## [1] 218  65

1 Sample characteristics (all raw variables) by Remission

compareGroups::descrTable(Remission~.
                          , Biok_vert_df_raw, 
                          hide.no = '0', 
                          show.p.overall = FALSE,
                          include.label = TRUE)
## 
## --------Summary descriptives table by 'Remission'---------
## 
## ______________________________________________________________________ 
##                                              No remission   Remitter   
##                                                  N=77        N=138     
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## sex:                                                                   
##     male                                      23 (29.9%)   56 (40.6%)  
##     female                                    54 (70.1%)   82 (59.4%)  
## age                                          43.7 (13.9)  44.5 (12.4)  
## BMI                                          28.6 (6.46)  28.7 (5.01)  
## race:                                                                  
##     asian                                     0 (0.00%)    3 (2.17%)   
##     black                                     3 (3.90%)    1 (0.72%)   
##     white                                     74 (96.1%)  134 (97.1%)  
## patientno                                    1000 (1365)  1045 (1377)  
## Site_Location:                                                         
##     Johns Hopkins                             7 (9.09%)    15 (10.9%)  
##     Univeristy of Michigan                    24 (31.2%)   45 (32.6%)  
##     Mayo Clinic                               39 (50.6%)   72 (52.2%)  
##     Pine Rest                                 7 (9.09%)    6 (4.35%)   
## infusionno:                                                            
##     BL                                        26 (33.8%)   46 (33.3%)  
##     1st                                       25 (32.5%)   46 (33.3%)  
##     3rd                                       26 (33.8%)   46 (33.3%)  
## Blood_Draw_Event:                                                      
##     Acute Infusion #1 Baseline 100            18 (23.4%)   30 (21.7%)  
##     Acute Infusion #1 Baseline 40             8 (10.4%)    16 (11.6%)  
##     Acute Infusion #1 Stop 100                17 (22.1%)   30 (21.7%)  
##     Acute Infusion #1 Stop 40                 8 (10.4%)    16 (11.6%)  
##     Acute Infusion #3 Stop 100                11 (14.3%)   16 (11.6%)  
##     Acute Infusion #3 Stop 40                 15 (19.5%)   30 (21.7%)  
## Batch_Number                                 3.34 (1.74)  3.62 (1.71)  
## BSS_Score                                    6.51 (7.29)  3.43 (6.12)  
## MADRS_Score                                  21.8 (8.46)  14.4 (10.8)  
## TRP_nM                                       26255 (5646) 25152 (6045) 
## five_HT_nM                                    302 (362)    154 (215)   
## KYN_nM                                        940 (238)    914 (244)   
## three_HK_nM                                  16.1 (6.15)  16.4 (8.09)  
## KYNA_nM                                      19.0 (7.09)  20.0 (7.80)  
## PIC_nM                                       19.2 (9.98)  19.3 (15.2)  
## Quin_nM                                       141 (39.6)   150 (44.5)  
## AA_nM                                        5.28 (1.79)  6.39 (3.62)  
## KYN_TRP_ratio                                0.04 (0.01)  0.04 (0.01)  
## KYN_SER_ratio                                30.6 (74.7)  34.8 (71.7)  
## QUIN_PIC_ratio                               8.57 (3.64)  9.50 (4.77)  
## QUIN_KYNA_ratio                              8.20 (3.51)  8.16 (3.07)  
## threeHK_KYN_ratio                            0.02 (0.00)  0.02 (0.01)  
## threeHK_KYNA_ratio                           0.95 (0.53)  0.88 (0.37)  
## IL1B_pg_mL                                   0.32 (0.43)  0.26 (0.48)  
## IL1B_pg_mL_LLOD                              0.34 (0.15)  0.34 (0.21)  
## IL2_pg_mL                                    2.89 (10.1)  0.43 (0.27)  
## IL2_pg_mL_LLOD                               1.98 (8.39)  0.34 (0.27)  
## IL4_pg_mL                                    0.09 (0.03)  0.09 (0.03)  
## IL4_pg_mL_LLOD                               0.09 (0.03)  0.09 (0.03)  
## IL6_pg_mL                                    1.13 (0.69)  1.00 (0.51)  
## IL8_pg_mL                                    4.18 (1.82)  4.48 (1.57)  
## IL10_pg_mL                                   0.39 (0.14)  0.78 (2.44)  
## IL12p70_pg_mL                                0.46 (0.25)   34.3 (233)  
## IL12p70_pg_mL_LLOD                           0.46 (0.25)   34.0 (232)  
## IL13_pg_mL                                   3.62 (0.74)  5.93 (14.5)  
## IL13_pg_mL_LLOD                              3.62 (0.74)  5.81 (14.3)  
## TNFa_pg_mL                                   1.37 (0.28)  1.48 (0.54)  
## IFNy_pg_mL                                   6.78 (5.63)  7.12 (5.49)  
## CRP_ng_mL                                    4004 (6567)  2141 (3292)  
## NIC_nM                                        113 (568)   2.29 (5.43)  
## NIC_nM_LLOD                                   113 (568)   2.29 (5.43)  
## NTA_nM                                        297 (152)    313 (155)   
## SAA_ng_mL                                    3187 (2304)  2699 (2063)  
## VCAM_1_ng_mL                                  310 (68.5)   309 (68.4)  
## ICAM_1_ng_mL                                  325 (86.5)   300 (79.3)  
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

2 Sample characteristics (biomarkers only) in whole group

compareGroups::descrTable(~.
                          , Biok_biomarkers_df, 
                          hide.no = '0', 
                          show.p.overall = FALSE,
                          include.label = TRUE)
## 
## --------Summary descriptives table ---------
## 
## ___________________________________ 
##                       [ALL]      N  
##                       N=218         
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## TRP_nM             25449 (5942) 218 
## five_HT_nM          205 (284)   218 
## KYN_nM              917 (244)   218 
## three_HK_nM        16.2 (7.44)  218 
## KYNA_nM            19.5 (7.68)  218 
## PIC_nM             19.2 (13.5)  218 
## Quin_nM             146 (43.0)  218 
## AA_nM              5.95 (3.12)  218 
## KYN_TRP_ratio      0.04 (0.01)  218 
## KYN_SER_ratio      33.2 (72.1)  218 
## QUIN_PIC_ratio     9.14 (4.39)  218 
## QUIN_KYNA_ratio    8.30 (3.40)  218 
## threeHK_KYN_ratio  0.02 (0.01)  218 
## threeHK_KYNA_ratio 0.91 (0.44)  218 
## IL1B_pg_mL         0.28 (0.47)  42  
## IL1B_pg_mL_LLOD    0.34 (0.19)  218 
## IL2_pg_mL          1.27 (6.00)  152 
## IL2_pg_mL_LLOD     0.92 (5.03)  218 
## IL4_pg_mL          0.09 (0.03)  217 
## IL4_pg_mL_LLOD     0.09 (0.03)  218 
## IL6_pg_mL          1.04 (0.58)  218 
## IL8_pg_mL          4.36 (1.66)  218 
## IL10_pg_mL         0.64 (1.95)  218 
## IL12p70_pg_mL       21.8 (186)  217 
## IL12p70_pg_mL_LLOD  21.7 (185)  218 
## IL13_pg_mL         5.07 (11.5)  215 
## IL13_pg_mL_LLOD    5.01 (11.4)  218 
## TNFa_pg_mL         1.44 (0.46)  218 
## IFNy_pg_mL         6.97 (5.50)  218 
## CRP_ng_mL          2835 (4774)  218 
## NIC_nM              41.4 (340)  218 
## NIC_nM_LLOD         41.4 (340)  218 
## NTA_nM              306 (153)   218 
## SAA_ng_mL          2870 (2145)  218 
## VCAM_1_ng_mL        309 (67.9)  218 
## ICAM_1_ng_mL        308 (82.3)  218 
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

3 Sample missingness counts by variable

missingTable(compareGroups(infusionno~., data=Biok_vert_df_raw))
## 
## --------Missingness table by 'infusionno'---------
## 
## _____________________________________________________________ 
##                        BL        1st        3rd     p.overall 
##                       N=73       N=72       N=73              
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## sex                0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## age                0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## BMI                0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## race               0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## patientno          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Site_Location      0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Blood_Draw_Event   0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Sample_ID          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Batch_Number       0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## BSS_Score          0 (0.00%)  2 (2.78%)  3 (4.11%)    0.291   
## MADRS_Score        0 (0.00%)  0 (0.00%)  1 (1.37%)    1.000   
## Remission          1 (1.37%)  1 (1.39%)  1 (1.37%)    1.000   
## TRP_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## five_HT_nM         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYN_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## three_HK_nM        0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYNA_nM            0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## PIC_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## Quin_nM            0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## AA_nM              0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYN_TRP_ratio      0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## KYN_SER_ratio      0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## QUIN_PIC_ratio     0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## QUIN_KYNA_ratio    0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## threeHK_KYN_ratio  0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## threeHK_KYNA_ratio 0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL1B_pg_mL         57 (78.1%) 61 (84.7%) 58 (79.5%)   0.565   
## IL1B_pg_mL_LLOD    0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL2_pg_mL          28 (38.4%) 20 (27.8%) 18 (24.7%)   0.168   
## IL2_pg_mL_LLOD     0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL4_pg_mL          0 (0.00%)  1 (1.39%)  0 (0.00%)    0.330   
## IL4_pg_mL_LLOD     0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL6_pg_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL8_pg_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL10_pg_mL         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL12p70_pg_mL      0 (0.00%)  1 (1.39%)  0 (0.00%)    0.330   
## IL12p70_pg_mL_LLOD 0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IL13_pg_mL         1 (1.37%)  2 (2.78%)  0 (0.00%)    0.327   
## IL13_pg_mL_LLOD    0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## TNFa_pg_mL         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## IFNy_pg_mL         0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## CRP_ng_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## NIC_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## NIC_nM_LLOD        0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## NTA_nM             0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## SAA_ng_mL          0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## VCAM_1_ng_mL       0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## ICAM_1_ng_mL       0 (0.00%)  0 (0.00%)  0 (0.00%)      .     
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

4 Outcome inspection - Depressive severity (MADRS_Score)

mu <- ddply(Biok_vert_df, "infusionno", summarise, grp.mean=mean(MADRS_Score))
ggplot(Biok_vert_df, aes(x=MADRS_Score))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(infusionno ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=infusionno),linetype="dashed")+
  labs(title="Distribution of MADRS total score by Ketamine infusion (timepoint)", x="Depressive severity (MADRS)", y="Count")+
  theme_gray()

ggplot(Biok_vert_df, aes(x=MADRS_Score,fill=Remission))+
  geom_histogram(color="black")+
  facet_grid(infusionno ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=infusionno),linetype="dashed")+
  labs(title="Distribution of MADRS total score by Ketamine infusion (timepoint)", x="Depressive severity (MADRS)", y="Count")+
  theme_gray()

Biok_vert_df %>% 
    filter(!is.na(Remission)) %>%
ggplot(aes(x = as.numeric(infusionno), y = MADRS_Score)) + 
  # geom_boxplot(aes(group = infusionno), lwd=1.25, fatten=1, outlier.shape = "triangle", outlier.size = 3 ) +
  ggtitle("Depression by Ketamine Infusion (timeseries)")+
  geom_line(aes(group=patientno, color=Remission)) +
  geom_point(aes(color=Remission))+
  labs(x = "infusionno") +
  scale_x_continuous(breaks = 1:3)

my_comparisons <- list( c("BL", "1st"), c("1st", "3rd"), c("BL", "3rd") )

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = infusionno, y = MADRS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~Remission)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", ref.group="BL", comparisons=my_comparisons)+
  ggpubr::stat_compare_means(method="anova", label.y=70)

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = Remission, y = MADRS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~infusionno)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", label.y=50)

5 Outcome inspection - suicidality (BSS_Score)

mu <- ddply(Biok_vert_df, "infusionno", summarise,grp.mean=mean(log(BSS_Score)))
ggplot(Biok_vert_df, aes(x=log(BSS_Score)))+
  geom_histogram(color="black", fill="orange")+
  facet_grid(infusionno ~ .)+
  theme(legend.position="none")+
  geom_vline(data=mu, aes(xintercept=grp.mean, color=infusionno),linetype="dashed")+
  labs(title="Distribution of BSS total score by Ketamine infusion (timepoint)", x="Suicidal severity (BSS)", y="Count")+
  theme_gray()

Biok_vert_df %>% 
    filter(!is.na(Remission)) %>%
ggplot(aes(x = as.numeric(infusionno), y = BSS_Score)) + 
  # geom_boxplot(aes(group = infusionno), lwd=1.25, fatten=1, outlier.shape = "triangle", outlier.size = 3 ) +
  ggtitle("Suicidality by Ketamine Infusion (timeseries)")+
  geom_line(aes(group=patientno, color=Remission)) +
  geom_point(aes(color=Remission))+
  labs(x = "infusionno") +
  scale_x_continuous(breaks = 1:3)

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = infusionno, y = BSS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~Remission)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", ref.group="BL", comparisons=my_comparisons)+
  ggpubr::stat_compare_means( label.y=40)

Biok_vert_df %>%
  filter(!is.na(Remission)) %>%
ggplot(aes(x = Remission, y = BSS_Score))+
  geom_boxplot(aes(fill=Remission))+
 geom_jitter(width = 0.1)+ 
  facet_wrap(~infusionno)+
  theme_bw()+
  theme(legend.position = "none")+
  ggpubr::stat_compare_means( label.y=30)

6 Univariate screen (whole group) by continuous outcome (Pearson’s matrix)

Bx_spearmans<- Biok_vert_df %>% 
  select("age", "BMI","MADRS_Score", "BSS_Score",
         all_of(Biok_biomarkers)) %>% 
  select(!starts_with("IL1"))%>% 
  select(!starts_with("IL2")) %>% 
  select(!starts_with("IL4")) %>% 
  select(!contains("LLOD"))

mydata.cor = cor(Bx_spearmans, method = c("pearson"), use="complete.obs")
matrix<-Hmisc::rcorr(as.matrix(mydata.cor))
corrplot::corrplot(mydata.cor, 
                   addCoef.col = 'black', 
                   p.mat=matrix$P,
                   insig="blank", 
                   order="hclust",
                   method="color", 
                   type="upper", 
                   diag=FALSE, 
                   number.cex=0.8, 
                   na.label.col = "gray",
                   addgrid.col=TRUE,
                   tl.col = 'red',
                   tl.srt = 45,
                   title="Pearson's matrix of age, BMI, and log transformed biomarkers (whole sample)")

