Inflows adalah uang yang masuk ke Bank Indonesia melalui kegiatan penyetoran, dan outflows adalah uang yang keluar dari Bank Indonesia melalui kegiatan penarikan. Setiap daerah memiliki prediksi data inflow-outflow uang kartal yang berbeda-beda. Berikut komparasi visualisasi prediksi data inflow-outflow uang kartal antara Aceh dengan Bengkulu menggunakan bahasa pemrograman R.
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "C:/Users/shafira halmahera/Documents/LINEAR ALGEBRA/DatainBali.xlsx")
datainflow
library(readxl)
dataoutflow <- read_excel(path = "C:/Users/shafira halmahera/Documents/LINEAR ALGEBRA/DataoutBali.xlsx")
dataoutflow
1. Komparasi Visualisasi Prediksi Data Inflow Uang Kartal di Bali dan Nusa Tenggara Setiap Periode
plot(datainflow$Tahun,datainflow$Bali,type = "l", col= "dodgerblue")
lines(datainflow$Tahun,datainflow$Bali,col="red")
legend("top",c("Inflow Bali","Inflow Bali"),fill=c("dodgerblue","red"))
2. Komparasi Visualisasi Prediksi Data Outflow Uang Kartal di Bali dan Nusa Tenggara Setiap Periode
plot(dataoutflow$Tahun,dataoutflow$`Bali`,type = "l", col= "green")
lines(dataoutflow$Tahun,dataoutflow$Bali,col="mediumorchid")
legend("top",c("Outflow Bali","Outflow NusaTenggaraBarat"),fill=c("green","mediumorchid"))
3. Komparasi Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Bali dan Nusa Tenggara Setiap Periode
plot(datainflow$Tahun,datainflow$`Bali`,type = "l", col= "dodgerblue")
lines(datainflow$Tahun,datainflow$Bali,col="gold")
lines(dataoutflow$Tahun,dataoutflow$`Bali`, col= "green")
lines(dataoutflow$Tahun,dataoutflow$Bali,col="mediumorchid")
legend("top",c("Inflow Bali","Bali","Outflow Bali","Outflow Nusa Tenggara"),fill=c("dodgerblue","red","green","mediumorchid"))
4. Komparasi Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Bali dan Nusa Tenggara Setiap Bulan
library(readxl)
datainflowperbulan <- read_excel(path = "C:/Users/shafira halmahera/Documents/LINEAR ALGEBRA/DataPerbulanInflow Bali.xlsx")
dataoutflowperbulan <- read_excel(path = "C:/Users/shafira halmahera/Documents/LINEAR ALGEBRA/DataPerbulanOutflow Bali.xlsx")
datainflowperbulan
dataoutflowperbulan
plot(datainflowperbulan$`Bali`, type = "l", col = "tomato") lines(datainflowperbulan$NusaTenggaraBarat,col="pink")
## Warning: Unknown or uninitialised column: `NusaTenggaraBarat`.
lines(dataoutflowperbulan$`Bali`, col = "green") lines(dataoutflowperbulan$NusaTenggaraBarat,col="purple")
## Warning: Unknown or uninitialised column: `NusaTenggaraBarat`.
legend("top",c("Inflow Bali","Inflow NusaTenggaraBarat ","Outflow Bali","Outflow Nusa Tenggara Barat"),fill=c("tomato","pink","green","purple"))
