4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Jambi Setiap BUlan
library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
## New names:
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 13
## Bulan ...2 Sumatera Aceh `Sumatera Utara` `Sumatera Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 4164. 124. 2068. 545.
## 2 2011-02-01 00:00:00 NA 3338. 115. 1826. 450.
## 3 2011-03-01 00:00:00 NA 4878. 154. 2028. 849.
## 4 2011-04-01 00:00:00 NA 3157. 122. 1429. 539.
## 5 2011-05-01 00:00:00 NA 3821. 123. 1539. 692.
## 6 2011-06-01 00:00:00 NA 3686. 151. 1637. 592.
## 7 2011-07-01 00:00:00 NA 4370. 107. 1791. 800.
## 8 2011-08-01 00:00:00 NA 3668. 184. 1256. 586.
## 9 2011-09-01 00:00:00 NA 12875. 606. 4172. 2176.
## 10 2011-10-01 00:00:00 NA 4777. 158. 1941. 787.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, `Kep. Riau` <dbl>,
## # Jambi <dbl>, `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 13
## Keterangan ...2 Sumatera Aceh `Sumatera Utara` `Sumatera Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 3442. 350. 941. 307.
## 2 2011-02-01 00:00:00 NA 3989. 193. 990. 228.
## 3 2011-03-01 00:00:00 NA 4229. 230. 1209. 347.
## 4 2011-04-01 00:00:00 NA 6721. 529. 1653. 336.
## 5 2011-05-01 00:00:00 NA 5787. 523. 1465. 328.
## 6 2011-06-01 00:00:00 NA 7395. 406. 2167. 399.
## 7 2011-07-01 00:00:00 NA 7154. 958. 1695. 449.
## 8 2011-08-01 00:00:00 NA 16043. 1046. 4104. 1376.
## 9 2011-09-01 00:00:00 NA 1915. 124. 824. 148.
## 10 2011-10-01 00:00:00 NA 5174. 634. 1392. 299.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, `Kep. Riau` <dbl>,
## # Jambi <dbl>, `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$Jambi, type = "l", col = "black")
lines(dataoutflowperbulan$Jambi,col="gold")
legend("top",c("Inflow","Outflow"),fill=c("black","gold"))

Jambitimeseries <- datainflowperbulan$Jambi
plot.ts(Jambitimeseries , type = "l", col = "purple")

logJambi <- log(datainflowperbulan$Jambi)
plot.ts(logJambi)

library(TTR)
JambiSMA3 <- SMA(datainflowperbulan$Jambi,n=3)
plot.ts(JambiSMA3 )

library(TTR)
jambiSMA3 <- SMA(datainflowperbulan$Jambi,n=8)
plot.ts(jambiSMA3 )

