Graphics using RCommander

JD

2022-02-16

## Loading required package: splines
## Loading required package: RcmdrMisc
## Loading required package: car
## Loading required package: carData
## Loading required package: sandwich
## Loading required package: effects
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
## The Commander GUI is launched only in interactive sessions
## 
## Attaching package: 'Rcmdr'
## The following object is masked from 'package:base':
## 
##     errorCondition
> HousePrices <- read.table("C:/gokul/3230/Datasets/HousePrices.csv", 
+   header=TRUE, stringsAsFactors=TRUE, sep=",", na.strings="NA", dec=".", 
+   strip.white=TRUE)
> normalityTest(~Price, test="shapiro.test", data=HousePrices)

    Shapiro-Wilk normality test

data:  Price
W = 0.98023, p-value = 0.05836
> summary(HousePrices)
     Price             SqFt         Bedrooms       Bathrooms    
 Min.   : 69100   Min.   :1450   Min.   :2.000   Min.   :2.000  
 1st Qu.:111325   1st Qu.:1880   1st Qu.:3.000   1st Qu.:2.000  
 Median :125950   Median :2000   Median :3.000   Median :2.000  
 Mean   :130427   Mean   :2001   Mean   :3.023   Mean   :2.445  
 3rd Qu.:148250   3rd Qu.:2140   3rd Qu.:3.000   3rd Qu.:3.000  
 Max.   :211200   Max.   :2590   Max.   :5.000   Max.   :4.000  
     Offers      Brick    Neighborhood
 Min.   :1.000   No :86   East :45    
 1st Qu.:2.000   Yes:42   North:44    
 Median :3.000            West :39    
 Mean   :2.578                        
 3rd Qu.:3.000                        
 Max.   :6.000                        
> library(e1071, pos=25)
> numSummary(HousePrices[,"Price", drop=FALSE], groups=HousePrices$Brick, 
+   statistics=c("mean", "sd", "IQR", "quantiles"), quantiles=c(0,.25,.5,.75,1))
        mean       sd   IQR     0%    25%    50%    75%   100% Price:n
No  121958.1 22589.26 31150  69100 106675 117650 137825 180900      86
Yes 147769.0 26829.38 40800 106100 125850 147500 166650 211200      42
> local({
+   .Table <- with(HousePrices, table(Brick))
+   cat("\ncounts:\n")
+   print(.Table)
+   cat("\npercentages:\n")
+   print(round(100*.Table/sum(.Table), 2))
+ })

counts:
Brick
 No Yes 
 86  42 

percentages:
Brick
   No   Yes 
67.19 32.81 
> local({
+   .Table <- with(HousePrices, table(Neighborhood))
+   cat("\ncounts:\n")
+   print(.Table)
+   cat("\npercentages:\n")
+   print(round(100*.Table/sum(.Table), 2))
+ })

counts:
Neighborhood
 East North  West 
   45    44    39 

percentages:
Neighborhood
 East North  West 
35.16 34.38 30.47 
> local({
+   .Table <- with(HousePrices, table(Brick))
+   cat("\ncounts:\n")
+   print(.Table)
+   cat("\npercentages:\n")
+   print(round(100*.Table/sum(.Table), 2))
+ })

counts:
Brick
 No Yes 
 86  42 

percentages:
Brick
   No   Yes 
67.19 32.81 
> local({
+   .Table <- with(HousePrices, table(Neighborhood))
+   cat("\ncounts:\n")
+   print(.Table)
+   cat("\npercentages:\n")
+   print(round(100*.Table/sum(.Table), 2))
+ })

counts:
Neighborhood
 East North  West 
   45    44    39 

percentages:
Neighborhood
 East North  West 
35.16 34.38 30.47 
> sapply(HousePrices, function(x)(sum(is.na(x)))) # NA counts
       Price         SqFt     Bedrooms    Bathrooms       Offers        Brick 
           0            0            0            0            0            0 
Neighborhood 
           0 
> cor(HousePrices[,c("Bathrooms","Bedrooms","Offers","Price","SqFt")], 
+   use="complete")
          Bathrooms  Bedrooms     Offers      Price      SqFt
Bathrooms 1.0000000 0.4145560  0.1437934  0.5232578 0.5227453
Bedrooms  0.4145560 1.0000000  0.1142706  0.5259261 0.4838071
Offers    0.1437934 0.1142706  1.0000000 -0.3136359 0.3369234
Price     0.5232578 0.5259261 -0.3136359  1.0000000 0.5529822
SqFt      0.5227453 0.4838071  0.3369234  0.5529822 1.0000000
> rcorr.adjust(HousePrices[,c("Bathrooms","Bedrooms","Offers","Price",
+   "SqFt")], type="pearson", use="complete")

 Pearson correlations:
          Bathrooms Bedrooms  Offers   Price   SqFt
Bathrooms    1.0000   0.4146  0.1438  0.5233 0.5227
Bedrooms     0.4146   1.0000  0.1143  0.5259 0.4838
Offers       0.1438   0.1143  1.0000 -0.3136 0.3369
Price        0.5233   0.5259 -0.3136  1.0000 0.5530
SqFt         0.5227   0.4838  0.3369  0.5530 1.0000

 Number of observations: 128 

 Pairwise two-sided p-values:
          Bathrooms Bedrooms Offers Price  SqFt  
Bathrooms           <.0001   0.1054 <.0001 <.0001
Bedrooms  <.0001             0.1990 <.0001 <.0001
Offers    0.1054    0.1990          0.0003 0.0001
Price     <.0001    <.0001   0.0003        <.0001
SqFt      <.0001    <.0001   0.0001 <.0001       

 Adjusted p-values (Holm's method)
          Bathrooms Bedrooms Offers Price  SqFt  
Bathrooms           <.0001   0.2108 <.0001 <.0001
Bedrooms  <.0001             0.2108 <.0001 <.0001
Offers    0.2108    0.2108          0.0009 0.0004
Price     <.0001    <.0001   0.0009        <.0001
SqFt      <.0001    <.0001   0.0004 <.0001       
> indexplot(HousePrices[,'Price', drop=FALSE], type='h', id.method='y', 
+   id.n=2)

[1] 104 117
> with(HousePrices, Dotplot(Price, bin=FALSE))

> with(HousePrices, Dotplot(Price, by=Brick, bin=FALSE))

> with(HousePrices, Hist(Price, scale="frequency", breaks="Sturges", 
+   col="darkgray"))