library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
airquality
##     Ozone Solar.R Wind Temp Month Day
## 1      41     190  7.4   67     5   1
## 2      36     118  8.0   72     5   2
## 3      12     149 12.6   74     5   3
## 4      18     313 11.5   62     5   4
## 5      NA      NA 14.3   56     5   5
## 6      28      NA 14.9   66     5   6
## 7      23     299  8.6   65     5   7
## 8      19      99 13.8   59     5   8
## 9       8      19 20.1   61     5   9
## 10     NA     194  8.6   69     5  10
## 11      7      NA  6.9   74     5  11
## 12     16     256  9.7   69     5  12
## 13     11     290  9.2   66     5  13
## 14     14     274 10.9   68     5  14
## 15     18      65 13.2   58     5  15
## 16     14     334 11.5   64     5  16
## 17     34     307 12.0   66     5  17
## 18      6      78 18.4   57     5  18
## 19     30     322 11.5   68     5  19
## 20     11      44  9.7   62     5  20
## 21      1       8  9.7   59     5  21
## 22     11     320 16.6   73     5  22
## 23      4      25  9.7   61     5  23
## 24     32      92 12.0   61     5  24
## 25     NA      66 16.6   57     5  25
## 26     NA     266 14.9   58     5  26
## 27     NA      NA  8.0   57     5  27
## 28     23      13 12.0   67     5  28
## 29     45     252 14.9   81     5  29
## 30    115     223  5.7   79     5  30
## 31     37     279  7.4   76     5  31
## 32     NA     286  8.6   78     6   1
## 33     NA     287  9.7   74     6   2
## 34     NA     242 16.1   67     6   3
## 35     NA     186  9.2   84     6   4
## 36     NA     220  8.6   85     6   5
## 37     NA     264 14.3   79     6   6
## 38     29     127  9.7   82     6   7
## 39     NA     273  6.9   87     6   8
## 40     71     291 13.8   90     6   9
## 41     39     323 11.5   87     6  10
## 42     NA     259 10.9   93     6  11
## 43     NA     250  9.2   92     6  12
## 44     23     148  8.0   82     6  13
## 45     NA     332 13.8   80     6  14
## 46     NA     322 11.5   79     6  15
## 47     21     191 14.9   77     6  16
## 48     37     284 20.7   72     6  17
## 49     20      37  9.2   65     6  18
## 50     12     120 11.5   73     6  19
## 51     13     137 10.3   76     6  20
## 52     NA     150  6.3   77     6  21
## 53     NA      59  1.7   76     6  22
## 54     NA      91  4.6   76     6  23
## 55     NA     250  6.3   76     6  24
## 56     NA     135  8.0   75     6  25
## 57     NA     127  8.0   78     6  26
## 58     NA      47 10.3   73     6  27
## 59     NA      98 11.5   80     6  28
## 60     NA      31 14.9   77     6  29
## 61     NA     138  8.0   83     6  30
## 62    135     269  4.1   84     7   1
## 63     49     248  9.2   85     7   2
## 64     32     236  9.2   81     7   3
## 65     NA     101 10.9   84     7   4
## 66     64     175  4.6   83     7   5
## 67     40     314 10.9   83     7   6
## 68     77     276  5.1   88     7   7
## 69     97     267  6.3   92     7   8
## 70     97     272  5.7   92     7   9
## 71     85     175  7.4   89     7  10
## 72     NA     139  8.6   82     7  11
## 73     10     264 14.3   73     7  12
## 74     27     175 14.9   81     7  13
## 75     NA     291 14.9   91     7  14
## 76      7      48 14.3   80     7  15
## 77     48     260  6.9   81     7  16
## 78     35     274 10.3   82     7  17
## 79     61     285  6.3   84     7  18
## 80     79     187  5.1   87     7  19
## 81     63     220 11.5   85     7  20
## 82     16       7  6.9   74     7  21
## 83     NA     258  9.7   81     7  22
## 84     NA     295 11.5   82     7  23
## 85     80     294  8.6   86     7  24
## 86    108     223  8.0   85     7  25
## 87     20      81  8.6   82     7  26
## 88     52      82 12.0   86     7  27
## 89     82     213  7.4   88     7  28
## 90     50     275  7.4   86     7  29
## 91     64     253  7.4   83     7  30
## 92     59     254  9.2   81     7  31
## 93     39      83  6.9   81     8   1
## 94      9      24 13.8   81     8   2
## 95     16      77  7.4   82     8   3
## 96     78      NA  6.9   86     8   4
## 97     35      NA  7.4   85     8   5
## 98     66      NA  4.6   87     8   6
## 99    122     255  4.0   89     8   7
## 100    89     229 10.3   90     8   8
## 101   110     207  8.0   90     8   9
## 102    NA     222  8.6   92     8  10
## 103    NA     137 11.5   86     8  11
## 104    44     192 11.5   86     8  12
## 105    28     273 11.5   82     8  13
## 106    65     157  9.7   80     8  14
## 107    NA      64 11.5   79     8  15
## 108    22      71 10.3   77     8  16
## 109    59      51  6.3   79     8  17
## 110    23     115  7.4   76     8  18
## 111    31     244 10.9   78     8  19
## 112    44     190 10.3   78     8  20
## 113    21     259 15.5   77     8  21
## 114     9      36 14.3   72     8  22
## 115    NA     255 12.6   75     8  23
## 116    45     212  9.7   79     8  24
## 117   168     238  3.4   81     8  25
## 118    73     215  8.0   86     8  26
## 119    NA     153  5.7   88     8  27
## 120    76     203  9.7   97     8  28
## 121   118     225  2.3   94     8  29
## 122    84     237  6.3   96     8  30
## 123    85     188  6.3   94     8  31
## 124    96     167  6.9   91     9   1
## 125    78     197  5.1   92     9   2
## 126    73     183  2.8   93     9   3
## 127    91     189  4.6   93     9   4
## 128    47      95  7.4   87     9   5
## 129    32      92 15.5   84     9   6
## 130    20     252 10.9   80     9   7
## 131    23     220 10.3   78     9   8
## 132    21     230 10.9   75     9   9
## 133    24     259  9.7   73     9  10
## 134    44     236 14.9   81     9  11
## 135    21     259 15.5   76     9  12
## 136    28     238  6.3   77     9  13
## 137     9      24 10.9   71     9  14
## 138    13     112 11.5   71     9  15
## 139    46     237  6.9   78     9  16
## 140    18     224 13.8   67     9  17
## 141    13      27 10.3   76     9  18
## 142    24     238 10.3   68     9  19
## 143    16     201  8.0   82     9  20
## 144    13     238 12.6   64     9  21
## 145    23      14  9.2   71     9  22
## 146    36     139 10.3   81     9  23
## 147     7      49 10.3   69     9  24
## 148    14      20 16.6   63     9  25
## 149    30     193  6.9   70     9  26
## 150    NA     145 13.2   77     9  27
## 151    14     191 14.3   75     9  28
## 152    18     131  8.0   76     9  29
## 153    20     223 11.5   68     9  30
mydata = data.frame(airquality$Ozone,airquality$Month)
