0207292 | 0.2258065 |
| 3564 hours | 12279925 | 3504.272 | 2647.313 | 0.0180714 | 0.0150671 | 0.0182375 | 0.2903226 |
| 3588 hours | 15215440 | 3900.697 | 3084.814 | 0.0211192 | 0.0181413 | 0.0212932 | 0.2177419 |
| 3600 hours | 15354601 | 3918.495 | 3130.387 | 0.0214060 | 0.0182110 | 0.0215772 | 0.2096774 |
| 3612 hours | 17190227 | 4146.110 | 3253.759 | 0.0224584 | 0.0182110 | 0.0227317 | 0.2258065 |
| 3624 hours | 16918182 | 4113.172 | 3218.015 | 0.0222109 | 0.0187418 | 0.0224809 | 0.2580645 |
| 3636 hours | 16781197 | 4096.486 | 3194.597 | 0.0220248 | 0.0152658 | 0.0223010 | 0.2580645 |
| 3648 hours | 17269927 | 4155.710 | 3217.739 | 0.0221652 | 0.0156254 | 0.0224531 | 0.2580645 |
| 3672 hours | 17037972 | 4127.708 | 3227.050 | 0.0221259 | 0.0156254 | 0.0224043 | 0.2580645 |
| 4308 hours | 14889876 | 3858.740 | 2929.773 | 0.0199010 | 0.0156254 | 0.0201010 | 0.3548387 |
| 4332 hours | 17594367 | 4194.564 | 3322.505 | 0.0226795 | 0.0203274 | 0.0228883 | 0.2822581 |
| 4344 hours | 15710286 | 3963.620 | 3077.467 | 0.0209027 | 0.0172238 | 0.0210921 | 0.3225806 |
| 4356 hours | 19101619 | 4370.540 | 3391.115 | 0.0233096 | 0.0187418 | 0.0236241 | 0.3064516 |
| 4368 hours | 17969227 | 4239.013 | 3358.235 | 0.0230029 | 0.0222755 | 0.0232267 | 0.2983871 |
| 4380 hours | 17227279 | 4150.576 | 3303.528 | 0.0225634 | 0.0222755 | 0.0227665 | 0.2903226 |
| 4392 hours | 19851147 | 4455.463 | 3518.704 | 0.0241879 | 0.0175517 | 0.0245044 | 0.2580645 |
| 4416 hours | 20588467 | 4537.452 | 3617.151 | 0.0247918 | 0.0234997 | 0.0251231 | 0.2580645 |
| 5016 hours | 18019475 | 4244.935 | 3322.038 | 0.0225760 | 0.0175517 | 0.0228247 | 0.2983871 |
| 5040 hours | 19584840 | 4425.476 | 3542.102 | 0.0240430 | 0.0234997 | 0.0242296 | 0.2741935 |
| 5052 hours | 18301392 | 4278.013 | 3338.617 | 0.0225972 | 0.0197556 | 0.0227711 | 0.3225806 |
| 5064 hours | 21050377 | 4588.069 | 3610.164 | 0.0247866 | 0.0234997 | 0.0250675 | 0.2903226 |
| 5076 hours | 21696987 | 4658.003 | 3789.650 | 0.0259998 | 0.0259075 | 0.0262356 | 0.2419355 |
| 5088 hours | 20711486 | 4550.987 | 3754.801 | 0.0255614 | 0.0259075 | 0.0257638 | 0.2258065 |
| 5100 hours | 24205695 | 4919.928 | 3995.778 | 0.0273792 | 0.0259075 | 0.0277396 | 0.2258065 |
| 5124 hours | 24254011 | 4924.836 | 4004.360 | 0.0274321 | 0.0259075 | 0.0277935 | 0.2258065 |
| 5760 hours | 21769420 | 4665.771 | 3698.630 | 0.0251265 | 0.0197556 | 0.0254030 | 0.2903226 |
| 5772 hours | 20421540 | 4519.020 | 3499.653 | 0.0237404 | 0.0197556 | 0.0239631 | 0.3440860 |
| 5784 hours | 21911436 | 4680.965 | 3639.825 | 0.0247012 | 0.0191914 | 0.0249144 | 0.3306452 |
| 5796 hours | 23601327 | 4858.120 | 3958.128 | 0.0269945 | 0.0259075 | 0.0272247 | 0.2500000 |
| 5808 hours | 25180261 | 5017.994 | 4119.196 | 0.0281903 | 0.0223888 | 0.0284723 | 0.2258065 |
| 5820 hours | 27535914 | 5247.467 | 4224.078 | 0.0290345 | 0.0223888 | 0.0294426 | 0.2258065 |
| 5832 hours | 27644336 | 5257.788 | 4235.336 | 0.0290310 | 0.0223888 | 0.0294559 | 0.2258065 |
| 5844 hours | 27326546 | 5227.480 | 4203.571 | 0.0288354 | 0.0209749 | 0.0292542 | 0.2258065 |