7 Model 1 (mixed effects): TRP by Remission*infusionno

rlmer_TRP<-robustlmm::rlmer(TRP_nM~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_TRP_vif<-lme4::lmer(TRP_nM~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_TRP_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032645  1        1.016192
## age        1.090413  1        1.044228
## BMI        1.077056  1        1.037813
## Remission  1.011650  1        1.005808
## infusionno 1.000665  2        1.000166
car::qqPlot(residuals(rlmer_TRP), main="QQ-PLOT")

## 218  42 
## 215  41
pairwise_remission<-emmeans(rlmer_TRP, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     1360 1348 Inf   1.009  0.3131
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter      439 1358 Inf   0.323  0.7465
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     1730 1349 Inf   1.282  0.1999
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer_TRP, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate  SE  df z.ratio p.value
##  BL - 1st      3900 980 Inf   3.980  0.0002
##  BL - 3rd      3081 967 Inf   3.188  0.0041
##  1st - 3rd     -819 970 Inf  -0.844  0.6758
## 
## Remission = Remitter:
##  contrast  estimate  SE  df z.ratio p.value
##  BL - 1st      2979 724 Inf   4.117  0.0001
##  BL - 3rd      3451 724 Inf   4.769  <.0001
##  1st - 3rd      472 720 Inf   0.656  0.7891
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
#plotting
pairwise_infusionno<-emmeans(rlmer_TRP, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="Tryptophan (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer_TRP, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="Tryptophan (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

8 MODEL 1: five_HT_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(five_HT_nM~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(five_HT_nM~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033444  1        1.016584
## age        1.092212  1        1.045090
## BMI        1.078296  1        1.038410
## Remission  1.011798  1        1.005882
## infusionno 1.000460  2        1.000115
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##   8 171 
##   7 168
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    125.7 47.4 Inf   2.650  0.0080
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     74.8 47.5 Inf   1.574  0.1155
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    133.5 47.4 Inf   2.815  0.0049
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st      58.6 13.41 Inf   4.366  <.0001
##  BL - 3rd      18.6 13.21 Inf   1.411  0.3351
##  1st - 3rd    -39.9 13.22 Inf  -3.019  0.0072
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st       7.6  9.87 Inf   0.770  0.7215
##  BL - 3rd      26.5  9.87 Inf   2.683  0.0200
##  1st - 3rd     18.9  9.79 Inf   1.928  0.1307
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="five_HT_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="five_HT_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

# MODEL 1: KYN_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(KYN_nM~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(KYN_nM~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033090  1        1.016410
## age        1.091077  1        1.044546
## BMI        1.077211  1        1.037888
## Remission  1.011730  1        1.005848
## infusionno 1.000464  2        1.000116
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 218  42 
## 215  41
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     57.5 51.1 Inf   1.125  0.2605
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     35.3 51.3 Inf   0.687  0.4920
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     53.1 51.1 Inf   1.038  0.2992
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st     98.28 27.1 Inf   3.633  0.0008
##  BL - 3rd     86.02 26.7 Inf   3.226  0.0036
##  1st - 3rd   -12.26 26.7 Inf  -0.459  0.8905
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st     76.05 19.9 Inf   3.814  0.0004
##  BL - 3rd     81.62 19.9 Inf   4.093  0.0001
##  1st - 3rd     5.57 19.8 Inf   0.281  0.9574
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="KYN_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="KYN_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

# MODEL 1: three_HK_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(three_HK_nM~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(three_HK_nM~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033604  1        1.016663
## age        1.092267  1        1.045116
## BMI        1.078036  1        1.038285
## Remission  1.011810  1        1.005888
## infusionno 1.000328  2        1.000082
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 42 55 
## 41 54
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    0.425 1.14 Inf   0.373  0.7091
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    0.425 1.14 Inf   0.371  0.7104
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    0.527 1.14 Inf   0.462  0.6438
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    0.8887 0.597 Inf   1.488  0.2964
##  BL - 3rd    0.9013 0.589 Inf   1.531  0.2761
##  1st - 3rd   0.0126 0.590 Inf   0.021  0.9997
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    0.8886 0.440 Inf   2.019  0.1076
##  BL - 3rd    1.0035 0.440 Inf   2.280  0.0586
##  1st - 3rd   0.1149 0.437 Inf   0.263  0.9626
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="three_HK_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="three_HK_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

9 MODEL 1: KYNA_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(KYNA_nM~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(KYNA_nM~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033107  1        1.016419
## age        1.092020  1        1.044998
## BMI        1.078786  1        1.038646
## Remission  1.011785  1        1.005875
## infusionno 1.000717  2        1.000179
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  42 218 
##  41 215
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -0.125 1.63 Inf  -0.077  0.9390
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -0.609 1.64 Inf  -0.371  0.7105
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -0.406 1.63 Inf  -0.248  0.8038
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     1.347 1.012 Inf   1.331  0.3776
##  BL - 3rd     1.569 0.998 Inf   1.572  0.2578
##  1st - 3rd    0.221 1.001 Inf   0.221  0.9734
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     0.863 0.746 Inf   1.156  0.4795
##  BL - 3rd     1.288 0.746 Inf   1.725  0.1958
##  1st - 3rd    0.424 0.742 Inf   0.572  0.8349
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="KYNA_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="KYNA_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

# MODEL 1: PIC_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(PIC_nM~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(PIC_nM~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032491  1        1.016116
## age        1.090598  1        1.044317
## BMI        1.078025  1        1.038280
## Remission  1.011718  1        1.005842
## infusionno 1.000921  2        1.000230
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  42 159 
##  41 156
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    0.330 1.80 Inf   0.183  0.8548
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    0.214 1.81 Inf   0.118  0.9059
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -0.017 1.80 Inf  -0.009  0.9925
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     2.401 1.026 Inf   2.339  0.0506
##  BL - 3rd     1.729 1.012 Inf   1.709  0.2018
##  1st - 3rd   -0.672 1.014 Inf  -0.662  0.7855
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     2.285 0.757 Inf   3.020  0.0071
##  BL - 3rd     1.382 0.757 Inf   1.827  0.1609
##  1st - 3rd   -0.903 0.752 Inf  -1.201  0.4527
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="PIC_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="PIC_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

10 MODEL 1: Quin_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(Quin_nM~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(Quin_nM~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033074  1        1.016403
## age        1.090809  1        1.044418
## BMI        1.076727  1        1.037655
## Remission  1.011701  1        1.005833
## infusionno 1.000373  2        1.000093
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  61 218 
##  60 215
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    -2.58 10.2 Inf  -0.253  0.8003
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    -1.57 10.2 Inf  -0.154  0.8778
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    -4.75 10.2 Inf  -0.466  0.6414
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st     1.589 4.53 Inf   0.351  0.9344
##  BL - 3rd     0.982 4.46 Inf   0.220  0.9737
##  1st - 3rd   -0.607 4.47 Inf  -0.136  0.9899
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st     2.594 3.34 Inf   0.778  0.7167
##  BL - 3rd    -1.192 3.34 Inf  -0.357  0.9321
##  1st - 3rd   -3.786 3.31 Inf  -1.143  0.4874
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="Quin_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="Quin_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

# MODEL 1: AA_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(AA_nM~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(AA_nM~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033188  1        1.016459
## age        1.092077  1        1.045025
## BMI        1.078677  1        1.038594
## Remission  1.011786  1        1.005876
## infusionno 1.000658  2        1.000164
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 50 44 
## 49 43
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -1.146 0.519 Inf  -2.210  0.0271
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.454 0.523 Inf  -0.868  0.3852
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.131 0.519 Inf  -0.253  0.8002
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    -0.372 0.412 Inf  -0.903  0.6382
##  BL - 3rd    -0.164 0.407 Inf  -0.403  0.9142
##  1st - 3rd    0.208 0.409 Inf   0.510  0.8666
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     0.320 0.305 Inf   1.049  0.5459
##  BL - 3rd     0.851 0.305 Inf   2.793  0.0145
##  1st - 3rd    0.531 0.303 Inf   1.752  0.1859
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="Anthranilic acid (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="Anthranilic acid (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

11 MODEL 1: KYN_TRP_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(KYN_TRP_ratio~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(KYN_TRP_ratio~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033551  1        1.016637
## age        1.092251  1        1.045108
## BMI        1.078124  1        1.038327
## Remission  1.011806  1        1.005886
## infusionno 1.000372  2        1.000093
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 162  55 
## 159  54
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter 0.001088 0.00207 Inf   0.525  0.5995
## 
## infusionno = 1st:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter 0.001543 0.00208 Inf   0.741  0.4585
## 
## infusionno = 3rd:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter 0.000507 0.00207 Inf   0.245  0.8067
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate       SE  df z.ratio p.value
##  BL - 1st  -0.001543 0.001102 Inf  -1.401  0.3405
##  BL - 3rd  -0.001024 0.001086 Inf  -0.943  0.6131
##  1st - 3rd  0.000519 0.001088 Inf   0.477  0.8821
## 
## Remission = Remitter:
##  contrast   estimate       SE  df z.ratio p.value
##  BL - 1st  -0.001088 0.000812 Inf  -1.339  0.3732
##  BL - 3rd  -0.001604 0.000812 Inf  -1.976  0.1182
##  1st - 3rd -0.000517 0.000806 Inf  -0.641  0.7976
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="KYN_TRP_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="KYN_TRP_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

12 MODEL 1: KYN_SER_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(KYN_SER_ratio~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(KYN_SER_ratio~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.030730  1        1.015249
## age        1.088861  1        1.043485
## BMI        1.075925  1        1.037268
## Remission  1.010702  1        1.005337
## infusionno 1.000980  2        1.000245
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 177  28 
## 174  27
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter    -5.43 4.4 Inf  -1.234  0.2171
## 
## infusionno = 1st:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter    -6.51 4.4 Inf  -1.478  0.1395
## 
## infusionno = 3rd:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter    -8.88 4.4 Inf  -2.020  0.0434
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st    -1.139 1.54 Inf  -0.740  0.7397
##  BL - 3rd    -0.719 1.52 Inf  -0.474  0.8834
##  1st - 3rd    0.419 1.52 Inf   0.276  0.9588
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st    -2.220 1.13 Inf  -1.959  0.1224
##  BL - 3rd    -4.172 1.13 Inf  -3.682  0.0007
##  1st - 3rd   -1.952 1.12 Inf  -1.736  0.1917
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="KYN_SER_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="KYN_SER_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

13 MODEL 1: QUIN_PIC_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(QUIN_PIC_ratio~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(QUIN_PIC_ratio~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032809  1        1.016272
## age        1.090248  1        1.044149
## BMI        1.076116  1        1.037360
## Remission  1.011594  1        1.005780
## infusionno 1.000363  2        1.000091
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 152 134 
## 149 132
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.491 0.974 Inf  -0.504  0.6145
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.405 0.978 Inf  -0.414  0.6788
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.444 0.975 Inf  -0.455  0.6489
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    -0.899 0.433 Inf  -2.077  0.0946
##  BL - 3rd    -0.714 0.426 Inf  -1.675  0.2150
##  1st - 3rd    0.185 0.427 Inf   0.433  0.9020
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    -0.813 0.319 Inf  -2.550  0.0290
##  BL - 3rd    -0.667 0.319 Inf  -2.093  0.0913
##  1st - 3rd    0.146 0.316 Inf   0.460  0.8898
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="QUIN_PIC_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="QUIN_PIC_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

14 MODEL 1: QUIN_KYNA_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(QUIN_KYNA_ratio~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(QUIN_KYNA_ratio~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032218  1        1.015981
## age        1.089631  1        1.043854
## BMI        1.075665  1        1.037143
## Remission  1.011344  1        1.005656
## infusionno 1.000477  2        1.000119
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 152 134 
## 149 132
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   0.1186 0.696 Inf   0.171  0.8646
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   0.0476 0.698 Inf   0.068  0.9456
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.0156 0.696 Inf  -0.022  0.9821
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    -0.207 0.352 Inf  -0.589  0.8262
##  BL - 3rd    -0.379 0.347 Inf  -1.091  0.5194
##  1st - 3rd   -0.171 0.348 Inf  -0.493  0.8745
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    -0.278 0.259 Inf  -1.073  0.5311
##  BL - 3rd    -0.513 0.259 Inf  -1.977  0.1178
##  1st - 3rd   -0.235 0.258 Inf  -0.911  0.6333
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="QUIN_KYNA_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="QUIN_KYNA_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

15 MODEL 1: threeHK_KYN_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(threeHK_KYN_ratio~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(threeHK_KYN_ratio~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033677  1        1.016699
## age        1.092216  1        1.045091
## BMI        1.077804  1        1.038173
## Remission  1.011816  1        1.005891
## infusionno 1.000246  2        1.000061
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 217  42 
## 214  41
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                 estimate      SE  df z.ratio p.value
##  No remission - Remitter -0.000665 0.00105 Inf  -0.635  0.5253
## 
## infusionno = 1st:
##  contrast                 estimate      SE  df z.ratio p.value
##  No remission - Remitter -0.000191 0.00105 Inf  -0.181  0.8561
## 
## infusionno = 3rd:
##  contrast                 estimate      SE  df z.ratio p.value
##  No remission - Remitter -0.000448 0.00105 Inf  -0.427  0.6693
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate       SE  df z.ratio p.value
##  BL - 1st  -8.41e-04 0.000542 Inf  -1.551  0.2672
##  BL - 3rd  -3.04e-04 0.000534 Inf  -0.570  0.8363
##  1st - 3rd  5.36e-04 0.000535 Inf   1.002  0.5756
## 
## Remission = Remitter:
##  contrast   estimate       SE  df z.ratio p.value
##  BL - 1st  -3.66e-04 0.000399 Inf  -0.916  0.6299
##  BL - 3rd  -8.67e-05 0.000399 Inf  -0.217  0.9743
##  1st - 3rd  2.79e-04 0.000397 Inf   0.704  0.7610
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="threeHK_KYN_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="threeHK_KYN_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

16 MODEL 1: threeHK_KYNA_ratio by Remission*infusionno

rlmer<-robustlmm::rlmer(threeHK_KYNA_ratio~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(threeHK_KYNA_ratio~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032347  1        1.016045
## age        1.089616  1        1.043847
## BMI        1.075164  1        1.036901
## Remission  1.011318  1        1.005643
## infusionno 1.000270  2        1.000068
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##   4 152 
##   3 149
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.01923 0.0767 Inf   0.251  0.8019
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.03070 0.0769 Inf   0.399  0.6899
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.00393 0.0767 Inf   0.051  0.9591
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.01067 0.0348 Inf   0.306  0.9496
##  BL - 3rd   0.02405 0.0343 Inf   0.700  0.7632
##  1st - 3rd  0.01338 0.0344 Inf   0.389  0.9199
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.02214 0.0257 Inf   0.862  0.6641
##  BL - 3rd   0.00875 0.0257 Inf   0.341  0.9379
##  1st - 3rd -0.01338 0.0255 Inf  -0.525  0.8590
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="threeHK_KYNA_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="threeHK_KYNA_ratio (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

17 MODEL 1: IL1B_pg_mL by Remission*infusionno

18 MODEL 1: IL1B_pg_mL_LLOD by Remission*infusionno

19 MODEL 1: IL2_pg_mL by Remission*infusionno

20 MODEL 1: IL2_pg_mL_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(IL2_pg_mL_LLOD~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL2_pg_mL_LLOD~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032226  1        1.015985
## age        1.089336  1        1.043713
## BMI        1.074250  1        1.036461
## Remission  1.011135  1        1.005552
## infusionno 1.000004  2        1.000001
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 80  8 
## 78  7
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.00456 0.0594 Inf  -0.077  0.9388
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.01526 0.0596 Inf  -0.256  0.7979
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.00352 0.0595 Inf   0.059  0.9528
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.01779 0.0252 Inf   0.707  0.7594
##  BL - 3rd  -0.02924 0.0248 Inf  -1.179  0.4655
##  1st - 3rd -0.04703 0.0248 Inf  -1.894  0.1403
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.00709 0.0185 Inf   0.383  0.9224
##  BL - 3rd  -0.02116 0.0185 Inf  -1.142  0.4884
##  1st - 3rd -0.02825 0.0184 Inf  -1.536  0.2742
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates

21 MODEL 1: IL4_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL4_pg_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL4_pg_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032263  1        1.016003
## age        1.090430  1        1.044237
## BMI        1.075503  1        1.037065
## Remission  1.011060  1        1.005515
## infusionno 1.000381  2        1.000095
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  45 120 
##  44 117
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00262 0.00640 Inf   0.409  0.6822
## 
## infusionno = 1st:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00386 0.00644 Inf   0.599  0.5490
## 
## infusionno = 3rd:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00108 0.00641 Inf   0.169  0.8661
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -0.001962 0.00348 Inf  -0.563  0.8397
##  BL - 3rd  -0.000215 0.00343 Inf  -0.063  0.9978
##  1st - 3rd  0.001747 0.00344 Inf   0.508  0.8676
## 
## Remission = Remitter:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -0.000725 0.00259 Inf  -0.280  0.9576
##  BL - 3rd  -0.001757 0.00257 Inf  -0.684  0.7727
##  1st - 3rd -0.001032 0.00257 Inf  -0.401  0.9151
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates

22 MODEL 1: IL4_pg_mL_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(IL4_pg_mL_LLOD~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL4_pg_mL_LLOD~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032011  1        1.015879
## age        1.089454  1        1.043769
## BMI        1.075218  1        1.036927
## Remission  1.011184  1        1.005576
## infusionno 1.000394  2        1.000098
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 101 120 
##  99 118
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00265 0.00644 Inf   0.411  0.6811
## 
## infusionno = 1st:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00456 0.00647 Inf   0.705  0.4810
## 
## infusionno = 3rd:
##  contrast                estimate      SE  df z.ratio p.value
##  No remission - Remitter  0.00119 0.00644 Inf   0.185  0.8532
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -1.97e-03 0.00353 Inf  -0.558  0.8426
##  BL - 3rd  -2.44e-04 0.00348 Inf  -0.070  0.9973
##  1st - 3rd  1.73e-03 0.00349 Inf   0.495  0.8739
## 
## Remission = Remitter:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -5.95e-05 0.00260 Inf  -0.023  0.9997
##  BL - 3rd  -1.70e-03 0.00260 Inf  -0.653  0.7908
##  1st - 3rd -1.64e-03 0.00259 Inf  -0.634  0.8013
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
Biok_biomarkers
##  [1] "TRP_nM"             "five_HT_nM"         "KYN_nM"            
##  [4] "three_HK_nM"        "KYNA_nM"            "PIC_nM"            
##  [7] "Quin_nM"            "AA_nM"              "KYN_TRP_ratio"     
## [10] "KYN_SER_ratio"      "QUIN_PIC_ratio"     "QUIN_KYNA_ratio"   
## [13] "threeHK_KYN_ratio"  "threeHK_KYNA_ratio" "IL1B_pg_mL"        
## [16] "IL1B_pg_mL_LLOD"    "IL2_pg_mL"          "IL2_pg_mL_LLOD"    
## [19] "IL4_pg_mL"          "IL4_pg_mL_LLOD"     "IL6_pg_mL"         
## [22] "IL8_pg_mL"          "IL10_pg_mL"         "IL12p70_pg_mL"     
## [25] "IL12p70_pg_mL_LLOD" "IL13_pg_mL"         "IL13_pg_mL_LLOD"   
## [28] "TNFa_pg_mL"         "IFNy_pg_mL"         "CRP_ng_mL"         
## [31] "NIC_nM"             "NIC_nM_LLOD"        "NTA_nM"            
## [34] "SAA_ng_mL"          "VCAM_1_ng_mL"       "ICAM_1_ng_mL"

23 MODEL 1: IL6_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL6_pg_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL6_pg_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033451  1        1.016588
## age        1.092215  1        1.045091
## BMI        1.078284  1        1.038405
## Remission  1.011799  1        1.005882
## infusionno 1.000454  2        1.000113
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  81 111 
##  79 109
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.00874 0.0853 Inf  -0.102  0.9185
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.13420 0.0857 Inf   1.566  0.1174
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.04613 0.0854 Inf   0.540  0.5891
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st  -0.14032 0.0450 Inf  -3.119  0.0052
##  BL - 3rd   0.01148 0.0443 Inf   0.259  0.9638
##  1st - 3rd  0.15180 0.0444 Inf   3.416  0.0018
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.00261 0.0332 Inf   0.079  0.9966
##  BL - 3rd   0.06634 0.0332 Inf   2.001  0.1120
##  1st - 3rd  0.06373 0.0329 Inf   1.935  0.1289
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="IL6_pg_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="IL6_pg_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

24 MODEL 1: IL8_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL8_pg_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL8_pg_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032307  1        1.016025
## age        1.089818  1        1.043944
## BMI        1.076409  1        1.037501
## Remission  1.011493  1        1.005730
## infusionno 1.000667  2        1.000167
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 22 45 
## 21 44
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.444 0.333 Inf  -1.334  0.1822
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.467 0.335 Inf  -1.393  0.1636
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter    0.164 0.333 Inf   0.493  0.6223
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    0.1392 0.222 Inf   0.627  0.8054
##  BL - 3rd    0.1905 0.219 Inf   0.870  0.6593
##  1st - 3rd   0.0513 0.220 Inf   0.234  0.9703
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    0.1170 0.164 Inf   0.714  0.7554
##  BL - 3rd    0.7990 0.164 Inf   4.876  <.0001
##  1st - 3rd   0.6820 0.163 Inf   4.187  0.0001
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="IL8_pg_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="IL8_pg_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

25 MODEL 1: IL10_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL10_pg_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL10_pg_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033936  1        1.016827
## age        1.092321  1        1.045142
## BMI        1.077451  1        1.038003
## Remission  1.011846  1        1.005906
## infusionno 1.000031  2        1.000008
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  46 173 
##  45 170
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.00176 0.0295 Inf   0.060  0.9525
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.01060 0.0296 Inf   0.359  0.7199
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter  0.01978 0.0295 Inf   0.670  0.5026
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -0.010568 0.01194 Inf  -0.885  0.6499
##  BL - 3rd  -0.019354 0.01177 Inf  -1.644  0.2271
##  1st - 3rd -0.008786 0.01178 Inf  -0.746  0.7363
## 
## Remission = Remitter:
##  contrast   estimate      SE  df z.ratio p.value
##  BL - 1st  -0.001723 0.00880 Inf  -0.196  0.9791
##  BL - 3rd  -0.001332 0.00880 Inf  -0.151  0.9874
##  1st - 3rd  0.000391 0.00873 Inf   0.045  0.9989
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates

26 MODEL 1: IL12p70_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL12p70_pg_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL12p70_pg_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033717  1        1.016719
## age        1.091970  1        1.044974
## BMI        1.077160  1        1.037863
## Remission  1.011771  1        1.005868
## infusionno 1.000133  2        1.000033
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 137  64 
## 134  63
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0302 0.0345 Inf   0.874  0.3821
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0619 0.0347 Inf   1.784  0.0744
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0388 0.0345 Inf   1.123  0.2616
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st  -0.01738 0.0198 Inf  -0.878  0.6540
##  BL - 3rd  -0.00539 0.0195 Inf  -0.276  0.9588
##  1st - 3rd  0.01199 0.0195 Inf   0.613  0.8128
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.01441 0.0147 Inf   0.980  0.5894
##  BL - 3rd   0.00322 0.0146 Inf   0.221  0.9735
##  1st - 3rd -0.01119 0.0146 Inf  -0.766  0.7238
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates

27 MODEL 1: IL12p70_pg_mL_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(IL12p70_pg_mL_LLOD~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL12p70_pg_mL_LLOD~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033664  1        1.016693
## age        1.091779  1        1.044883
## BMI        1.077143  1        1.037855
## Remission  1.011808  1        1.005887
## infusionno 1.000131  2        1.000033
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 137  64 
## 135  63
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0301 0.0347 Inf   0.867  0.3859
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0655 0.0349 Inf   1.877  0.0606
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter   0.0389 0.0347 Inf   1.119  0.2630
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st  -0.01738 0.0200 Inf  -0.868  0.6608
##  BL - 3rd  -0.00547 0.0197 Inf  -0.277  0.9586
##  1st - 3rd  0.01191 0.0198 Inf   0.602  0.8192
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   0.01799 0.0148 Inf   1.218  0.4425
##  BL - 3rd   0.00332 0.0148 Inf   0.225  0.9725
##  1st - 3rd -0.01467 0.0147 Inf  -1.000  0.5770
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates

28 MODEL 1: IL13_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IL13_pg_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL13_pg_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033905  1        1.016811
## age        1.092131  1        1.045051
## BMI        1.077214  1        1.037889
## Remission  1.011837  1        1.005901
## infusionno 1.000011  2        1.000003
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 137  64 
## 133  62
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.2423 0.178 Inf  -1.362  0.1732
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.0974 0.179 Inf  -0.544  0.5864
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.1434 0.178 Inf  -0.807  0.4198
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   -0.0925 0.0961 Inf  -0.963  0.6005
##  BL - 3rd   -0.0612 0.0947 Inf  -0.646  0.7946
##  1st - 3rd   0.0313 0.0949 Inf   0.330  0.9418
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st    0.0524 0.0726 Inf   0.722  0.7503
##  BL - 3rd    0.0377 0.0714 Inf   0.527  0.8580
##  1st - 3rd  -0.0148 0.0715 Inf  -0.207  0.9767
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates

29 MODEL 1: IL13_pg_mL_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(IL13_pg_mL_LLOD~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IL13_pg_mL_LLOD~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033899  1        1.016808
## age        1.092125  1        1.045048
## BMI        1.077225  1        1.037895
## Remission  1.011841  1        1.005903
## infusionno 1.000011  2        1.000003
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 137 101 
## 135  99
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.227 0.180 Inf  -1.261  0.2072
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.061 0.181 Inf  -0.337  0.7362
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   -0.146 0.180 Inf  -0.808  0.4193
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   -0.0930 0.1009 Inf  -0.922  0.6264
##  BL - 3rd   -0.0611 0.0995 Inf  -0.614  0.8125
##  1st - 3rd   0.0320 0.0997 Inf   0.321  0.9449
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st    0.0734 0.0744 Inf   0.987  0.5849
##  BL - 3rd    0.0207 0.0744 Inf   0.278  0.9582
##  1st - 3rd  -0.0527 0.0739 Inf  -0.714  0.7553
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates

30 MODEL 1: TNFa_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(TNFa_pg_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(TNFa_pg_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033867  1        1.016793
## age        1.092316  1        1.045139
## BMI        1.077576  1        1.038064
## Remission  1.011837  1        1.005901
## infusionno 1.000095  2        1.000024
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 101 212 
##  99 209
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.01137 0.0815 Inf  -0.139  0.8891
## 
## infusionno = 1st:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.01936 0.0817 Inf  -0.237  0.8127
## 
## infusionno = 3rd:
##  contrast                estimate     SE  df z.ratio p.value
##  No remission - Remitter -0.00708 0.0816 Inf  -0.087  0.9309
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast   estimate     SE  df z.ratio p.value
##  BL - 1st   0.044055 0.0277 Inf   1.589  0.2503
##  BL - 3rd   0.030777 0.0273 Inf   1.127  0.4976
##  1st - 3rd -0.013277 0.0273 Inf  -0.486  0.8781
## 
## Remission = Remitter:
##  contrast   estimate     SE  df z.ratio p.value
##  BL - 1st   0.036069 0.0204 Inf   1.767  0.1808
##  BL - 3rd   0.035072 0.0204 Inf   1.718  0.1984
##  1st - 3rd -0.000997 0.0203 Inf  -0.049  0.9987
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="TNFa_pg_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="TNFa_pg_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