# I first seperated the Ozone and Month Variables from the rest of the data
mydata = na.omit(mydata)
# Then I ommitted all the NA values from this data set 
mydata
##     airquality.Ozone airquality.Month
## 1                 41                5
## 2                 36                5
## 3                 12                5
## 4                 18                5
## 6                 28                5
## 7                 23                5
## 8                 19                5
## 9                  8                5
## 11                 7                5
## 12                16                5
## 13                11                5
## 14                14                5
## 15                18                5
## 16                14                5
## 17                34                5
## 18                 6                5
## 19                30                5
## 20                11                5
## 21                 1                5
## 22                11                5
## 23                 4                5
## 24                32                5
## 28                23                5
## 29                45                5
## 30               115                5
## 31                37                5
## 38                29                6
## 40                71                6
## 41                39                6
## 44                23                6
## 47                21                6
## 48                37                6
## 49                20                6
## 50                12                6
## 51                13                6
## 62               135                7
## 63                49                7
## 64                32                7
## 66                64                7
## 67                40                7
## 68                77                7
## 69                97                7
## 70                97                7
## 71                85                7
## 73                10                7
## 74                27                7
## 76                 7                7
## 77                48                7
## 78                35                7
## 79                61                7
## 80                79                7
## 81                63                7
## 82                16                7
## 85                80                7
## 86               108                7
## 87                20                7
## 88                52                7
## 89                82                7
## 90                50                7
## 91                64                7
## 92                59                7
## 93                39                8
## 94                 9                8
## 95                16                8
## 96                78                8
## 97                35                8
## 98                66                8
## 99               122                8
## 100               89                8
## 101              110                8
## 104               44                8
## 105               28                8
## 106               65                8
## 108               22                8
## 109               59                8
## 110               23                8
## 111               31                8
## 112               44                8
## 113               21                8
## 114                9                8
## 116               45                8
## 117              168                8
## 118               73                8
## 120               76                8
## 121              118                8
## 122               84                8
## 123               85                8
## 124               96                9
## 125               78                9
## 126               73                9
## 127               91                9
## 128               47                9
## 129               32                9
## 130               20                9
## 131               23                9
## 132               21                9
## 133               24                9
## 134               44                9
## 135               21                9
## 136               28                9
## 137                9                9
## 138               13                9
## 139               46                9
## 140               18                9
## 141               13                9
## 142               24                9
## 143               16                9
## 144               13                9
## 145               23                9
## 146               36                9
## 147                7                9
## 148               14                9
## 149               30                9
## 151               14                9
## 152               18                9
## 153               20                9

