Kaitlin Kavlie, PSYC-541 Assignment 3: Google Trends Analysis
- I created a graph of searches on Google of the term ‘psychologist’ over time. I used the first code shown below to create a data set of Google searches for ‘psychologist’ over time.
psych <- trendy("psychologist")
Then, I used the code below to create a labeled line graph of the data set created above.
psych %>%
get_interest() %>%
ggplot(aes(x = date, y = hits)) +
geom_line() +
theme_minimal() +
labs(title = "Google searches for 'psychologist' over time")

As shown on the figure created above, Google searches for ‘psychologist’ were at the highest around the year 2020.
- I created a graph of monthly search averages of the term ‘psychologist’. Using the first code below I created a data table of average searches per month for ‘psychologist’.
psych %>%
get_interest() %>%
mutate(month = month(date)) %>% # Create a new variable called month
group_by(month) %>% # Combine the months across different weeks and years
summarize(hits_per_month = mean(hits)) %>% # Get average number of searches per month
datatable(options = list(pageLength = 12)) %>%
formatRound(2, 2)
NA
Then, using the code below I created a line graph of the same data shown on the table above.
psych %>%
get_interest() %>%
mutate(month = month(date)) %>% # Create a new variable called month
group_by(month) %>% # Combine months across weeks and years
summarize(hits_per_month = mean(hits)) %>% # Average number of searches for each month
ggplot(aes(x = month, y = hits_per_month)) + # graph it
geom_line() +
scale_x_discrete(limits = c(1:12)) +
theme_minimal() +
labs(title = "Google searches for 'psychologist' per month on average")
Warning: Continuous limits supplied to discrete scale.
Did you mean `limits = factor(...)` or `scale_*_continuous()`?

As shown on the figure created above, searches for ‘psychologist’ are, on average, the highest in September and the lowest in December.
- I created a datatable of searches for the term ‘psychologist’ organized by DMA, using the single code shown below.
psych %>%
get_interest_dma() %>%
datatable()
The table created above shows the top 10 cities and areas that searched the most for the term ‘psychologist’.
- I created a line graph comparing Google searches in the United States and Canada for ‘psychologist’, on a monthly basis. I used the first code shown below to create a data set with information on searches for the term in the US and Canada for a time period of 5 years.
psych_countries <- trendy("psychologist", geo = c("US", "CA"), from = "2015-01-01", to = "2020-01-01")
Then I used the code below to create a line graph of the new data set, divided into monthly sections.
psych_countries %>%
get_interest() %>%
mutate(month = month(date)) %>%
group_by(month, geo) %>%
summarize(hits_per_month = mean(hits)) %>%
ggplot(aes(x = month, y = hits_per_month, color = geo)) +
geom_line() +
scale_x_discrete(limits = c(1:12)) +
theme_minimal() +
labs(title = "Internet searches for 'psychologist' over time, by country")
`summarise()` has grouped output by 'month'. You can override using the `.groups` argument.
Warning: Continuous limits supplied to discrete scale.
Did you mean `limits = factor(...)` or `scale_*_continuous()`?

As shown on the figure created above, the term ‘psychologist’ generally has similar search patterns on Google in the United States and Canada.
- I compared searches for the term ‘psychologist’ to ‘psychiatrist’ over time, and then created a line graph. Using the first code below I created a data set with data for searches of both terms in the United States.
psychologist_psychiatrist <- trendy(c("psychologist", "psychiatrist"), geo = "US")
Then, using the code below I created a line graph of the data set uploaded above.
psychologist_psychiatrist %>%
get_interest() %>%
ggplot(aes(x = date, y = hits, color = keyword)) +
geom_line() +
theme_minimal() +
labs(title = "Internet Searches for 'psychiatrist' & 'psychologist' over time")

As shown on the figure created above, the term ‘psychologist’ was typically more searched for than ‘psychiatrist’ over time on Google.
- I compared searches for ‘psychologist’ to ‘psychiatrist’ over time, specifically in Google Images. Using the first code below, I created a data set for searches of both of the terms in Google Images.
psychologist_psychiatrist_images <- trendy(c("psychologist", "psychiatrist"), geo = "US", gprop = "images")
Then, using the code below I created a line graph of the data set created above.
psychologist_psychiatrist_images %>%
get_interest() %>%
ggplot(aes(x = date, y = hits, color = keyword)) +
geom_line() +
theme_minimal() +
labs(title = "Searches in Google Images for 'psychiatrist' & 'psychologist' over time")

As shown on the figure created above, the term ‘psychologist’ was generally more searched for than ‘psychiatrist’, over time on Google Images.