31 MODEL 1: IFNy_pg_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(IFNy_pg_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(IFNy_pg_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032253  1        1.015998
## age        1.089756  1        1.043914
## BMI        1.076370  1        1.037483
## Remission  1.011471  1        1.005719
## infusionno 1.000680  2        1.000170
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 167 173 
## 164 170
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   0.0141 0.679 Inf   0.021  0.9834
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.1596 0.680 Inf  -0.235  0.8145
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.4022 0.679 Inf  -0.592  0.5538
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     0.371 0.239 Inf   1.551  0.2674
##  BL - 3rd     0.209 0.236 Inf   0.887  0.6485
##  1st - 3rd   -0.162 0.236 Inf  -0.686  0.7717
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     0.197 0.176 Inf   1.120  0.5017
##  BL - 3rd    -0.207 0.176 Inf  -1.175  0.4680
##  1st - 3rd   -0.404 0.175 Inf  -2.313  0.0541
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="IFNy_pg_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="IFNy_pg_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

32 MODEL 1: CRP_ng_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(CRP_ng_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(CRP_ng_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032732  1        1.016234
## age        1.089969  1        1.044016
## BMI        1.075499  1        1.037063
## Remission  1.011504  1        1.005736
## infusionno 1.000227  2        1.000057
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 210 155 
## 207 152
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      668 480 Inf   1.393  0.1635
## 
## infusionno = 1st:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      638 480 Inf   1.330  0.1837
## 
## infusionno = 3rd:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      522 480 Inf   1.088  0.2766
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st     119.5 107.7 Inf   1.109  0.5082
##  BL - 3rd     284.4 106.1 Inf   2.680  0.0201
##  1st - 3rd    164.9 106.2 Inf   1.553  0.2662
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st      89.4  79.3 Inf   1.127  0.4971
##  BL - 3rd     138.0  79.3 Inf   1.740  0.1903
##  1st - 3rd     48.6  78.6 Inf   0.618  0.8105
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="CRP_ng_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="CRP_ng_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

33 MODEL 1: NIC_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(NIC_nM~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(NIC_nM~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033905  1        1.016811
## age        1.092319  1        1.045141
## BMI        1.077508  1        1.038031
## Remission  1.011842  1        1.005904
## infusionno 1.000060  2        1.000015
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  10 155 
##   9 152
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.0688 0.142 Inf  -0.484  0.6284
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.2631 0.143 Inf  -1.839  0.0659
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   0.0352 0.142 Inf   0.247  0.8050
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st    0.1009 0.0862 Inf   1.171  0.4707
##  BL - 3rd   -0.0286 0.0850 Inf  -0.336  0.9395
##  1st - 3rd  -0.1295 0.0852 Inf  -1.520  0.2815
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   -0.0934 0.0636 Inf  -1.468  0.3062
##  BL - 3rd    0.0754 0.0636 Inf   1.186  0.4617
##  1st - 3rd   0.1687 0.0632 Inf   2.671  0.0207
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="NIC_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="NIC_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

34 MODEL 1: NIC_nM_LLOD by Remission*infusionno

rlmer<-robustlmm::rlmer(NIC_nM_LLOD~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(NIC_nM_LLOD~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033905  1        1.016811
## age        1.092319  1        1.045141
## BMI        1.077508  1        1.038031
## Remission  1.011842  1        1.005904
## infusionno 1.000060  2        1.000015
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  10 155 
##   9 152
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.0708 0.142 Inf  -0.499  0.6176
## 
## infusionno = 1st:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter  -0.2628 0.143 Inf  -1.842  0.0654
## 
## infusionno = 3rd:
##  contrast                estimate    SE  df z.ratio p.value
##  No remission - Remitter   0.0353 0.142 Inf   0.249  0.8037
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st    0.1009 0.0858 Inf   1.176  0.4677
##  BL - 3rd   -0.0286 0.0846 Inf  -0.338  0.9389
##  1st - 3rd  -0.1295 0.0848 Inf  -1.527  0.2784
## 
## Remission = Remitter:
##  contrast  estimate     SE  df z.ratio p.value
##  BL - 1st   -0.0911 0.0633 Inf  -1.439  0.3207
##  BL - 3rd    0.0775 0.0633 Inf   1.224  0.4389
##  1st - 3rd   0.1686 0.0629 Inf   2.681  0.0201
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="NIC_nM_LLOD (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="NIC_nM_LLOD (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

35 MODEL 1: NTA_nM by Remission*infusionno

rlmer<-robustlmm::rlmer(NTA_nM~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(NTA_nM~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032912  1        1.016323
## age        1.091852  1        1.044917
## BMI        1.079024  1        1.038761
## Remission  1.011785  1        1.005875
## infusionno 1.000851  2        1.000213
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 22 32 
## 21 31
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -33.18 34.4 Inf  -0.965  0.3343
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter   -64.81 34.6 Inf  -1.872  0.0613
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     1.99 34.4 Inf   0.058  0.9539
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st      43.7 25.4 Inf   1.722  0.1970
##  BL - 3rd      14.8 25.0 Inf   0.592  0.8246
##  1st - 3rd    -28.9 25.1 Inf  -1.149  0.4837
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st      12.0 18.7 Inf   0.643  0.7961
##  BL - 3rd      50.0 18.7 Inf   2.668  0.0208
##  1st - 3rd     37.9 18.6 Inf   2.036  0.1037
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="NTA_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="NTA_nM (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

36 MODEL 1: SAA_ng_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(SAA_ng_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(SAA_ng_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.031928  1        1.015839
## age        1.089416  1        1.043751
## BMI        1.075200  1        1.036918
## Remission  1.011144  1        1.005556
## infusionno 1.000411  2        1.000103
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 148 163 
## 145 160
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      481 426 Inf   1.130  0.2585
## 
## infusionno = 1st:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      442 427 Inf   1.037  0.2999
## 
## infusionno = 3rd:
##  contrast                estimate  SE  df z.ratio p.value
##  No remission - Remitter      427 426 Inf   1.003  0.3160
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st   100.551 132.4 Inf   0.759  0.7280
##  BL - 3rd   115.401 130.5 Inf   0.884  0.6502
##  1st - 3rd   14.850 130.6 Inf   0.114  0.9929
## 
## Remission = Remitter:
##  contrast  estimate    SE  df z.ratio p.value
##  BL - 1st    61.429  97.5 Inf   0.630  0.8036
##  BL - 3rd    61.274  97.5 Inf   0.628  0.8045
##  1st - 3rd   -0.155  96.7 Inf  -0.002  1.0000
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="SAA_ng_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="SAA_ng_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

37 MODEL 1: VCAM_1_ng_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(VCAM_1_ng_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(VCAM_1_ng_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.033005  1        1.016368
## age        1.090600  1        1.044318
## BMI        1.076458  1        1.037525
## Remission  1.011669  1        1.005818
## infusionno 1.000349  2        1.000087
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

##  53 212 
##  52 209
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     1.24 16.7 Inf   0.074  0.9411
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    10.71 16.8 Inf   0.638  0.5234
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter    14.26 16.7 Inf   0.852  0.3944
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st    -0.694 7.24 Inf  -0.096  0.9949
##  BL - 3rd     2.951 7.13 Inf   0.414  0.9100
##  1st - 3rd    3.645 7.14 Inf   0.510  0.8662
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st     8.782 5.33 Inf   1.648  0.2258
##  BL - 3rd    15.977 5.33 Inf   2.997  0.0077
##  1st - 3rd    7.195 5.29 Inf   1.360  0.3622
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="VCAM_1_ng_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="VCAM_1_ng_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

38 MODEL 1: ICAM_1_ng_mL by Remission*infusionno

rlmer<-robustlmm::rlmer(ICAM_1_ng_mL~sex+age+BMI+Remission*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
rlmer_vif<-lme4::lmer(ICAM_1_ng_mL~sex+age+BMI+Remission+infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::vif(rlmer_vif)
##                GVIF Df GVIF^(1/(2*Df))
## sex        1.032232  1        1.015988
## age        1.089540  1        1.043810
## BMI        1.075097  1        1.036869
## Remission  1.011261  1        1.005615
## infusionno 1.000286  2        1.000071
car::qqPlot(residuals(rlmer), main="QQ-PLOT")

## 17 15 
## 16 14
pairwise_remission<-emmeans(rlmer, pairwise~Remission|infusionno)
pairwise_remission$contrasts
## infusionno = BL:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     23.5 17.7 Inf   1.330  0.1836
## 
## infusionno = 1st:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     22.1 17.8 Inf   1.245  0.2132
## 
## infusionno = 3rd:
##  contrast                estimate   SE  df z.ratio p.value
##  No remission - Remitter     29.6 17.7 Inf   1.669  0.0950
## 
## Results are averaged over the levels of: sex
pairwise_remission<-emmeans(rlmer, pairwise~infusionno|Remission)
pairwise_remission$contrasts
## Remission = No remission:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st      4.48 7.27 Inf   0.616  0.8115
##  BL - 3rd      7.45 7.17 Inf   1.040  0.5515
##  1st - 3rd     2.98 7.17 Inf   0.415  0.9095
## 
## Remission = Remitter:
##  contrast  estimate   SE  df z.ratio p.value
##  BL - 1st      3.02 5.36 Inf   0.565  0.8389
##  BL - 3rd     13.48 5.36 Inf   2.516  0.0318
##  1st - 3rd    10.45 5.32 Inf   1.966  0.1206
## 
## Results are averaged over the levels of: sex 
## P value adjustment: tukey method for comparing a family of 3 estimates
pairwise_infusionno<-emmeans(rlmer, pairwise~infusionno|Remission)
plot(pairwise_infusionno, xlab="ICAM_1_ng_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

pairwise_infusionno<-emmeans(rlmer, pairwise~Remission|infusionno)
plot(pairwise_infusionno, xlab="ICAM_1_ng_mL (emmeans)", ylab="Ketamine infusion timepoint", comparisons = TRUE)

# MODEL 2: MADRS by TRP*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+TRP_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by TRP*infusionno")
Mixed model: MADRS by TRP*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 0.95 0.64 – 1.26 <0.001 <0.001
age 0.02 -0.06 – 0.11 0.598 0.598
sex [female] 0.25 0.07 – 0.43 0.005 0.005
BMI 0.03 -0.06 – 0.11 0.534 0.534
TRP nM 0.02 -0.13 – 0.17 0.813 0.813
infusionno [1st] -1.26 -1.47 – -1.06 <0.001 <0.001
infusionno [3rd] -1.81 -2.02 – -1.61 <0.001 <0.001
TRP nM * infusionno [1st] 0.10 -0.10 – 0.30 0.331 0.331
TRP nM * infusionno [3rd] 0.14 -0.07 – 0.34 0.192 0.192
Random Effects
σ2 39.00
τ00 patientno 0.00
τ00 Site_Location 6.15
ICC 0.14
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.610 / 0.663

39 MODEL 2: MADRS by five_HT_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+five_HT_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## [1] 85 13
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by five_HT_nM*infusionno")
Mixed model: MADRS by five_HT_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.05 0.71 – 1.39 <0.001 <0.001
age 0.03 -0.06 – 0.11 0.494 0.494
sex [female] 0.16 -0.01 – 0.33 0.066 0.066
BMI 0.04 -0.05 – 0.12 0.394 0.394
five HT nM -0.03 -0.16 – 0.10 0.641 0.641
infusionno [1st] -1.29 -1.48 – -1.09 <0.001 <0.001
infusionno [3rd] -1.83 -2.03 – -1.64 <0.001 <0.001
five HT nM * infusionno
[1st]
0.08 -0.12 – 0.27 0.432 0.432
five HT nM * infusionno
[3rd]
0.29 0.09 – 0.48 0.004 0.004
Random Effects
σ2 38.75
τ00 patientno 0.00
τ00 Site_Location 8.84
ICC 0.19
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.597 / 0.672

40 MODEL 2: MADRS by KYN_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+KYN_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by KYN_nM*infusionno")
Mixed model: MADRS by KYN_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 0.99 0.67 – 1.31 <0.001 <0.001
age -0.01 -0.10 – 0.08 0.858 0.858
sex [female] 0.22 0.04 – 0.39 0.014 0.014
BMI 0.02 -0.07 – 0.10 0.728 0.728
KYN nM -0.02 -0.16 – 0.12 0.780 0.780
infusionno [1st] -1.28 -1.48 – -1.07 <0.001 <0.001
infusionno [3rd] -1.84 -2.04 – -1.64 <0.001 <0.001
KYN nM * infusionno [1st] 0.11 -0.10 – 0.31 0.298 0.298
KYN nM * infusionno [3rd] 0.14 -0.06 – 0.34 0.166 0.166
Random Effects
σ2 39.71
τ00 patientno 0.00
τ00 Site_Location 6.99
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.599 / 0.659

41 MODEL 2: MADRS by three_HK_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+three_HK_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148 104 
## 147 104
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by three_HK_nM*infusionno")
Mixed model: MADRS by three_HK_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.69 – 1.36 <0.001 <0.001
age 0.01 -0.08 – 0.11 0.805 0.805
sex [female] 0.18 -0.01 – 0.37 0.067 0.067
BMI 0.02 -0.07 – 0.12 0.671 0.671
three HK nM -0.03 -0.14 – 0.09 0.643 0.643
infusionno [1st] -1.28 -1.47 – -1.10 <0.001 <0.001
infusionno [3rd] -1.84 -2.02 – -1.65 <0.001 <0.001
three HK nM * infusionno
[1st]
0.05 -0.14 – 0.23 0.620 0.620
three HK nM * infusionno
[3rd]
0.09 -0.11 – 0.29 0.357 0.357
Random Effects
σ2 35.01
τ00 patientno 4.69
τ00 Site_Location 7.88
ICC 0.26
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.590 / 0.698

42 MODEL 2: MADRS by KYNA_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+KYNA_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148 104 
## 147 104
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by KYNA_nM*infusionno")
Mixed model: MADRS by KYNA_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.36 <0.001 <0.001
age 0.01 -0.09 – 0.11 0.813 0.813
sex [female] 0.17 -0.03 – 0.37 0.093 0.093
BMI 0.02 -0.07 – 0.12 0.651 0.651
KYNA nM -0.06 -0.18 – 0.07 0.386 0.386
infusionno [1st] -1.29 -1.47 – -1.10 <0.001 <0.001
infusionno [3rd] -1.84 -2.03 – -1.65 <0.001 <0.001
KYNA nM * infusionno
[1st]
0.09 -0.11 – 0.28 0.404 0.404
KYNA nM * infusionno
[3rd]
0.06 -0.12 – 0.24 0.531 0.531
Random Effects
σ2 34.60
τ00 patientno 5.26
τ00 Site_Location 7.56
ICC 0.27
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.590 / 0.701