| 6480 hours | 23858964 | 4884.564 | 3851.119 | 0.0261895 | 0.0205783 | 0.0264908 | 0.2661290 |
| 6504 hours | 26782552 | 5175.186 | 4169.212 | 0.0282877 | 0.0248724 | 0.0285277 | 0.2473118 |
| 6516 hours | 26994411 | 5195.615 | 4210.219 | 0.0285457 | 0.0260384 | 0.0287818 | 0.2177419 |
| 6528 hours | 29529574 | 5434.112 | 4456.319 | 0.0305953 | 0.0224780 | 0.0310035 | 0.1693548 |
| 6540 hours | 29242776 | 5407.659 | 4454.195 | 0.0306165 | 0.0260384 | 0.0310294 | 0.1612903 |
| 6552 hours | 29074404 | 5392.069 | 4442.977 | 0.0303074 | 0.0260384 | 0.0307263 | 0.1612903 |
| 6564 hours | 30811671 | 5550.826 | 4527.305 | 0.0308395 | 0.0260384 | 0.0313125 | 0.1612903 |
| 6588 hours | 29796426 | 5458.610 | 4469.971 | 0.0303514 | 0.0252500 | 0.0307951 | 0.1612903 |
| 7224 hours | 26723551 | 5169.483 | 4124.258 | 0.0278534 | 0.0252500 | 0.0281878 | 0.2258065 |
| 7236 hours | 26469106 | 5144.814 | 4052.574 | 0.0273652 | 0.0252500 | 0.0276596 | 0.2473118 |
| 7248 hours | 27369799 | 5231.615 | 4161.627 | 0.0281096 | 0.0224780 | 0.0284085 | 0.2338710 |
| 7260 hours | 28774453 | 5364.182 | 4437.877 | 0.0301684 | 0.0295566 | 0.0304749 | 0.1774194 |
| 7272 hours | 31675690 | 5628.116 | 4639.708 | 0.0316485 | 0.0273066 | 0.0320463 | 0.1612903 |
| 7284 hours | 36247338 | 6020.576 | 4872.729 | 0.0333665 | 0.0295566 | 0.0339473 | 0.1612903 |
| 7296 hours | 36729861 | 6060.517 | 4903.854 | 0.0334686 | 0.0295566 | 0.0340743 | 0.1612903 |
| 7308 hours | 36430203 | 6035.744 | 4890.075 | 0.0333955 | 0.0289497 | 0.0339958 | 0.1612903 |
| 7944 hours | 31867621 | 5645.141 | 4469.368 | 0.0302531 | 0.0252500 | 0.0306949 | 0.2258065 |
| 7968 hours | 34731632 | 5893.355 | 4790.511 | 0.0323881 | 0.0301323 | 0.0327692 | 0.2150538 |
| 7980 hours | 35127034 | 5926.806 | 4856.017 | 0.0328047 | 0.0319223 | 0.0331780 | 0.2096774 |
| 7992 hours | 39436339 | 6279.836 | 5174.038 | 0.0353709 | 0.0289497 | 0.0359697 | 0.1693548 |
| 8004 hours | 39089330 | 6252.146 | 5143.341 | 0.0352034 | 0.0319223 | 0.0357977 | 0.1612903 |
| 8016 hours | 38828669 | 6231.265 | 5147.085 | 0.0349462 | 0.0319223 | 0.0355429 | 0.1612903 |
| 8028 hours | 40680158 | 6378.100 | 5251.867 | 0.0356294 | 0.0319223 | 0.0362751 | 0.1612903 |
| 8052 hours | 39581249 | 6291.363 | 5210.728 | 0.0352145 | 0.0319223 | 0.0358262 | 0.1612903 |
| 8688 hours | 35425308 | 5951.916 | 4810.196 | 0.0323424 | 0.0319223 | 0.0328037 | 0.2258065 |
| 8712 hours | 38865763 | 6234.241 | 5151.744 | 0.0347855 | 0.0349362 | 0.0352124 | 0.2150538 |
| 8724 hours | 36237637 | 6019.770 | 4868.439 | 0.0327822 | 0.0264664 | 0.0331871 | 0.2338710 |
| 8736 hours | 42574661 | 6524.926 | 5351.314 | 0.0365124 | 0.0349362 | 0.0371695 | 0.1774194 |
| 8748 hours | 39604089 | 6293.178 | 5186.128 | 0.0352838 | 0.0332404 | 0.0357510 | 0.1612903 |
| 8760 hours | 39307861 | 6269.598 | 5196.775 | 0.0350580 | 0.0332404 | 0.0355287 | 0.1612903 |
plot_cross_validation_metric(df_cv_mod4, metric = 'rmse')
Cross-validation results for monthly data is not very reasonable. Maybe because we set the CV freq to ‘Daily’. All models seems to fit pretty well and have similar RMSE as well as other performing metrics.