Balitimeseries <- datainflowperbulan$`Bali`
NusaTenggaraTimurtimeseries <- datainflowperbulan$NusaTenggaraTimur
## Warning: Unknown or uninitialised column: `NusaTenggaraTimur`.
plot.ts(Balitimeseries , type = "l", col = "red")
lines(NusaTenggaraTimurtimeseries , type = "l", col = "darkorchid")
legend("top",c("Bali Timeseries","NusaTenggaraTimur Timeseries"),fill=c("red","darkorchid"))
library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
## Warning: package 'TTR' was built under R version 4.1.2
library(TTR)
BaliSMA3 <- SMA(datainflowperbulan$`Bali`,n=8)
BaliSMA3 <- SMA(datainflowperbulan$`Bali`,n=8)
plot.ts(BaliSMA3, type = "l", col = "black")
lines(BaliSMA3, type = "l", col = "red")
legend("top",c("BaliSMA3","BaliSMA3"),fill=c("black","red"))
5. Komparasi Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Bali dan Nusa Tenggara
NusaTenggaraBaratinflowtimeseries <- ts(datainflowperbulan$`Bali`, frequency=12, start=c(2011,1))
Baliinflowtimeseries <- ts(datainflowperbulan$Bali, frequency=12, start=c(2011,1))
NusaTenggaraBaratinflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 463.4942 401.2705 531.8321 430.9272 474.4475 393.3474 585.2862
## 2012 762.4934 914.6596 603.7560 585.8805 728.3468 587.1981 596.7980
## 2013 504.5470 225.2885 144.5615 138.7439 154.8955 140.1864 181.5579
## 2014 1580.2015 1062.1237 689.1191 989.9306 589.6238 1027.5450 499.7980
## 2015 2142.3029 977.6232 965.6738 1078.2866 916.6191 815.5232 1816.1220
## 2016 2074.5030 1651.8148 1349.2410 1088.3478 1353.8161 952.5911 2201.8241
## 2017 2052.4898 1421.0190 1101.7151 1574.5009 1468.2795 832.9708 2545.4088
## 2018 2241.5629 1242.8403 1018.0038 1503.9253 850.0291 2939.5841 1575.9134
## 2019 3472.2707 1615.9872 1701.0987 1460.2353 1252.9815 2856.2398 1316.8511
## 2020 2986.7851 1546.2565 1229.2731 1473.7059 1016.1529 1296.2055 835.0932
## 2021 2434.9203 871.2755 774.6759 852.3260 1078.5028 501.8520 395.7334
## Aug Sep Oct Nov Dec
## 2011 328.0076 1434.0210 522.3054 515.8948 313.5151
## 2012 722.4166 871.1744 622.0534 802.9841 404.7057
## 2013 628.6199 741.6369 633.2221 1035.4237 537.7725
## 2014 1880.5043 878.8203 894.8855 995.4530 501.9600
## 2015 1003.7575 849.1843 865.9261 975.2170 665.4194
## 2016 1280.5338 1804.2490 1450.3419 1467.4868 1238.9536
## 2017 1177.3180 1206.4513 1048.4978 1787.1670 746.2877
## 2018 1537.0602 1540.6172 1925.8187 1558.4903 675.7620
## 2019 1640.0412 1524.4376 1758.9356 1566.7674 1255.8585
## 2020 832.4055 1163.7777 660.4813 1155.9158 539.1009
## 2021 595.8928
NusaTenggaraBaratinflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 463.4942 401.2705 531.8321 430.9272 474.4475 393.3474 585.2862
## 2012 762.4934 914.6596 603.7560 585.8805 728.3468 587.1981 596.7980
## 2013 504.5470 225.2885 144.5615 138.7439 154.8955 140.1864 181.5579
## 2014 1580.2015 1062.1237 689.1191 989.9306 589.6238 1027.5450 499.7980
## 2015 2142.3029 977.6232 965.6738 1078.2866 916.6191 815.5232 1816.1220
## 2016 2074.5030 1651.8148 1349.2410 1088.3478 1353.8161 952.5911 2201.8241
## 2017 2052.4898 1421.0190 1101.7151 1574.5009 1468.2795 832.9708 2545.4088
## 2018 2241.5629 1242.8403 1018.0038 1503.9253 850.0291 2939.5841 1575.9134
## 2019 3472.2707 1615.9872 1701.0987 1460.2353 1252.9815 2856.2398 1316.8511
## 2020 2986.7851 1546.2565 1229.2731 1473.7059 1016.1529 1296.2055 835.0932
## 2021 2434.9203 871.2755 774.6759 852.3260 1078.5028 501.8520 395.7334
## Aug Sep Oct Nov Dec
## 2011 328.0076 1434.0210 522.3054 515.8948 313.5151
## 2012 722.4166 871.1744 622.0534 802.9841 404.7057
## 2013 628.6199 741.6369 633.2221 1035.4237 537.7725
## 2014 1880.5043 878.8203 894.8855 995.4530 501.9600
## 2015 1003.7575 849.1843 865.9261 975.2170 665.4194
## 2016 1280.5338 1804.2490 1450.3419 1467.4868 1238.9536
## 2017 1177.3180 1206.4513 1048.4978 1787.1670 746.2877
## 2018 1537.0602 1540.6172 1925.8187 1558.4903 675.7620
## 2019 1640.0412 1524.4376 1758.9356 1566.7674 1255.8585
## 2020 832.4055 1163.7777 660.4813 1155.9158 539.1009
## 2021 595.8928
NusaTenggaraTimuroutflowtimeseries <- ts(dataoutflowperbulan$`Bali`, frequency=12, start=c(2011,1))
Balioutflowtimeseries <- ts(dataoutflowperbulan$Bali, frequency=12, start=c(2011,1))
Balioutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 177.04785 353.18190 580.84406 662.00472 652.35527 852.01834