43 MODEL 2: MADRS by PIC_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+PIC_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

##  85 148 
##  85 147
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by PIC_nM*infusionno")
Mixed model: MADRS by PIC_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.00 0.68 – 1.32 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.865 0.865
sex [female] 0.21 0.04 – 0.38 0.017 0.017
BMI 0.03 -0.05 – 0.12 0.449 0.449
PIC nM -0.01 -0.11 – 0.09 0.833 0.833
infusionno [1st] -1.25 -1.45 – -1.05 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
PIC nM * infusionno [1st] 0.31 0.04 – 0.58 0.025 0.025
PIC nM * infusionno [3rd] 0.12 -0.10 – 0.34 0.297 0.297
Random Effects
σ2 39.90
τ00 patientno 0.00
τ00 Site_Location 7.48
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.599 / 0.662

44 MODEL 2: MADRS by Quin_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+Quin_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by Quin_nM*infusionno")
Mixed model: MADRS by Quin_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.37 <0.001 <0.001
age 0.02 -0.07 – 0.11 0.714 0.714
sex [female] 0.16 -0.02 – 0.34 0.080 0.080
BMI 0.03 -0.05 – 0.12 0.458 0.458
Quin nM 0.00 -0.15 – 0.15 0.978 0.978
infusionno [1st] -1.29 -1.49 – -1.09 0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
Quin nM * infusionno
[1st]
-0.01 -0.22 – 0.19 0.890 0.890
Quin nM * infusionno
[3rd]
-0.07 -0.27 – 0.13 0.485 0.485
Random Effects
σ2 41.12
τ00 patientno 0.00
τ00 Site_Location 7.84
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.587 / 0.653

45 MODEL 2: MADRS by AA_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+AA_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by AA_nM*infusionno")
Mixed model: MADRS by AA_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.71 – 1.34 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.751 0.751
sex [female] 0.17 -0.00 – 0.35 0.051 0.051
BMI 0.03 -0.05 – 0.12 0.450 0.450
AA nM -0.07 -0.19 – 0.05 0.233 0.233
infusionno [1st] -1.31 -1.51 – -1.11 <0.001 <0.001
infusionno [3rd] -1.87 -2.07 – -1.66 <0.001 <0.001
AA nM * infusionno [1st] 0.13 -0.06 – 0.33 0.174 0.174
AA nM * infusionno [3rd] 0.02 -0.21 – 0.25 0.846 0.846
Random Effects
σ2 41.13
τ00 patientno 0.00
τ00 Site_Location 7.11
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.653

46 MODEL 2: MADRS by KYN_TRP_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+KYN_TRP_ratio*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by KYN_TRP_ratio*infusionno")
Mixed model: MADRS by KYN_TRP_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.33 <0.001 <0.001
age 0.02 -0.07 – 0.11 0.675 0.675
sex [female] 0.18 0.01 – 0.35 0.042 0.042
BMI 0.03 -0.06 – 0.12 0.473 0.473
KYN TRP ratio -0.07 -0.23 – 0.09 0.382 0.382
infusionno [1st] -1.28 -1.49 – -1.08 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.64 <0.001 <0.001
KYN TRP ratio *
infusionno [1st]
0.06 -0.15 – 0.26 0.592 0.592
KYN TRP ratio *
infusionno [3rd]
0.09 -0.12 – 0.29 0.404 0.404
Random Effects
σ2 40.99
τ00 patientno 0.00
τ00 Site_Location 7.39
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.590 / 0.653

47 MODEL 2: MADRS by KYN_SER_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+KYN_SER_ratio*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148 104 
## 147 104
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by KYN_SER_ratio*infusionno")
Mixed model: MADRS by KYN_SER_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.69 – 1.37 <0.001 <0.001
age 0.00 -0.09 – 0.10 0.938 0.938
sex [female] 0.17 -0.02 – 0.35 0.075 0.075
BMI 0.02 -0.07 – 0.12 0.621 0.621
KYN SER ratio 0.10 -0.03 – 0.24 0.141 0.141
infusionno [1st] -1.28 -1.46 – -1.10 <0.001 <0.001
infusionno [3rd] -1.83 -2.01 – -1.64 <0.001 <0.001
KYN SER ratio *
infusionno [1st]
-0.19 -0.42 – 0.04 0.104 0.104
KYN SER ratio *
infusionno [3rd]
-0.18 -0.36 – -0.01 0.040 0.040
Random Effects
σ2 33.81
τ00 patientno 4.54
τ00 Site_Location 8.73
ICC 0.28
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.594 / 0.708

48 MODEL 2: MADRS by QUIN_PIC_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+TRP_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by QUIN_PIC_ratio*infusionno")
Mixed model: MADRS by QUIN_PIC_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 0.95 0.64 – 1.26 <0.001 <0.001
age 0.02 -0.06 – 0.11 0.598 0.598
sex [female] 0.25 0.07 – 0.43 0.005 0.005
BMI 0.03 -0.06 – 0.11 0.534 0.534
TRP nM 0.02 -0.13 – 0.17 0.813 0.813
infusionno [1st] -1.26 -1.47 – -1.06 <0.001 <0.001
infusionno [3rd] -1.81 -2.02 – -1.61 <0.001 <0.001
TRP nM * infusionno [1st] 0.10 -0.10 – 0.30 0.331 0.331
TRP nM * infusionno [3rd] 0.14 -0.07 – 0.34 0.192 0.192
Random Effects
σ2 39.00
τ00 patientno 0.00
τ00 Site_Location 6.15
ICC 0.14
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.610 / 0.663

49 MODEL 2: MADRS by QUIN_KYNA_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+QUIN_KYNA_ratio*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by QUIN_KYNA_ratio*infusionno")
Mixed model: MADRS by QUIN_KYNA_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.69 – 1.35 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.859 0.859
sex [female] 0.19 0.03 – 0.36 0.023 0.023
BMI 0.03 -0.05 – 0.11 0.499 0.499
QUIN KYNA ratio 0.05 -0.08 – 0.19 0.453 0.453
infusionno [1st] -1.30 -1.49 – -1.10 0.002 <0.001
infusionno [3rd] -1.85 -2.05 – -1.66 <0.001 <0.001
QUIN KYNA ratio *
infusionno [1st]
-0.18 -0.39 – 0.02 0.077 0.077
QUIN KYNA ratio *
infusionno [3rd]
-0.11 -0.30 – 0.08 0.237 0.237
Random Effects
σ2 38.67
τ00 patientno 0.00
τ00 Site_Location 8.00
ICC 0.17
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.602 / 0.671

50 MODEL 2: MADRS by threeHK_KYN_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+threeHK_KYN_ratio*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by threeHK_KYN_ratio*infusionno")
Mixed model: MADRS by threeHK_KYN_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.33 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.906 0.906
sex [female] 0.18 0.01 – 0.36 0.042 0.042
BMI 0.03 -0.06 – 0.12 0.511 0.511
threeHK KYN ratio -0.02 -0.17 – 0.12 0.750 0.750
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.64 <0.001 <0.001
threeHK KYN ratio *
infusionno [1st]
-0.00 -0.21 – 0.20 0.967 0.967
threeHK KYN ratio *
infusionno [3rd]
-0.02 -0.22 – 0.19 0.874 0.874
Random Effects
σ2 41.64
τ00 patientno 0.00
τ00 Site_Location 7.21
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.587 / 0.648

51 MODEL 2: MADRS by threeHK_KYNA_ratio*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+threeHK_KYNA_ratio*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by threeHK_KYNA_ratio*infusionno")
Mixed model: MADRS by threeHK_KYNA_ratio*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.34 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.846 0.846
sex [female] 0.18 0.00 – 0.36 0.044 0.044
BMI 0.02 -0.06 – 0.11 0.601 0.601
threeHK KYNA ratio 0.00 -0.13 – 0.13 0.975 0.975
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
threeHK KYNA ratio *
infusionno [1st]
-0.08 -0.28 – 0.12 0.434 0.434
threeHK KYNA ratio *
infusionno [3rd]
0.05 -0.14 – 0.25 0.586 0.586
Random Effects
σ2 40.57
τ00 patientno 0.00
τ00 Site_Location 7.38
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.655

52 MODEL 2: MADRS by IL1B_pg_mL*infusionno

rlmer<-robustlmm::rlmer(IL1B_pg_mL~age+sex+BMI+TRP_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 18 90 
##  1 18
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL1B_pg_mL*infusionno")
Mixed model: MADRS by IL1B_pg_mL*infusionno
  IL 1 B pg m L
Predictors std. Beta standardized CI p std. p
(Intercept) -0.24 -0.70 – 0.23 0.770 0.317
age 0.03 -0.09 – 0.15 0.631 0.631
sex [female] 0.21 -0.04 – 0.46 0.095 0.095
BMI -0.05 -0.16 – 0.06 0.379 0.379
TRP nM 0.09 -0.04 – 0.22 0.179 0.179
infusionno [1st] 0.13 -0.02 – 0.29 0.903 0.086
infusionno [3rd] 0.12 -0.02 – 0.26 0.252 0.100
TRP nM * infusionno [1st] 0.02 -0.11 – 0.16 0.748 0.748
TRP nM * infusionno [3rd] -0.07 -0.23 – 0.09 0.381 0.381
Random Effects
σ2 0.01
τ00 patientno 0.01
τ00 Site_Location 0.03
ICC 0.90
N patientno 26
N Site_Location 4
Observations 42
Marginal R2 / Conditional R2 0.056 / 0.905

53 MODEL 2: MADRS by IL1B_pg_mL_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL1B_pg_mL_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL1B_pg_mL_LLOD*infusionno")
Mixed model: MADRS by IL1B_pg_mL_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.69 – 1.35 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.852 0.852
sex [female] 0.18 0.01 – 0.35 0.042 0.042
BMI 0.02 -0.06 – 0.11 0.573 0.573
IL1B pg mL LLOD -0.01 -0.18 – 0.17 0.945 0.945
infusionno [1st] -1.30 -1.51 – -1.10 0.114 <0.001
infusionno [3rd] -1.84 -2.05 – -1.64 <0.001 <0.001
IL1B pg mL LLOD *
infusionno [1st]
-0.23 -0.83 – 0.38 0.465 0.465
IL1B pg mL LLOD *
infusionno [3rd]
-0.03 -0.24 – 0.17 0.741 0.741
Random Effects
σ2 41.14
τ00 patientno 0.00
τ00 Site_Location 7.57
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.588 / 0.652

54 MODEL 2: MADRS by IL2_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL2_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
##  98  54
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL2_pg_mL*infusionno")
Mixed model: MADRS by IL2_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.14 0.81 – 1.47 <0.001 <0.001
age -0.02 -0.12 – 0.09 0.756 0.756
sex [female] 0.03 -0.18 – 0.25 0.768 0.768
BMI 0.07 -0.03 – 0.17 0.187 0.187
IL2 pg mL 0.05 -0.12 – 0.22 0.535 0.535
infusionno [1st] -1.29 -1.53 – -1.04 <0.001 <0.001
infusionno [3rd] -1.93 -2.17 – -1.69 <0.001 <0.001
IL2 pg mL * infusionno
[1st]
0.02 -0.22 – 0.26 0.889 0.889
IL2 pg mL * infusionno
[3rd]
0.09 -0.15 – 0.32 0.463 0.463
Random Effects
σ2 38.85
τ00 patientno 0.00
τ00 Site_Location 5.16
ICC 0.12
N patientno 60
N Site_Location 4
Observations 152
Marginal R2 / Conditional R2 0.615 / 0.660

55 MODEL 2: MADRS by IL2_pg_mL_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL2_pg_mL_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL2_pg_mL_LLOD*infusionno")
Mixed model: MADRS by IL2_pg_mL_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.71 – 1.32 <0.001 <0.001
age 0.02 -0.07 – 0.11 0.660 0.660
sex [female] 0.16 -0.01 – 0.33 0.067 0.067
BMI 0.03 -0.05 – 0.12 0.481 0.481
IL2 pg mL LLOD 0.04 -0.10 – 0.18 0.537 0.537
infusionno [1st] -1.29 -1.49 – -1.10 <0.001 <0.001
infusionno [3rd] -1.86 -2.06 – -1.66 <0.001 <0.001
IL2 pg mL LLOD *
infusionno [1st]
0.02 -0.18 – 0.22 0.867 0.867
IL2 pg mL LLOD *
infusionno [3rd]
0.06 -0.13 – 0.26 0.526 0.526
Random Effects
σ2 40.19
τ00 patientno 0.00
τ00 Site_Location 6.42
ICC 0.14
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.602 / 0.657

56 MODEL 2: MADRS by IL4_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL4_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 146  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL4_pg_mL*infusionno")
Mixed model: MADRS by IL4_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.04 0.69 – 1.38 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.900 0.900
sex [female] 0.16 -0.01 – 0.33 0.072 0.072
BMI 0.02 -0.06 – 0.11 0.603 0.603
IL4 pg mL -0.04 -0.18 – 0.11 0.636 0.636
infusionno [1st] -1.28 -1.48 – -1.08 <0.001 <0.001
infusionno [3rd] -1.84 -2.05 – -1.64 <0.001 <0.001
IL4 pg mL * infusionno
[1st]
0.08 -0.11 – 0.27 0.414 0.414
IL4 pg mL * infusionno
[3rd]
0.10 -0.11 – 0.32 0.355 0.355
Random Effects
σ2 41.05
τ00 patientno 0.00
τ00 Site_Location 8.56
ICC 0.17
N patientno 75
N Site_Location 4
Observations 216
Marginal R2 / Conditional R2 0.583 / 0.655

57 MODEL 2: MADRS by IL4_pg_mL_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL4_pg_mL_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL4_pg_mL_LLOD*infusionno")
Mixed model: MADRS by IL4_pg_mL_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.36 <0.001 <0.001
age 0.01 -0.08 – 0.10 0.786 0.786
sex [female] 0.17 -0.01 – 0.34 0.059 0.059
BMI 0.02 -0.07 – 0.11 0.642 0.642
IL4 pg mL LLOD -0.04 -0.19 – 0.11 0.642 0.642
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL4 pg mL LLOD *
infusionno [1st]
0.10 -0.09 – 0.29 0.311 0.311
IL4 pg mL LLOD *
infusionno [3rd]
0.10 -0.12 – 0.32 0.361 0.361
Random Effects
σ2 41.17
τ00 patientno 0.00
τ00 Site_Location 8.04
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.586 / 0.654

