Dosen Pengampu : Prof. Dr. Suhartono, M.Kom
Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Kelas : A Linear Algebra
Jurusan : Teknik Informatika
Fakultas : Sains dan Teknologi
Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.
Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara sesama dan non-residen perusahaan, jika orang tua pengendali utama adalah penduduk. Investasi langsung keluar juga disebut investasi langsung di luar negeri.
Dibawah ini merupakan contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Jawa menggunakan bahasa permograman R.
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "jawa.xlsx")
datainflow
## # A tibble: 11 x 7
## Tahun Jawa `Jawa Barat` `Jawa Tengah` Yogyakarta `Jawa Timur` Banten
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 123917. 43775. 35137. 6490. 38515. 0
## 2 2012 160482. 60629. 43298. 9173. 47383. 0
## 3 2013 134998. 35190. 42182. 8939. 48687. 0
## 4 2014 217303. 78660. 60476. 13890. 64276. 0
## 5 2015 230141. 81303. 65198. 14831. 68808. 0
## 6 2016 261607. 88036. 72782. 17350. 83439. 0
## 7 2017 277609. 83220. 77031. 17483. 98380. 1495.
## 8 2018 306911. 87243. 87829. 20574. 106433. 4832.
## 9 2019 324624. 94846. 90751. 20899. 113651. 4477.
## 10 2020 259444. 76883. 84970. 7348. 86848. 3396.
## 11 2021 187816. 57295. 62024. 6714. 58986. 2798.
library(readxl)
dataoutflow <- read_excel(path = "jawaoutflow.xlsx")
dataoutflow
## # A tibble: 11 x 7
## Tahun Jawa `Jawa Barat` `Jawa Tengah` Yogyakarta `Jawa Timur` Banten
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 83511. 20782. 19975. 7538. 35217. 0
## 2 2012 111363. 28895. 28493. 9486. 44489. 0
## 3 2013 98969. 23067. 29529. 9708. 36665. 0
## 4 2014 147069. 40857. 39110. 13171. 53931. 0
## 5 2015 171568. 47063. 46840. 14080. 63585. 0
## 6 2016 190568. 49405. 53659. 13013. 74491. 0
## 7 2017 228905. 53825. 62761. 16810. 93396. 2113.
## 8 2018 253125. 61358. 69368. 20357. 97995. 4047.
## 9 2019 271957. 61692. 72363. 21353. 105514. 11035.
## 10 2020 251363. 57235. 72342. 16619. 93374. 11793.
## 11 2021 143340. 34763. 44455. 9652. 46029. 8441.
plot(datainflow$`Tahun`, type = "l", col = "blue")
plot(dataoutflow$`Tahun`, type = "l", col = "red")
plot(datainflow$Tahun,datainflow$Jawa,type = "l", col= "blue")
lines(dataoutflow$Tahun,dataoutflow$Jawa,col="orange")
legend("top",c("Inflow","Outflow"),fill=c("green","blue"))
Data Inflow Perbulan
library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 7
## Bulan Jawa `Jawa Barat` `Jawa Tengah` Yogyakarta `Jawa Timur`
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 7736. 1980. 2254. 431. 3071.
## 2 2011-02-01 00:00:00 6667. 1726. 1823. 186. 2932.
## 3 2011-03-01 00:00:00 10318. 3718. 3085. 461. 3054.
## 4 2011-04-01 00:00:00 7826. 2864. 2290. 291. 2381.
## 5 2011-05-01 00:00:00 8166. 3169. 2202. 375. 2419.
## 6 2011-06-01 00:00:00 7442. 2971. 2036. 436. 1998.
## 7 2011-07-01 00:00:00 9051. 3615. 2607. 499. 2330.
## 8 2011-08-01 00:00:00 6073. 2398. 1496. 293. 1887.
## 9 2011-09-01 00:00:00 28450. 9581. 8534. 1568. 8767.
## 10 2011-10-01 00:00:00 11368. 3975. 3340. 740. 3314.
## # ... with 118 more rows, and 1 more variable: Banten <dbl>
library(readxl)
dataoutflowperbulan <- read_excel(path = "outflowperbulan.xlsx")
dataoutflowperbulan
## # A tibble: 128 x 7
## Bulan Jawa `Jawa Barat` `Jawa Tengah` Yogyakarta `Jawa Timur`
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 1113. 181. 123. 186. 622.
## 2 2011-02-01 00:00:00 2304. 445. 425. 272. 1161.
## 3 2011-03-01 00:00:00 3427. 762. 535. 312. 1819.
## 4 2011-04-01 00:00:00 5427. 1246. 1165. 467. 2548.
## 5 2011-05-01 00:00:00 5168. 1110. 1372. 485. 2202.
## 6 2011-06-01 00:00:00 6644. 1417. 1717. 629. 2882.
## 7 2011-07-01 00:00:00 8652. 2034. 2318. 597. 3703.
## 8 2011-08-01 00:00:00 26309. 6858. 7200. 2185. 10065.
## 9 2011-09-01 00:00:00 2440. 541. 427. 474. 998.
## 10 2011-10-01 00:00:00 5599. 1310. 1148. 694. 2447.
## # ... with 118 more rows, and 1 more variable: Banten <dbl>
plot(datainflowperbulan$`Jawa Timur`, type = "p", col = "blue")
jatimtimeseries <- datainflow$`Jawa Timur`
plot.ts(jatimtimeseries, type = "l", col = "red")
plot(dataoutflowperbulan$`Jawa Barat`, type = "s", col = "red")
plot(datainflowperbulan$`Jawa Barat`, type = "p", col = "green")
plot(datainflowperbulan$`Jawa Tengah`, type = "s", col = "yellow")
plot(dataoutflowperbulan$`Jawa Tengah`, type = "p", col = "Yellow")
plot(datainflowperbulan$`Yogyakarta`, type = "s", col = "blue")
plot(dataoutflowperbulan$`Yogyakarta`, type = "p", col = "blue")
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.