Jambiinflowtimeseries <- ts(datainflowperbulan$Jambi, frequency=12, start=c(2011,1))
Jambiinflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 48.21238 39.91336 202.77581 76.36759 102.29337 80.38363
## 2012 214.78357 185.06614 118.25569 112.18712 176.73267 131.65442
## 2013 440.25724 250.16557 156.40296 131.70444 80.43460 90.88444
## 2014 648.84622 443.17728 218.60749 372.98546 277.49781 326.07002
## 2015 800.91577 310.67803 334.27000 339.99797 285.21811 266.80514
## 2016 723.86727 399.44327 227.89071 207.32596 294.89205 265.25147
## 2017 436.71704 349.18620 374.44420 291.87853 265.93193 109.35945
## 2018 850.92308 423.79251 432.57396 284.21732 331.44473 943.33760
## 2019 928.32921 508.44605 501.71263 395.87576 375.81227 1377.08370
## 2020 929.25223 453.21208 375.57835 488.00832 366.02264 926.36280
## 2021 1319.31010 533.89020 481.47669 442.30053 954.47189 568.16022
## Jul Aug Sep Oct Nov Dec
## 2011 118.45074 91.88117 618.33464 137.23519 238.83742 112.93547
## 2012 178.67562 446.70847 180.60249 96.89252 190.29249 106.61224
## 2013 150.73569 696.17818 239.01380 381.11280 240.84581 189.04884
## 2014 228.38825 1336.65537 383.31015 366.82210 328.60113 238.13597
## 2015 1033.05014 473.13670 295.54859 329.75416 266.79923 241.96031
## 2016 1069.41796 211.81993 325.26906 251.99989 234.81316 186.17002
## 2017 1008.96424 331.35488 369.25742 288.45059 300.80490 277.28824
## 2018 555.66909 452.09732 390.12811 409.82051 356.98477 225.60052
## 2019 517.64046 582.60662 370.00861 477.26284 302.21112 149.17703
## 2020 418.88012 362.62433 363.94528 290.43227 404.08403 249.99980
## 2021 337.72947 342.40788
Jambioutflowtimeseries <- ts(dataoutflowperbulan$Jambi, frequency=12, start=c(2011,1))
Jambioutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 297.46348 280.08970 341.37188 474.26014 371.36905 540.43609
## 2012 133.61579 321.29557 315.41057 373.26078 441.58952 474.63459
## 2013 110.31731 184.50535 223.54744 235.42017 450.54670 349.51626
## 2014 351.35683 459.63127 637.62828 526.41165 683.34064 651.89272
## 2015 249.99472 486.10988 549.06994 721.86428 701.16932 931.14718
## 2016 229.69662 442.46621 487.32817 572.51965 587.13872 1610.89703
## 2017 394.17886 553.63581 500.03923 530.31764 570.86673 1961.91565
## 2018 275.03184 451.87980 498.71186 687.34280 1222.83919 1579.32715
## 2019 218.20233 534.52562 559.51510 895.65817 2018.12386 147.10847
## 2020 230.43948 421.99569 606.04929 713.68012 1262.75583 143.79548
## 2021 54.41456 487.87292 732.48101 1261.14201 1578.66374 642.31328
## Jul Aug Sep Oct Nov Dec
## 2011 428.10203 1056.05643 92.78528 295.39728 272.21261 767.15036
## 2012 330.20592 835.74847 221.85612 472.49384 299.07579 794.04754
## 2013 839.48154 339.88048 732.69193 819.24007 782.02490 1235.18658
## 2014 1929.38736 274.46904 553.86575 703.65271 588.68032 1000.86095
## 2015 1582.71912 395.76377 549.45261 479.75684 631.21748 1046.24662
## 2016 456.38157 430.25770 842.64910 521.69293 648.58138 944.35648
## 2017 212.49734 680.41258 470.55865 568.53590 820.95090 1169.98413
## 2018 391.43773 555.29629 475.32140 545.11918 735.03562 1042.05433
## 2019 717.81375 656.73797 617.28665 719.15618 727.75492 1392.15834
## 2020 633.64958 610.36918 689.06184 1124.09728 807.10093 1706.97368
## 2021 664.55917 624.91746
plot.ts(Jambiinflowtimeseries)

plot.ts(Jambioutflowtimeseries)

Jambiintimeseriescomponents <- decompose(Jambiinflowtimeseries)
Jambiintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2012 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2013 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2014 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2015 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2016 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2017 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2018 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2019 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2020 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2021 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## Jul Aug Sep Oct Nov Dec
## 2011 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2012 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2013 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2014 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2015 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2016 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2017 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2018 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2019 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2020 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2021 156.97755 120.14214
Jambiouttimeseriescomponents <- decompose(Jambioutflowtimeseries)
Jambiouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2012 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2013 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2014 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2015 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2016 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2017 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2018 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2019 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2020 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2021 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## Jul Aug Sep Oct Nov Dec
## 2011 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2012 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2013 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2014 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2015 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2016 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2017 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2018 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2019 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2020 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2021 120.11152 -48.40994
plot(Jambiintimeseriescomponents$seasonal,type = "l", col = "green")
lines(Jambiouttimeseriescomponents$seasonal,col="black")
legend("top",c("Inflow","Outflow"),fill=c("green","black"))

plot(Jambiintimeseriescomponents$random ,type = "l", col = "pink")
lines(Jambiouttimeseriescomponents$random,col="black")
legend("top",c("Inflow","Outflow"),fill=c("pink","black"))

plot(Jambiintimeseriescomponents$figure ,type = "l", col = "purple")
lines(Jambiouttimeseriescomponents$figure,col="black")
legend("top",c("Inflow","Outflow"),fill=c("purple","black"))