58 MODEL 2: MADRS by IL6_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL6_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL6_pg_mL*infusionno")
Mixed model: MADRS by IL6_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.71 – 1.36 <0.001 <0.001
age 0.00 -0.09 – 0.09 0.994 0.994
sex [female] 0.16 -0.02 – 0.33 0.076 0.076
BMI 0.01 -0.09 – 0.10 0.906 0.906
IL6 pg mL 0.04 -0.12 – 0.19 0.631 0.631
infusionno [1st] -1.30 -1.50 – -1.10 <0.001 <0.001
infusionno [3rd] -1.84 -2.04 – -1.64 <0.001 <0.001
IL6 pg mL * infusionno
[1st]
0.06 -0.14 – 0.25 0.556 0.556
IL6 pg mL * infusionno
[3rd]
0.04 -0.19 – 0.27 0.720 0.720
Random Effects
σ2 40.32
τ00 patientno 0.00
τ00 Site_Location 7.79
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.659

59 MODEL 2: MADRS by IL8_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL8_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

##  85 148 
##  85 147
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL8_pg_mL*infusionno")
Mixed model: MADRS by IL8_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.70 – 1.34 <0.001 <0.001
age -0.00 -0.09 – 0.08 0.927 0.927
sex [female] 0.19 0.02 – 0.36 0.031 0.031
BMI 0.03 -0.05 – 0.12 0.457 0.457
IL8 pg mL -0.04 -0.16 – 0.08 0.495 0.495
infusionno [1st] -1.31 -1.50 – -1.11 <0.001 <0.001
infusionno [3rd] -1.84 -2.04 – -1.64 <0.001 <0.001
IL8 pg mL * infusionno
[1st]
0.21 0.01 – 0.40 0.039 0.039
IL8 pg mL * infusionno
[3rd]
0.14 -0.07 – 0.34 0.186 0.186
Random Effects
σ2 39.25
τ00 patientno 0.00
τ00 Site_Location 7.37
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.603 / 0.666

60 MODEL 2: MADRS by IL10_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL10_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL10_pg_mL*infusionno")
Mixed model: MADRS by IL10_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.33 <0.001 <0.001
age 0.02 -0.07 – 0.10 0.725 0.725
sex [female] 0.19 0.02 – 0.36 0.032 0.032
BMI 0.03 -0.06 – 0.11 0.563 0.563
IL10 pg mL -0.00 -0.13 – 0.13 0.993 0.993
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL10 pg mL * infusionno
[1st]
-0.06 -0.26 – 0.13 0.531 0.531
IL10 pg mL * infusionno
[3rd]
-0.09 -0.29 – 0.12 0.413 0.413
Random Effects
σ2 40.99
τ00 patientno 0.00
τ00 Site_Location 7.08
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.592 / 0.652

61 MODEL 2: MADRS by IL12p70_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL12p70_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 146  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL12p70_pg_mL*infusionno")
Mixed model: MADRS by IL12p70_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.04 0.70 – 1.38 <0.001 <0.001
age -0.00 -0.09 – 0.09 0.941 0.941
sex [female] 0.15 -0.02 – 0.33 0.089 0.089
BMI 0.03 -0.05 – 0.12 0.454 0.454
IL12p70 pg mL -0.06 -0.18 – 0.06 0.348 0.348
infusionno [1st] -1.28 -1.48 – -1.08 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL12p70 pg mL *
infusionno [1st]
0.05 -0.20 – 0.29 0.697 0.697
IL12p70 pg mL *
infusionno [3rd]
0.05 -0.13 – 0.23 0.563 0.563
Random Effects
σ2 41.03
τ00 patientno 0.00
τ00 Site_Location 8.24
ICC 0.17
N patientno 75
N Site_Location 4
Observations 216
Marginal R2 / Conditional R2 0.585 / 0.655

62 MODEL 2: MADRS by IL12p70_pg_mL_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL12p70_pg_mL_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL12p70_pg_mL_LLOD*infusionno")
Mixed model: MADRS by IL12p70_pg_mL_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.35 <0.001 <0.001
age 0.00 -0.08 – 0.09 0.918 0.918
sex [female] 0.17 -0.01 – 0.34 0.064 0.064
BMI 0.03 -0.06 – 0.12 0.486 0.486
IL12p70 pg mL LLOD -0.06 -0.18 – 0.07 0.365 0.365
infusionno [1st] -1.29 -1.50 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL12p70 pg mL LLOD *
infusionno [1st]
0.05 -0.19 – 0.30 0.676 0.676
IL12p70 pg mL LLOD *
infusionno [3rd]
0.05 -0.13 – 0.23 0.562 0.562
Random Effects
σ2 41.29
τ00 patientno 0.00
τ00 Site_Location 7.44
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.589 / 0.651

63 MODEL 2: MADRS by IL13_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL13_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 144  84
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL13_pg_mL*infusionno")
Mixed model: MADRS by IL13_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.37 <0.001 <0.001
age 0.00 -0.09 – 0.09 0.945 0.945
sex [female] 0.16 -0.02 – 0.34 0.075 0.075
BMI 0.03 -0.06 – 0.12 0.522 0.522
IL13 pg mL -0.07 -0.21 – 0.07 0.336 0.336
infusionno [1st] -1.26 -1.46 – -1.06 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL13 pg mL * infusionno
[1st]
0.06 -0.14 – 0.27 0.552 0.552
IL13 pg mL * infusionno
[3rd]
0.06 -0.13 – 0.26 0.540 0.540
Random Effects
σ2 40.64
τ00 patientno 0.00
τ00 Site_Location 8.30
ICC 0.17
N patientno 75
N Site_Location 4
Observations 214
Marginal R2 / Conditional R2 0.587 / 0.657

64 MODEL 2: MADRS by IL13_pg_mL_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IL13_pg_mL_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IL13_pg_mL_LLOD*infusionno")
Mixed model: MADRS by IL13_pg_mL_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.70 – 1.35 <0.001 <0.001
age 0.00 -0.08 – 0.09 0.921 0.921
sex [female] 0.17 -0.01 – 0.34 0.062 0.062
BMI 0.03 -0.06 – 0.12 0.489 0.489
IL13 pg mL LLOD -0.07 -0.21 – 0.07 0.350 0.350
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IL13 pg mL LLOD *
infusionno [1st]
0.07 -0.13 – 0.28 0.490 0.490
IL13 pg mL LLOD *
infusionno [3rd]
0.06 -0.14 – 0.26 0.545 0.545
Random Effects
σ2 41.29
τ00 patientno 0.00
τ00 Site_Location 7.41
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.589 / 0.651

65 MODEL 2: MADRS by TNFa_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+TNFa_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by TNFa_pg_mL*infusionno")
Mixed model: MADRS by TNFa_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.04 0.72 – 1.36 <0.001 <0.001
age 0.02 -0.06 – 0.11 0.613 0.613
sex [female] 0.14 -0.03 – 0.32 0.105 0.105
BMI 0.02 -0.06 – 0.11 0.568 0.568
TNFa pg mL -0.12 -0.26 – 0.03 0.130 0.130
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.86 -2.06 – -1.66 <0.001 <0.001
TNFa pg mL * infusionno
[1st]
0.04 -0.16 – 0.25 0.690 0.690
TNFa pg mL * infusionno
[3rd]
0.11 -0.09 – 0.31 0.299 0.299
Random Effects
σ2 40.21
τ00 patientno 0.00
τ00 Site_Location 7.22
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.596 / 0.658

66 MODEL 2: MADRS by IFNy_pg_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+IFNy_pg_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by IFNy_pg_mL*infusionno")
Mixed model: MADRS by IFNy_pg_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.32 <0.001 <0.001
age 0.01 -0.08 – 0.09 0.871 0.871
sex [female] 0.19 0.02 – 0.36 0.031 0.031
BMI 0.03 -0.06 – 0.11 0.511 0.511
IFNy pg mL 0.07 -0.05 – 0.20 0.249 0.249
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
IFNy pg mL * infusionno
[1st]
-0.14 -0.33 – 0.05 0.143 0.143
IFNy pg mL * infusionno
[3rd]
-0.03 -0.24 – 0.18 0.808 0.808
Random Effects
σ2 39.54
τ00 patientno 0.00
τ00 Site_Location 7.15
ICC 0.15
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.601 / 0.662

67 MODEL 2: MADRS by CRP_ng_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+CRP_ng_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

##  85 148 
##  85 147
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by CRP_ng_mL*infusionno")
Mixed model: MADRS by CRP_ng_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.71 – 1.34 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.778 0.778
sex [female] 0.17 -0.01 – 0.34 0.062 0.062
BMI 0.01 -0.08 – 0.10 0.842 0.842
CRP ng mL -0.02 -0.16 – 0.12 0.778 0.778
infusionno [1st] -1.29 -1.50 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.64 <0.001 <0.001
CRP ng mL * infusionno
[1st]
0.09 -0.10 – 0.28 0.367 0.367
CRP ng mL * infusionno
[3rd]
0.11 -0.11 – 0.32 0.334 0.334
Random Effects
σ2 40.90
τ00 patientno 0.00
τ00 Site_Location 6.92
ICC 0.14
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.594 / 0.653

68 MODEL 2: MADRS by NIC_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+NIC_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by NIC_nM*infusionno")
Mixed model: MADRS by NIC_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.35 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.801 0.801
sex [female] 0.17 -0.00 – 0.34 0.053 0.053
BMI 0.02 -0.06 – 0.11 0.576 0.576
NIC nM -0.03 -0.15 – 0.09 0.604 0.604
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
NIC nM * infusionno [1st] 0.10 -0.09 – 0.29 0.283 0.283
NIC nM * infusionno [3rd] 0.10 -0.11 – 0.32 0.337 0.337
Random Effects
σ2 40.49
τ00 patientno 0.00
τ00 Site_Location 7.62
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.657

69 MODEL 2: MADRS by NIC_nM_LLOD*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+NIC_nM_LLOD*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by NIC_nM_LLOD*infusionno")
Mixed model: MADRS by NIC_nM_LLOD*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.35 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.801 0.801
sex [female] 0.17 -0.00 – 0.34 0.053 0.053
BMI 0.02 -0.06 – 0.11 0.576 0.576
NIC nM LLOD -0.03 -0.15 – 0.09 0.604 0.604
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.65 <0.001 <0.001
NIC nM LLOD * infusionno
[1st]
0.10 -0.09 – 0.29 0.283 0.283
NIC nM LLOD * infusionno
[3rd]
0.10 -0.11 – 0.32 0.337 0.337
Random Effects
σ2 40.49
τ00 patientno 0.00
τ00 Site_Location 7.62
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.593 / 0.657

70 MODEL 2: MADRS by NTA_nM*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+NTA_nM*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by NTA_nM*infusionno")
Mixed model: MADRS by NTA_nM*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.03 0.70 – 1.37 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.770 0.770
sex [female] 0.18 0.01 – 0.35 0.043 0.043
BMI 0.02 -0.06 – 0.11 0.579 0.579
NTA nM -0.05 -0.18 – 0.08 0.420 0.420
infusionno [1st] -1.30 -1.50 – -1.10 <0.001 <0.001
infusionno [3rd] -1.85 -2.05 – -1.64 <0.001 <0.001
NTA nM * infusionno [1st] 0.05 -0.15 – 0.26 0.593 0.593
NTA nM * infusionno [3rd] 0.14 -0.06 – 0.34 0.181 0.181
Random Effects
σ2 40.69
τ00 patientno 0.00
τ00 Site_Location 8.20
ICC 0.17
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.587 / 0.657

71 MODEL 2: MADRS by SAA_ng_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+SAA_ng_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## [1] 85 13
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by SAA_ng_mL*infusionno")
Mixed model: MADRS by SAA_ng_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.02 0.71 – 1.33 <0.001 <0.001
age 0.01 -0.08 – 0.10 0.823 0.823
sex [female] 0.16 -0.02 – 0.34 0.084 0.084
BMI 0.01 -0.09 – 0.10 0.880 0.880
SAA ng mL 0.01 -0.14 – 0.16 0.867 0.867
infusionno [1st] -1.29 -1.49 – -1.09 <0.001 <0.001
infusionno [3rd] -1.83 -2.03 – -1.63 <0.001 <0.001
SAA ng mL * infusionno
[1st]
-0.01 -0.21 – 0.19 0.919 0.919
SAA ng mL * infusionno
[3rd]
0.12 -0.09 – 0.33 0.257 0.257
Random Effects
σ2 41.99
τ00 patientno 0.00
τ00 Site_Location 6.68
ICC 0.14
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.586 / 0.643

72 MODEL 2: MADRS by VCAM_1_ng_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+VCAM_1_ng_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by VCAM_1_ng_mL*infusionno")
Mixed model: MADRS by VCAM_1_ng_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 1.01 0.69 – 1.34 <0.001 <0.001
age 0.01 -0.07 – 0.10 0.787 0.787
sex [female] 0.19 0.01 – 0.36 0.039 0.039
BMI 0.03 -0.06 – 0.11 0.537 0.537
VCAM 1 ng mL -0.01 -0.16 – 0.14 0.899 0.899
infusionno [1st] -1.29 -1.49 – -1.09 0.005 <0.001
infusionno [3rd] -1.85 -2.05 – -1.64 <0.001 <0.001
VCAM 1 ng mL * infusionno
[1st]
0.03 -0.18 – 0.23 0.811 0.811
VCAM 1 ng mL * infusionno
[3rd]
0.06 -0.14 – 0.26 0.527 0.527
Random Effects
σ2 41.11
τ00 patientno 0.00
τ00 Site_Location 7.55
ICC 0.16
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.588 / 0.652

73 MODEL 2: MADRS by ICAM_1_ng_mL*infusionno

rlmer<-robustlmm::rlmer(MADRS_Score~age+sex+BMI+ICAM_1_ng_mL*infusionno+(1|patientno)+(1|Site_Location), data=Biok_vert_df)
car::qqPlot(residuals(rlmer))