Ho: The ozone levels are the same each month Ha: The ozone levels are different each month

mydata5 = mydata %>% filter(airquality.Month==5)
N5=26
M5=mean(mydata5$airquality.Ozone)
M5
## [1] 23.61538
S5=sd(mydata5$airquality.Ozone)
S5
## [1] 22.22445
mydata6 = mydata %>% filter(airquality.Month==6)
N6=9
M6=mean(mydata6$airquality.Ozone)
M6
## [1] 29.44444
S6=sd(mydata6$airquality.Ozone)
S6
## [1] 18.2079
mydata7 = mydata %>% filter(airquality.Month==7)
N7=26
M7=mean(mydata7$airquality.Ozone)
M7
## [1] 59.11538
S7=sd(mydata7$airquality.Ozone)
S7
## [1] 31.63584
mydata8 = mydata %>% filter(airquality.Month==8)
N8=26
M8=mean(mydata8$airquality.Ozone)
M8
## [1] 59.96154
S8=sd(mydata8$airquality.Ozone)
S8
## [1] 39.68121
mydata9 = mydata %>% filter(airquality.Month==9)
N9=29 
M9=mean(mydata9$airquality.Ozone)
M9
## [1] 31.44828
S9=sd(mydata9$airquality.Ozone)
S9
## [1] 24.14182

compare the different months to each other and determines if we reject or fail to reject the null hypothesis

((M5-M6)-0)/(sqrt((S5^2/N5)+(S6^2/N6)))
## [1] -0.7801009
((M5-M7)-0)/(sqrt((S5^2/N5)+(S7^2/N7)))
## [1] -4.681989
((M5-M8)-0)/(sqrt((S5^2/N5)+(S8^2/N8)))
## [1] -4.07488
((M5-M9)-0)/(sqrt((S5^2/N5)+(S9^2/N9)))
## [1] -1.252747
((M6-M7)-0)/(sqrt((S6^2/N6)+(S7^2/N7)))
## [1] -3.418598
((M6-M8)-0)/(sqrt((S6^2/N6)+(S8^2/N8)))
## [1] -3.092206
((M6-M9)-0)/(sqrt((S6^2/N6)+(S9^2/N9)))
## [1] -0.2655679
((M7-M8)-0)/(sqrt((S7^2/N7)+(S8^2/N8)))
## [1] -0.08501814
((M7-M9)-0)/(sqrt((S7^2/N7)+(S9^2/N9)))
## [1] 3.614506
((M8-M9)-0)/(sqrt((S8^2/N8)+(S9^2/N9)))
## [1] 3.174831

There is a difference in ozone between, months: 5-7, 6-8, 5-8, 6-7, 7-9, 8-9.a