## 2012 451.04246 341.39192 830.24284 688.71274 904.20054 1196.88221
## 2013 57.18282 214.88582 231.08275 240.06173 465.74861 437.29678
## 2014 539.79219 545.37326 1297.23545 706.53950 1253.95573 708.63728
## 2015 448.78833 824.46903 816.20727 1369.16692 887.81091 1207.45967
## 2016 467.61312 1284.03949 1185.71883 1072.46665 1332.92351 2701.59907
## 2017 664.22361 940.12622 2369.52057 911.87713 1340.86594 3569.26368
## 2018 441.30460 1156.29890 1850.51681 1273.03798 2789.95571 2614.49313
## 2019 362.28166 1287.88184 2032.19820 1594.95019 4132.40136 681.97264
## 2020 998.41301 1560.90210 1466.22016 771.87655 1129.30582 598.21047
## 2021 208.86741 606.52211 940.73108 1365.48474 1381.95964 839.89621
## Jul Aug Sep Oct Nov Dec
## 2011 745.90148 1888.16025 458.37649 608.86935 572.37848 1360.66160
## 2012 840.91454 1898.63637 387.91387 772.62723 857.06659 1612.13863
## 2013 674.75666 507.77241 922.70871 931.60575 804.41288 1760.04933
## 2014 2669.93489 733.76944 1017.97525 1149.32633 770.15061 1710.94016
## 2015 2976.88610 953.14580 968.62953 898.48387 948.15400 2171.43853
## 2016 1644.16987 1701.46965 1780.98094 1467.68976 1337.69222 2163.22355
## 2017 781.43826 1801.45865 1017.94123 1565.91417 1111.98409 1747.07757
## 2018 1206.27367 1944.98961 1483.80701 1389.89394 1240.50547 3042.89475
## 2019 1962.25710 1375.85971 1406.26619 1366.25863 1482.11267 2969.92057
## 2020 1147.79277 1027.66274 1053.31914 1419.90221 772.16276 2376.77159
## 2021 752.80505 434.30228
Balioutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 177.04785 353.18190 580.84406 662.00472 652.35527 852.01834
## 2012 451.04246 341.39192 830.24284 688.71274 904.20054 1196.88221
## 2013 57.18282 214.88582 231.08275 240.06173 465.74861 437.29678
## 2014 539.79219 545.37326 1297.23545 706.53950 1253.95573 708.63728
## 2015 448.78833 824.46903 816.20727 1369.16692 887.81091 1207.45967
## 2016 467.61312 1284.03949 1185.71883 1072.46665 1332.92351 2701.59907
## 2017 664.22361 940.12622 2369.52057 911.87713 1340.86594 3569.26368
## 2018 441.30460 1156.29890 1850.51681 1273.03798 2789.95571 2614.49313
## 2019 362.28166 1287.88184 2032.19820 1594.95019 4132.40136 681.97264
## 2020 998.41301 1560.90210 1466.22016 771.87655 1129.30582 598.21047
## 2021 208.86741 606.52211 940.73108 1365.48474 1381.95964 839.89621
## Jul Aug Sep Oct Nov Dec
## 2011 745.90148 1888.16025 458.37649 608.86935 572.37848 1360.66160
## 2012 840.91454 1898.63637 387.91387 772.62723 857.06659 1612.13863
## 2013 674.75666 507.77241 922.70871 931.60575 804.41288 1760.04933
## 2014 2669.93489 733.76944 1017.97525 1149.32633 770.15061 1710.94016
## 2015 2976.88610 953.14580 968.62953 898.48387 948.15400 2171.43853
## 2016 1644.16987 1701.46965 1780.98094 1467.68976 1337.69222 2163.22355
## 2017 781.43826 1801.45865 1017.94123 1565.91417 1111.98409 1747.07757
## 2018 1206.27367 1944.98961 1483.80701 1389.89394 1240.50547 3042.89475
## 2019 1962.25710 1375.85971 1406.26619 1366.25863 1482.11267 2969.92057
## 2020 1147.79277 1027.66274 1053.31914 1419.90221 772.16276 2376.77159
## 2021 752.80505 434.30228
plot.ts(Baliinflowtimeseries,type = "l", col = "gold")
lines(Baliinflowtimeseries, type = "l", col = "sienna")
legend("top",c("Baliinflowtimeseries","NusaTengagraBaratinflowtimeseries"),fill=c("gold","sienna"))
Baliintimeseriescomponents <- decompose(Baliinflowtimeseries)
NusaTenggaraBaratintimeseriescomponents <- decompose(NusaTenggaraBaratinflowtimeseries)
Baliintimeseriescomponents$seasonal
## Jan Feb Mar Apr May
## 2011 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2012 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2013 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2014 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2015 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2016 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2017 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2018 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2019 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2020 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2021 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## Jun Jul Aug Sep Oct
## 2011 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2012 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2013 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2014 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2015 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2016 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2017 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2018 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2019 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2020 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2021 87.0027243 86.0411832 -36.5302514
## Nov Dec
## 2011 36.4726582 -464.6427685
## 2012 36.4726582 -464.6427685
## 2013 36.4726582 -464.6427685
## 2014 36.4726582 -464.6427685
## 2015 36.4726582 -464.6427685
## 2016 36.4726582 -464.6427685
## 2017 36.4726582 -464.6427685
## 2018 36.4726582 -464.6427685
## 2019 36.4726582 -464.6427685
## 2020 36.4726582 -464.6427685
## 2021
Baliintimeseriescomponents$seasonal