## 148  85 
## 147  85
sjPlot::tab_model(rlmer, show.std = TRUE, show.est = FALSE, title="Mixed model: MADRS by ICAM_1_ng_mL*infusionno")
Mixed model: MADRS by ICAM_1_ng_mL*infusionno
  MADRS Score
Predictors std. Beta standardized CI p std. p
(Intercept) 0.98 0.68 – 1.28 <0.001 <0.001
age 0.01 -0.08 – 0.10 0.819 0.819
sex [female] 0.20 0.03 – 0.37 0.023 0.023
BMI 0.01 -0.07 – 0.10 0.776 0.776
ICAM 1 ng mL 0.06 -0.08 – 0.21 0.374 0.374
infusionno [1st] -1.28 -1.48 – -1.08 0.001 <0.001
infusionno [3rd] -1.84 -2.04 – -1.64 <0.001 <0.001
ICAM 1 ng mL * infusionno
[1st]
0.03 -0.17 – 0.22 0.802 0.802
ICAM 1 ng mL * infusionno
[3rd]
0.03 -0.17 – 0.23 0.750 0.750
Random Effects
σ2 40.16
τ00 patientno 0.00
τ00 Site_Location 5.99
ICC 0.13
N patientno 75
N Site_Location 4
Observations 217
Marginal R2 / Conditional R2 0.603 / 0.654

74 MODEL 3: MADRS_Score_3rd by TRP_nM_BL

Biok_wide_new$TRP_nM_BL<-exp(Biok_wide_new$TRP_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+TRP_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

##  4 25 
##  2 23
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by TRP_nM_BL")
Multiple linear model: MADRS_Score_3rd by TRP_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.27 -0.67 – 0.12 0.090
age 0.08 -0.17 – 0.32 0.536
sex [female] 0.43 -0.08 – 0.93 0.095
BMI 0.04 -0.20 – 0.28 0.727
MADRS Score BL 0.23 -0.00 – 0.47 0.052
TRP nM BL 0.27 0.03 – 0.51 0.030
Observations 70
R2 / R2 adjusted 0.152 / 0.086

75 MODEL 3: MADRS_Score_3rd by five_HT_nM_BL

Biok_wide_new$five_HT_nM_BL<-exp(Biok_wide_new$five_HT_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+five_HT_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by five_HT_nM_BL")
Multiple linear model: MADRS_Score_3rd by five_HT_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.13 -0.52 – 0.25 0.262
age 0.10 -0.14 – 0.35 0.404
sex [female] 0.21 -0.27 – 0.69 0.390
BMI 0.04 -0.20 – 0.28 0.718
MADRS Score BL 0.28 0.05 – 0.52 0.020
five HT nM BL 0.28 0.05 – 0.52 0.020
Observations 70
R2 / R2 adjusted 0.161 / 0.095

76 MODEL 3: MADRS_Score_3rd by KYN_nM_BL

Biok_wide_new$KYN_nM_BL<-exp(Biok_wide_new$KYN_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+KYN_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by KYN_nM_BL")
Multiple linear model: MADRS_Score_3rd by KYN_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.23 -0.63 – 0.17 0.356
age -0.01 -0.28 – 0.25 0.916
sex [female] 0.36 -0.15 – 0.86 0.165
BMI -0.01 -0.25 – 0.24 0.965
MADRS Score BL 0.25 0.01 – 0.49 0.040
KYN nM BL 0.19 -0.08 – 0.45 0.163
Observations 70
R2 / R2 adjusted 0.114 / 0.045

77 MODEL 3: MADRS_Score_3rd by three_HK_nM_BL

Biok_wide_new$three_HK_nM_BL<-exp(Biok_wide_new$three_HK_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+three_HK_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by three_HK_nM_BL")
Multiple linear model: MADRS_Score_3rd by three_HK_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.58 – 0.22 0.625
age 0.05 -0.21 – 0.30 0.702
sex [female] 0.28 -0.22 – 0.78 0.272
BMI 0.01 -0.24 – 0.27 0.912
MADRS Score BL 0.26 0.01 – 0.50 0.043
three HK nM BL 0.02 -0.23 – 0.26 0.895
Observations 70
R2 / R2 adjusted 0.087 / 0.015

78 MODEL 3: MADRS_Score_3rd by KYNA_nM_BL

Biok_wide_new$KYNA_nM_BL<-exp(Biok_wide_new$KYNA_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+KYNA_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by KYNA_nM_BL")
Multiple linear model: MADRS_Score_3rd by KYNA_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.58 – 0.24 0.697
age 0.05 -0.20 – 0.31 0.682
sex [female] 0.27 -0.25 – 0.79 0.303
BMI 0.02 -0.23 – 0.27 0.893
MADRS Score BL 0.25 0.00 – 0.50 0.050
KYNA nM BL -0.02 -0.28 – 0.25 0.907
Observations 70
R2 / R2 adjusted 0.087 / 0.015

79 MODEL 3: MADRS_Score_3rd by PIC_nM_BL

Biok_wide_new$PIC_nM_BL<-exp(Biok_wide_new$PIC_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+PIC_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by PIC_nM_BL")
Multiple linear model: MADRS_Score_3rd by PIC_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.58 – 0.22 0.697
age 0.06 -0.20 – 0.31 0.656
sex [female] 0.28 -0.22 – 0.78 0.268
BMI 0.01 -0.24 – 0.26 0.922
MADRS Score BL 0.25 0.00 – 0.49 0.047
PIC nM BL -0.05 -0.29 – 0.19 0.687
Observations 70
R2 / R2 adjusted 0.089 / 0.018

80 MODEL 3: MADRS_Score_3rd by Quin_nM_BL

Biok_wide_new$Quin_nM_BL<-exp(Biok_wide_new$Quin_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+Quin_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by Quin_nM_BL")
Multiple linear model: MADRS_Score_3rd by Quin_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.12 -0.53 – 0.29 0.904
age 0.08 -0.17 – 0.34 0.520
sex [female] 0.19 -0.33 – 0.71 0.465
BMI 0.03 -0.22 – 0.28 0.802
MADRS Score BL 0.26 0.02 – 0.50 0.037
Quin nM BL -0.14 -0.40 – 0.12 0.282
Observations 70
R2 / R2 adjusted 0.103 / 0.033

81 MODEL 3: MADRS_Score_3rd by AA_nM_BL

Biok_wide_new$AA_nM_BL<-exp(Biok_wide_new$AA_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+AA_nM_BL, data=Biok_wide_new)
summary(lm_TRP_BL)
## 
## Call:
## lm(formula = MADRS_Score_3rd ~ age + sex + BMI + MADRS_Score_BL + 
##     AA_nM_BL, data = Biok_wide_new)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.439  -5.453  -1.580   4.026  16.156 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    -2.70742    6.54162  -0.414   0.6803  
## age             0.05199    0.06785   0.766   0.4464  
## sexfemale       2.24468    1.73579   1.293   0.2006  
## BMI             0.12135    0.15840   0.766   0.4464  
## MADRS_Score_BL  0.26030    0.14916   1.745   0.0858 .
## AA_nM_BL       -0.49032    0.22659  -2.164   0.0342 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.854 on 64 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1488, Adjusted R-squared:  0.08231 
## F-statistic: 2.238 on 5 and 64 DF,  p-value: 0.06112
lm_TRP_BL<-lm(MADRS_Score_3rd~MADRS_Score_BL+AA_nM_BL, data=Biok_wide_new)
summary(lm_TRP_BL)
## 
## Call:
## lm(formula = MADRS_Score_3rd ~ MADRS_Score_BL + AA_nM_BL, data = Biok_wide_new)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.360  -5.386  -1.701   3.661  17.529 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      3.5313     4.5776   0.771   0.4432  
## MADRS_Score_BL   0.2712     0.1459   1.859   0.0674 .
## AA_nM_BL        -0.3832     0.2100  -1.825   0.0724 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.845 on 67 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1113, Adjusted R-squared:  0.08482 
## F-statistic: 4.198 on 2 and 67 DF,  p-value: 0.01916
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by AA_nM_BL")
Multiple linear model: MADRS_Score_3rd by AA_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) 0.00 -0.23 – 0.23 0.443
MADRS Score BL 0.22 -0.02 – 0.45 0.067
AA nM BL -0.21 -0.45 – 0.02 0.072
Observations 70
R2 / R2 adjusted 0.111 / 0.085

82 MODEL 3: MADRS_Score_3rd by KYN_TRP_ratio_BL

Biok_wide_new$KYN_TRP_ratio_BL<-exp(Biok_wide_new$KYN_TRP_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+KYN_TRP_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by KYN_TRP_ratio_BL")
Multiple linear model: MADRS_Score_3rd by KYN_TRP_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.58 – 0.22 0.683
age 0.06 -0.21 – 0.33 0.670
sex [female] 0.28 -0.22 – 0.78 0.271
BMI 0.02 -0.23 – 0.28 0.867
MADRS Score BL 0.25 0.00 – 0.50 0.046
KYN TRP ratio BL -0.02 -0.30 – 0.25 0.872
Observations 70
R2 / R2 adjusted 0.087 / 0.016

83 MODEL 3: MADRS_Score_3rd by KYN_SER_ratio_BL

Biok_wide_new$KYN_SER_ratio_BL<-exp(Biok_wide_new$KYN_SER_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+KYN_SER_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by KYN_SER_ratio_BL")
Multiple linear model: MADRS_Score_3rd by KYN_SER_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.60 – 0.20 0.477
age 0.07 -0.18 – 0.32 0.574
sex [female] 0.31 -0.19 – 0.81 0.221
BMI 0.02 -0.23 – 0.26 0.895
MADRS Score BL 0.30 0.04 – 0.55 0.022
KYN SER ratio BL -0.15 -0.40 – 0.10 0.239
Observations 70
R2 / R2 adjusted 0.106 / 0.036

84 MODEL 3: MADRS_Score_3rd by QUIN_PIC_ratio_BL

Biok_wide_new$QUIN_PIC_ratio_BL<-exp(Biok_wide_new$QUIN_PIC_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+QUIN_PIC_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by QUIN_PIC_ratio_BL")
Multiple linear model: MADRS_Score_3rd by QUIN_PIC_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.59 – 0.20 0.579
age 0.07 -0.19 – 0.32 0.590
sex [female] 0.30 -0.19 – 0.80 0.228
BMI 0.05 -0.21 – 0.30 0.709
MADRS Score BL 0.28 0.03 – 0.52 0.029
QUIN PIC ratio BL -0.13 -0.38 – 0.12 0.300
Observations 70
R2 / R2 adjusted 0.102 / 0.032

85 MODEL 3: MADRS_Score_3rd by QUIN_KYNA_ratio_BL

Biok_wide_new$QUIN_KYNA_ratio_BL<-exp(Biok_wide_new$QUIN_KYNA_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+QUIN_KYNA_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by QUIN_KYNA_ratio_BL")
Multiple linear model: MADRS_Score_3rd by QUIN_KYNA_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.59 – 0.21 0.660
age 0.05 -0.20 – 0.31 0.680
sex [female] 0.30 -0.20 – 0.80 0.240
BMI 0.03 -0.22 – 0.27 0.839
MADRS Score BL 0.27 0.02 – 0.53 0.034
QUIN KYNA ratio BL -0.08 -0.33 – 0.17 0.536
Observations 70
R2 / R2 adjusted 0.092 / 0.021

86 MODEL 3: MADRS_Score_3rd by threeHK_KYN_ratio_BL

Biok_wide_new$threeHK_KYN_ratio_BL<-exp(Biok_wide_new$threeHK_KYN_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+threeHK_KYN_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by threeHK_KYN_ratio_BL")
Multiple linear model: MADRS_Score_3rd by threeHK_KYN_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.60 – 0.20 0.934
age 0.03 -0.22 – 0.29 0.788
sex [female] 0.31 -0.19 – 0.81 0.226
BMI 0.04 -0.21 – 0.29 0.776
MADRS Score BL 0.23 -0.01 – 0.48 0.062
threeHK KYN ratio BL -0.11 -0.36 – 0.13 0.360
Observations 70
R2 / R2 adjusted 0.098 / 0.028

87 MODEL 3: MADRS_Score_3rd by threeHK_KYNA_ratio_BL

Biok_wide_new$threeHK_KYNA_ratio_BL<-exp(Biok_wide_new$threeHK_KYNA_ratio_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+threeHK_KYNA_ratio_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

##  2 25 
##  1 23
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by threeHK_KYNA_ratio_BL")
Multiple linear model: MADRS_Score_3rd by threeHK_KYNA_ratio_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.14 -0.54 – 0.27 0.629
age 0.05 -0.20 – 0.30 0.680
sex [female] 0.21 -0.31 – 0.73 0.416
BMI -0.01 -0.26 – 0.24 0.943
MADRS Score BL 0.24 -0.00 – 0.49 0.051
threeHK KYNA ratio BL 0.12 -0.14 – 0.37 0.362
Observations 70
R2 / R2 adjusted 0.098 / 0.028

88 MODEL 3: MADRS_Score_3rd by IL1B_pg_mL_BL

Biok_wide_new$IL1B_pg_mL_BL<-exp(Biok_wide_new$IL1B_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL1B_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 19 63 
##  2 13
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL1B_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL1B_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) 0.42 -0.49 – 1.33 0.809
age -0.21 -0.94 – 0.53 0.548
sex [female] -0.83 -2.30 – 0.64 0.235
BMI -0.04 -0.77 – 0.69 0.898
MADRS Score BL 0.50 -0.44 – 1.43 0.263
IL1B pg mL BL 0.43 -0.20 – 1.06 0.158
Observations 16
R2 / R2 adjusted 0.386 / 0.079

89 MODEL 3: MADRS_Score_3rd by IL1B_pg_mL_LLOD_BL

Biok_wide_new$IL1B_pg_mL_LLOD_BL<-exp(Biok_wide_new$IL1B_pg_mL_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL1B_pg_mL_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL1B_pg_mL_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by IL1B_pg_mL_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.568
age 0.05 -0.20 – 0.30 0.692
sex [female] 0.27 -0.24 – 0.77 0.292
BMI 0.02 -0.23 – 0.27 0.880
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL1B pg mL LLOD BL 0.05 -0.19 – 0.29 0.698
Observations 70
R2 / R2 adjusted 0.089 / 0.018

90 MODEL 3: MADRS_Score_3rd by IL2_pg_mL_BL

Biok_wide_new$IL2_pg_mL_BL<-exp(Biok_wide_new$IL2_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL2_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