## Jan Feb Mar Apr May
## 2011 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2012 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2013 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2014 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2015 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2016 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2017 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2018 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2019 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2020 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## 2021 872.9690241 0.3238317 -199.9542593 -78.1078782 -255.3564776
## Jun Jul Aug Sep Oct
## 2011 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2012 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2013 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2014 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2015 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2016 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2017 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2018 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2019 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2020 87.0027243 86.0411832 -36.5302514 58.8700441 -107.0878307
## 2021 87.0027243 86.0411832 -36.5302514
## Nov Dec
## 2011 36.4726582 -464.6427685
## 2012 36.4726582 -464.6427685
## 2013 36.4726582 -464.6427685
## 2014 36.4726582 -464.6427685
## 2015 36.4726582 -464.6427685
## 2016 36.4726582 -464.6427685
## 2017 36.4726582 -464.6427685
## 2018 36.4726582 -464.6427685
## 2019 36.4726582 -464.6427685
## 2020 36.4726582 -464.6427685
## 2021
Baliouttimeseriescomponents <- decompose(Balioutflowtimeseries)
NusaTenggaraTimurouttimeseriescomponents <- decompose(NusaTenggaraTimuroutflowtimeseries)
Baliouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2012 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2013 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2014 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2015 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2016 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2017 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2018 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2019 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2020 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2021 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## Jul Aug Sep Oct Nov Dec
## 2011 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2012 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2013 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2014 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2015 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2016 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2017 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2018 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2019 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2020 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2021 243.99203 161.06380
NusaTenggaraTimurouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2012 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2013 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2014 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2015 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2016 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2017 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2018 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2019 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2020 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## 2021 -774.20251 -355.93538 90.15465 -299.71599 318.76860 255.21133
## Jul Aug Sep Oct Nov Dec
## 2011 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2012 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2013 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2014 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2015 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2016 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2017 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2018 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2019 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2020 243.99203 161.06380 -174.99194 -72.15735 -245.52369 853.33646
## 2021 243.99203 161.06380
plot(Baliintimeseriescomponents$random,type = "l", col = "purple")
lines(Baliintimeseriescomponents$random,col="palegreen")
lines(Baliouttimeseriescomponents$random, type = "l", col = "lightskyblue")
lines(Baliouttimeseriescomponents$random,col="orange")
legend("top",c("Bali Inflow","Nusa Tenggara Inflow", "Bali Outflow","NusaTenggara Outflow"),fill=c("purple","palegreen","lightskyblue","red"))
plot(Baliintimeseriescomponents$figure,type = "l", col = "green")
lines(Baliintimeseriescomponents$figure,col="palegreen")
lines(Baliouttimeseriescomponents$figure, type = "l", col = "lightskyblue")
lines(Baliouttimeseriescomponents$figure,col="orange")
legend("top",c("Bali Inflow","NusaTenggara Inflow", "Bali Outflow","NusaTenggara Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))