##  2 22 
##  1 13
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL2_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL2_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) 0.14 -0.37 – 0.65 0.895
age 0.19 -0.13 – 0.51 0.242
sex [female] -0.21 -0.85 – 0.42 0.499
BMI -0.10 -0.41 – 0.21 0.505
MADRS Score BL 0.33 0.02 – 0.64 0.036
IL2 pg mL BL 0.27 -0.04 – 0.57 0.087
Observations 44
R2 / R2 adjusted 0.195 / 0.089

91 MODEL 3: MADRS_Score_3rd by IL2_pg_mL_LLOD_BL

Biok_wide_new$IL2_pg_mL_LLOD_BL<-exp(Biok_wide_new$IL2_pg_mL_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL2_pg_mL_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL2_pg_mL_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by IL2_pg_mL_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.56 – 0.23 0.593
age 0.07 -0.19 – 0.32 0.603
sex [female] 0.26 -0.24 – 0.75 0.305
BMI 0.03 -0.22 – 0.27 0.819
MADRS Score BL 0.24 -0.00 – 0.48 0.054
IL2 pg mL LLOD BL 0.16 -0.09 – 0.40 0.201
Observations 70
R2 / R2 adjusted 0.110 / 0.040

92 MODEL 3: MADRS_Score_3rd by IL4_pg_mL_BL

Biok_wide_new$IL4_pg_mL_BL<-exp(Biok_wide_new$IL4_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL4_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL4_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL4_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.515
age 0.07 -0.19 – 0.33 0.606
sex [female] 0.27 -0.24 – 0.77 0.293
BMI 0.00 -0.25 – 0.26 0.969
MADRS Score BL 0.27 0.02 – 0.52 0.037
IL4 pg mL BL 0.06 -0.19 – 0.32 0.622
Observations 70
R2 / R2 adjusted 0.090 / 0.019

93 MODEL 3: MADRS_Score_3rd by IL4_pg_mL_LLOD_BL

Biok_wide_new$IL4_pg_mL_LLOD_BL<-exp(Biok_wide_new$IL4_pg_mL_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL4_pg_mL_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL4_pg_mL_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by IL4_pg_mL_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.515
age 0.07 -0.19 – 0.33 0.606
sex [female] 0.27 -0.24 – 0.77 0.293
BMI 0.00 -0.25 – 0.26 0.969
MADRS Score BL 0.27 0.02 – 0.52 0.037
IL4 pg mL LLOD BL 0.06 -0.19 – 0.32 0.622
Observations 70
R2 / R2 adjusted 0.090 / 0.019

94 MODEL 3: MADRS_Score_3rd by IL6_pg_mL_BL

Biok_wide_new$IL6_pg_mL_BL<-exp(Biok_wide_new$IL6_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL6_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL6_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL6_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.61 – 0.20 0.553
age 0.06 -0.19 – 0.32 0.624
sex [female] 0.31 -0.20 – 0.83 0.226
BMI 0.05 -0.22 – 0.32 0.716
MADRS Score BL 0.26 0.02 – 0.51 0.036
IL6 pg mL BL -0.08 -0.36 – 0.19 0.539
Observations 70
R2 / R2 adjusted 0.092 / 0.021

95 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

96 MODEL 3: MADRS_Score_3rd by IL10_pg_mL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

97 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

98 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

99 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

100 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

101 MODEL 3: MADRS_Score_3rd by IL8_pg_mL_BL

Biok_wide_new$IL8_pg_mL_BL<-exp(Biok_wide_new$IL8_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL8_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL8_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.18 -0.59 – 0.22 0.593
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.29 -0.22 – 0.79 0.261
BMI 0.02 -0.23 – 0.27 0.885
MADRS Score BL 0.26 0.01 – 0.50 0.041
IL8 pg mL BL 0.03 -0.21 – 0.28 0.782
Observations 70
R2 / R2 adjusted 0.088 / 0.016

102 MODEL 3: MADRS_Score_3rd by IL10_pg_mL_BL

Biok_wide_new$IL10_pg_mL_BL<-exp(Biok_wide_new$IL10_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL10_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL10_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL10_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.21 -0.60 – 0.19 0.634
age 0.07 -0.18 – 0.32 0.590
sex [female] 0.32 -0.17 – 0.82 0.200
BMI 0.01 -0.23 – 0.26 0.914
MADRS Score BL 0.25 0.01 – 0.49 0.043
IL10 pg mL BL -0.18 -0.42 – 0.06 0.137
Observations 70
R2 / R2 adjusted 0.118 / 0.049

103 MODEL 3: MADRS_Score_3rd by IL12p70_pg_mL_BL

Biok_wide_new$IL12p70_pg_mL_BL<-exp(Biok_wide_new$IL12p70_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL12p70_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL12p70_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL12p70_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.59 – 0.21 0.599
age 0.07 -0.19 – 0.33 0.612
sex [female] 0.30 -0.21 – 0.81 0.243
BMI 0.00 -0.25 – 0.26 0.972
MADRS Score BL 0.26 0.01 – 0.51 0.038
IL12p70 pg mL BL 0.07 -0.19 – 0.32 0.604
Observations 70
R2 / R2 adjusted 0.090 / 0.019

104 MODEL 3: MADRS_Score_3rd by IL12p70_pg_mL_LLOD_BL

Biok_wide_new$IL12p70_pg_mL_LLOD_BL<-exp(Biok_wide_new$IL12p70_pg_mL_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL12p70_pg_mL_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL12p70_pg_mL_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by IL12p70_pg_mL_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.59 – 0.21 0.599
age 0.07 -0.19 – 0.33 0.612
sex [female] 0.30 -0.21 – 0.81 0.243
BMI 0.00 -0.25 – 0.26 0.972
MADRS Score BL 0.26 0.01 – 0.51 0.038
IL12p70 pg mL LLOD BL 0.07 -0.19 – 0.32 0.604
Observations 70
R2 / R2 adjusted 0.090 / 0.019

105 MODEL 3: MADRS_Score_3rd by IL13_pg_mL_BL

Biok_wide_new$IL13_pg_mL_BL<-exp(Biok_wide_new$IL13_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL13_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL13_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IL13_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.59 – 0.24 0.645
age 0.06 -0.20 – 0.33 0.627
sex [female] 0.27 -0.25 – 0.78 0.304
BMI 0.00 -0.25 – 0.26 0.978
MADRS Score BL 0.26 0.01 – 0.51 0.044
IL13 pg mL BL 0.06 -0.20 – 0.31 0.650
Observations 69
R2 / R2 adjusted 0.082 / 0.009

106 MODEL 3: MADRS_Score_3rd by IL13_pg_mL_LLOD_BL

Biok_wide_new$IL13_pg_mL_LLOD_BL<-exp(Biok_wide_new$IL13_pg_mL_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IL13_pg_mL_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IL13_pg_mL_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by IL13_pg_mL_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.59 – 0.21 0.585
age 0.07 -0.19 – 0.33 0.607
sex [female] 0.30 -0.21 – 0.80 0.244
BMI 0.00 -0.25 – 0.26 0.976
MADRS Score BL 0.26 0.02 – 0.51 0.038
IL13 pg mL LLOD BL 0.07 -0.19 – 0.32 0.605
Observations 70
R2 / R2 adjusted 0.090 / 0.019

107 MODEL 3: MADRS_Score_3rd by TNFa_pg_mL_BL

Biok_wide_new$TNFa_pg_mL_BL<-exp(Biok_wide_new$TNFa_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+TNFa_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by TNFa_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by TNFa_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.19 -0.59 – 0.22 0.588
age 0.05 -0.21 – 0.30 0.714
sex [female] 0.29 -0.22 – 0.81 0.259
BMI 0.02 -0.23 – 0.26 0.898
MADRS Score BL 0.26 0.01 – 0.51 0.042
TNFa pg mL BL 0.03 -0.22 – 0.29 0.793
Observations 70
R2 / R2 adjusted 0.088 / 0.016

108 MODEL 3: MADRS_Score_3rd by IFNy_pg_mL_BL

Biok_wide_new$IFNy_pg_mL_BL<-exp(Biok_wide_new$IFNy_pg_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+IFNy_pg_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by IFNy_pg_mL_BL")
Multiple linear model: MADRS_Score_3rd by IFNy_pg_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.699
age 0.06 -0.20 – 0.31 0.657
sex [female] 0.27 -0.23 – 0.76 0.292
BMI -0.00 -0.25 – 0.25 0.997
MADRS Score BL 0.28 0.03 – 0.53 0.029
IFNy pg mL BL -0.11 -0.36 – 0.13 0.368
Observations 70
R2 / R2 adjusted 0.098 / 0.028

109 MODEL 3: MADRS_Score_3rd by CRP_ng_mL_BL

Biok_wide_new$CRP_ng_mL_BL<-exp(Biok_wide_new$CRP_ng_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+CRP_ng_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by CRP_ng_mL_BL")
Multiple linear model: MADRS_Score_3rd by CRP_ng_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.16 -0.56 – 0.24 0.797
age 0.06 -0.20 – 0.31 0.660
sex [female] 0.25 -0.25 – 0.75 0.321
BMI -0.03 -0.30 – 0.23 0.805
MADRS Score BL 0.25 0.01 – 0.49 0.045
CRP ng mL BL 0.13 -0.13 – 0.38 0.335
Observations 70
R2 / R2 adjusted 0.100 / 0.029

110 MODEL 3: MADRS_Score_3rd by NIC_nM_BL

Biok_wide_new$NIC_nM_BL<-exp(Biok_wide_new$NIC_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+NIC_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by NIC_nM_BL")
Multiple linear model: MADRS_Score_3rd by NIC_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.619
age 0.05 -0.20 – 0.30 0.685
sex [female] 0.26 -0.24 – 0.76 0.301
BMI 0.01 -0.23 – 0.26 0.915
MADRS Score BL 0.26 0.02 – 0.51 0.038
NIC nM BL 0.07 -0.17 – 0.31 0.568
Observations 70
R2 / R2 adjusted 0.091 / 0.020

111 MODEL 3: MADRS_Score_3rd by NIC_nM_LLOD_BL

Biok_wide_new$NIC_nM_LLOD_BL<-exp(Biok_wide_new$NIC_nM_LLOD_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+NIC_nM_LLOD_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by NIC_nM_LLOD_BL")
Multiple linear model: MADRS_Score_3rd by NIC_nM_LLOD_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.23 0.619
age 0.05 -0.20 – 0.30 0.685
sex [female] 0.26 -0.24 – 0.76 0.301
BMI 0.01 -0.23 – 0.26 0.915
MADRS Score BL 0.26 0.02 – 0.51 0.038
NIC nM LLOD BL 0.07 -0.17 – 0.31 0.568
Observations 70
R2 / R2 adjusted 0.091 / 0.020

112 MODEL 3: MADRS_Score_3rd by NTA_nM_BL

Biok_wide_new$NTA_nM_BL<-exp(Biok_wide_new$NTA_nM_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+NTA_nM_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by NTA_nM_BL")
Multiple linear model: MADRS_Score_3rd by NTA_nM_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.20 -0.60 – 0.21 0.472
age 0.07 -0.19 – 0.32 0.612
sex [female] 0.30 -0.20 – 0.81 0.234
BMI 0.02 -0.22 – 0.27 0.846
MADRS Score BL 0.26 0.02 – 0.51 0.037
NTA nM BL 0.08 -0.16 – 0.33 0.500
Observations 70
R2 / R2 adjusted 0.093 / 0.022

113 MODEL 3: MADRS_Score_3rd by SAA_ng_mL_BL

Biok_wide_new$SAA_ng_mL_BL<-exp(Biok_wide_new$SAA_ng_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+SAA_ng_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by SAA_ng_mL_BL")
Multiple linear model: MADRS_Score_3rd by SAA_ng_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.16 -0.57 – 0.24 0.722
age 0.05 -0.21 – 0.30 0.708
sex [female] 0.25 -0.26 – 0.76 0.333
BMI -0.01 -0.28 – 0.26 0.938
MADRS Score BL 0.25 0.00 – 0.49 0.048
SAA ng mL BL 0.07 -0.20 – 0.34 0.616
Observations 70
R2 / R2 adjusted 0.090 / 0.019

114 MODEL 3: MADRS_Score_3rd by VCAM_1_ng_mL_BL

Biok_wide_new$VCAM_1_ng_mL_BL<-exp(Biok_wide_new$VCAM_1_ng_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+VCAM_1_ng_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by VCAM_1_ng_mL_BL")
Multiple linear model: MADRS_Score_3rd by VCAM_1_ng_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.17 -0.57 – 0.24 0.869
age 0.04 -0.21 – 0.30 0.738
sex [female] 0.26 -0.25 – 0.77 0.312
BMI 0.02 -0.23 – 0.27 0.882
MADRS Score BL 0.25 -0.00 – 0.49 0.052
VCAM 1 ng mL BL -0.04 -0.29 – 0.21 0.763
Observations 70
R2 / R2 adjusted 0.088 / 0.017

115 MODEL 3: MADRS_Score_3rd by ICAM_1_ng_mL_BL

Biok_wide_new$ICAM_1_ng_mL_BL<-exp(Biok_wide_new$ICAM_1_ng_mL_log_BL)
lm_TRP_BL<-lm(MADRS_Score_3rd~age+sex+BMI+MADRS_Score_BL+ICAM_1_ng_mL_BL, data=Biok_wide_new)
car::qqPlot(residuals(lm_TRP_BL))

## 2 4 
## 1 2
sjPlot::tab_model(lm_TRP_BL, show.std = TRUE, show.est = FALSE, title="Multiple linear model: MADRS_Score_3rd by ICAM_1_ng_mL_BL")
Multiple linear model: MADRS_Score_3rd by ICAM_1_ng_mL_BL
  MADRS Score 3 rd
Predictors std. Beta standardized CI p
(Intercept) -0.21 -0.61 – 0.19 0.440
age 0.04 -0.21 – 0.29 0.738
sex [female] 0.32 -0.18 – 0.82 0.208
BMI 0.01 -0.23 – 0.26 0.912
MADRS Score BL 0.23 -0.02 – 0.47 0.074
ICAM 1 ng mL BL 0.13 -0.12 – 0.37 0.307
Observations 70
R2 / R2 adjusted 0.101 / 0.031