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpLYWl0bGluIEthdmxpZSwgUFNZQy01NDENCkFzc2lnbm1lbnQgMzogR29vZ2xlIFRyZW5kcyBBbmFseXNpcw0KDQoNCg0KDQoxLiBJIGNyZWF0ZWQgYSBncmFwaCBvZiBzZWFyY2hlcyBvbiBHb29nbGUgb2YgdGhlIHRlcm0gJ3BzeWNob2xvZ2lzdCcgb3ZlciB0aW1lLiBJIHVzZWQgdGhlIGZpcnN0IGNvZGUgc2hvd24gYmVsb3cgdG8gY3JlYXRlIGEgZGF0YSBzZXQgb2YgR29vZ2xlIHNlYXJjaGVzIGZvciAncHN5Y2hvbG9naXN0JyBvdmVyIHRpbWUuDQoNCmBgYHtyfQ0KcHN5Y2ggPC0gdHJlbmR5KCJwc3ljaG9sb2dpc3QiKQ0KYGBgDQoNCg0KVGhlbiwgSSB1c2VkIHRoZSBjb2RlIGJlbG93IHRvIGNyZWF0ZSBhIGxhYmVsZWQgbGluZSBncmFwaCBvZiB0aGUgZGF0YSBzZXQgY3JlYXRlZCBhYm92ZS4NCg0KYGBge3J9DQpwc3ljaCAlPiUNCiAgZ2V0X2ludGVyZXN0KCkgJT4lIA0KICBnZ3Bsb3QoYWVzKHggPSBkYXRlLCB5ID0gaGl0cykpICsNCiAgZ2VvbV9saW5lKCkgKw0KICB0aGVtZV9taW5pbWFsKCkgKw0KICBsYWJzKHRpdGxlID0gIkdvb2dsZSBzZWFyY2hlcyBmb3IgJ3BzeWNob2xvZ2lzdCcgb3ZlciB0aW1lIikNCmBgYA0KDQpBcyBzaG93biBvbiB0aGUgZmlndXJlIGNyZWF0ZWQgYWJvdmUsIEdvb2dsZSBzZWFyY2hlcyBmb3IgJ3BzeWNob2xvZ2lzdCcgd2VyZSBhdCB0aGUgaGlnaGVzdCBhcm91bmQgdGhlIHllYXIgMjAyMC4NCg0KDQoNCg0KMi4gSSBjcmVhdGVkIGEgZ3JhcGggb2YgbW9udGhseSBzZWFyY2ggYXZlcmFnZXMgb2YgdGhlIHRlcm0gJ3BzeWNob2xvZ2lzdCcuIFVzaW5nIHRoZSBmaXJzdCBjb2RlIGJlbG93IEkgY3JlYXRlZCBhIGRhdGEgdGFibGUgb2YgYXZlcmFnZSBzZWFyY2hlcyBwZXIgbW9udGggZm9yICdwc3ljaG9sb2dpc3QnLg0KDQpgYGB7cn0NCnBzeWNoICU+JQ0KICBnZXRfaW50ZXJlc3QoKSAlPiUgDQogIG11dGF0ZShtb250aCA9IG1vbnRoKGRhdGUpKSAlPiUgICAgICAgICAjIENyZWF0ZSBhIG5ldyB2YXJpYWJsZSBjYWxsZWQgbW9udGgNCiAgZ3JvdXBfYnkobW9udGgpICU+JSAgICAgICAgICAgICAgICAgICAgICMgQ29tYmluZSB0aGUgbW9udGhzIGFjcm9zcyBkaWZmZXJlbnQgd2Vla3MgYW5kIHllYXJzDQogIHN1bW1hcml6ZShoaXRzX3Blcl9tb250aCA9IG1lYW4oaGl0cykpICU+JSAgICAgICAgICMgR2V0IGF2ZXJhZ2UgbnVtYmVyIG9mIHNlYXJjaGVzIHBlciBtb250aA0KICBkYXRhdGFibGUob3B0aW9ucyA9IGxpc3QocGFnZUxlbmd0aCA9IDEyKSkgJT4lIA0KICBmb3JtYXRSb3VuZCgyLCAyKQ0KDQpgYGANCg0KVGhlbiwgdXNpbmcgdGhlIGNvZGUgYmVsb3cgSSBjcmVhdGVkIGEgbGluZSBncmFwaCBvZiB0aGUgc2FtZSBkYXRhIHNob3duIG9uIHRoZSB0YWJsZSBhYm92ZS4NCg0KYGBge3J9DQpwc3ljaCAlPiUNCiAgZ2V0X2ludGVyZXN0KCkgJT4lIA0KICBtdXRhdGUobW9udGggPSBtb250aChkYXRlKSkgJT4lICAgICAgICAgICAgIyBDcmVhdGUgYSBuZXcgdmFyaWFibGUgY2FsbGVkIG1vbnRoDQogIGdyb3VwX2J5KG1vbnRoKSAlPiUgICAgICAgICAgICAgICAgICAgICAgICAjIENvbWJpbmUgbW9udGhzIGFjcm9zcyB3ZWVrcyBhbmQgeWVhcnMNCiAgc3VtbWFyaXplKGhpdHNfcGVyX21vbnRoID0gbWVhbihoaXRzKSkgJT4lICAgICAgIyBBdmVyYWdlIG51bWJlciBvZiBzZWFyY2hlcyBmb3IgZWFjaCBtb250aA0KICBnZ3Bsb3QoYWVzKHggPSBtb250aCwgeSA9IGhpdHNfcGVyX21vbnRoKSkgKyAgICAjIGdyYXBoIGl0DQogIGdlb21fbGluZSgpICsNCiAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKDE6MTIpKSArDQogICB0aGVtZV9taW5pbWFsKCkgKw0KICBsYWJzKHRpdGxlID0gIkdvb2dsZSBzZWFyY2hlcyBmb3IgJ3BzeWNob2xvZ2lzdCcgcGVyIG1vbnRoIG9uIGF2ZXJhZ2UiKQ0KYGBgDQoNCg0KDQpBcyBzaG93biBvbiB0aGUgZmlndXJlIGNyZWF0ZWQgYWJvdmUsIHNlYXJjaGVzIGZvciAncHN5Y2hvbG9naXN0JyBhcmUsIG9uIGF2ZXJhZ2UsIHRoZSBoaWdoZXN0IGluIFNlcHRlbWJlciBhbmQgdGhlIGxvd2VzdCBpbiBEZWNlbWJlci4NCg0KDQoNCg0KDQozLiBJIGNyZWF0ZWQgYSBkYXRhdGFibGUgb2Ygc2VhcmNoZXMgZm9yIHRoZSB0ZXJtICdwc3ljaG9sb2dpc3QnIG9yZ2FuaXplZCBieSBETUEsIHVzaW5nIHRoZSBzaW5nbGUgY29kZSBzaG93biBiZWxvdy4NCg0KYGBge3J9DQpwc3ljaCAlPiUNCiAgZ2V0X2ludGVyZXN0X2RtYSgpICU+JSANCiAgZGF0YXRhYmxlKCkNCmBgYA0KDQpUaGUgdGFibGUgY3JlYXRlZCBhYm92ZSBzaG93cyB0aGUgdG9wIDEwIGNpdGllcyBhbmQgYXJlYXMgdGhhdCBzZWFyY2hlZCB0aGUgbW9zdCBmb3IgdGhlIHRlcm0gJ3BzeWNob2xvZ2lzdCcuDQoNCg0KDQoNCg0KNC4gSSBjcmVhdGVkIGEgbGluZSBncmFwaCBjb21wYXJpbmcgR29vZ2xlIHNlYXJjaGVzIGluIHRoZSBVbml0ZWQgU3RhdGVzIGFuZCBDYW5hZGEgZm9yICdwc3ljaG9sb2dpc3QnLCBvbiBhIG1vbnRobHkgYmFzaXMuIEkgdXNlZCB0aGUgZmlyc3QgY29kZSBzaG93biBiZWxvdyB0byBjcmVhdGUgYSBkYXRhIHNldCB3aXRoIGluZm9ybWF0aW9uIG9uIHNlYXJjaGVzIGZvciB0aGUgdGVybSBpbiB0aGUgVVMgYW5kIENhbmFkYSBmb3IgYSB0aW1lIHBlcmlvZCBvZiA1IHllYXJzLg0KDQpgYGB7cn0NCnBzeWNoX2NvdW50cmllcyA8LSB0cmVuZHkoInBzeWNob2xvZ2lzdCIsIGdlbyA9IGMoIlVTIiwgIkNBIiksIGZyb20gPSAiMjAxNS0wMS0wMSIsIHRvID0gIjIwMjAtMDEtMDEiKQ0KYGBgDQoNCg0KVGhlbiBJIHVzZWQgdGhlIGNvZGUgYmVsb3cgdG8gY3JlYXRlIGEgbGluZSBncmFwaCBvZiB0aGUgbmV3IGRhdGEgc2V0LCBkaXZpZGVkIGludG8gbW9udGhseSBzZWN0aW9ucy4NCg0KYGBge3J9DQpwc3ljaF9jb3VudHJpZXMgJT4lDQogIGdldF9pbnRlcmVzdCgpICU+JSANCiAgbXV0YXRlKG1vbnRoID0gbW9udGgoZGF0ZSkpICU+JSAgICAgICAgICANCiAgZ3JvdXBfYnkobW9udGgsIGdlbykgJT4lICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgDQogIHN1bW1hcml6ZShoaXRzX3Blcl9tb250aCA9IG1lYW4oaGl0cykpICU+JSAgICAgICAgICAgDQogIGdncGxvdChhZXMoeCA9IG1vbnRoLCB5ID0gaGl0c19wZXJfbW9udGgsIGNvbG9yID0gZ2VvKSkgKyAgICAgICANCiAgZ2VvbV9saW5lKCkgKw0KICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoMToxMikpICsNCiAgdGhlbWVfbWluaW1hbCgpICsNCiAgbGFicyh0aXRsZSA9ICJJbnRlcm5ldCBzZWFyY2hlcyBmb3IgJ3BzeWNob2xvZ2lzdCcgb3ZlciB0aW1lLCBieSBjb3VudHJ5IikNCg0KYGBgDQoNCkFzIHNob3duIG9uIHRoZSBmaWd1cmUgY3JlYXRlZCBhYm92ZSwgdGhlIHRlcm0gJ3BzeWNob2xvZ2lzdCcgZ2VuZXJhbGx5IGhhcyBzaW1pbGFyIHNlYXJjaCBwYXR0ZXJucyBvbiBHb29nbGUgaW4gdGhlIFVuaXRlZCBTdGF0ZXMgYW5kIENhbmFkYS4gDQoNCg0KDQoNCjUuIEkgY29tcGFyZWQgc2VhcmNoZXMgZm9yIHRoZSB0ZXJtICdwc3ljaG9sb2dpc3QnIHRvICdwc3ljaGlhdHJpc3QnIG92ZXIgdGltZSwgYW5kIHRoZW4gY3JlYXRlZCBhIGxpbmUgZ3JhcGguIFVzaW5nIHRoZSBmaXJzdCBjb2RlIGJlbG93IEkgY3JlYXRlZCBhIGRhdGEgc2V0IHdpdGggZGF0YSBmb3Igc2VhcmNoZXMgb2YgYm90aCB0ZXJtcyBpbiB0aGUgVW5pdGVkIFN0YXRlcy4NCg0KYGBge3J9DQpwc3ljaG9sb2dpc3RfcHN5Y2hpYXRyaXN0IDwtIHRyZW5keShjKCJwc3ljaG9sb2dpc3QiLCAicHN5Y2hpYXRyaXN0IiksIGdlbyA9ICJVUyIpDQpgYGANCg0KDQpUaGVuLCB1c2luZyB0aGUgY29kZSBiZWxvdyBJIGNyZWF0ZWQgYSBsaW5lIGdyYXBoIG9mIHRoZSBkYXRhIHNldCB1cGxvYWRlZCBhYm92ZS4NCg0KYGBge3J9DQpwc3ljaG9sb2dpc3RfcHN5Y2hpYXRyaXN0ICU+JQ0KICBnZXRfaW50ZXJlc3QoKSAlPiUNCiAgZ2dwbG90KGFlcyh4ID0gZGF0ZSwgeSA9IGhpdHMsIGNvbG9yID0ga2V5d29yZCkpICsNCiAgZ2VvbV9saW5lKCkgKw0KICB0aGVtZV9taW5pbWFsKCkgKw0KbGFicyh0aXRsZSA9ICJJbnRlcm5ldCBTZWFyY2hlcyBmb3IgJ3BzeWNoaWF0cmlzdCcgJiAncHN5Y2hvbG9naXN0JyBvdmVyIHRpbWUiKQ0KYGBgDQoNCkFzIHNob3duIG9uIHRoZSBmaWd1cmUgY3JlYXRlZCBhYm92ZSwgdGhlIHRlcm0gJ3BzeWNob2xvZ2lzdCcgd2FzIHR5cGljYWxseSBtb3JlIHNlYXJjaGVkIGZvciB0aGFuICdwc3ljaGlhdHJpc3QnIG92ZXIgdGltZSBvbiBHb29nbGUuDQoNCg0KDQoNCjYuIEkgY29tcGFyZWQgc2VhcmNoZXMgZm9yICdwc3ljaG9sb2dpc3QnIHRvICdwc3ljaGlhdHJpc3QnIG92ZXIgdGltZSwgc3BlY2lmaWNhbGx5IGluIEdvb2dsZSBJbWFnZXMuIFVzaW5nIHRoZSBmaXJzdCBjb2RlIGJlbG93LCBJIGNyZWF0ZWQgYSBkYXRhIHNldCBmb3Igc2VhcmNoZXMgb2YgYm90aCBvZiB0aGUgdGVybXMgaW4gR29vZ2xlIEltYWdlcy4NCg0KYGBge3J9DQogcHN5Y2hvbG9naXN0X3BzeWNoaWF0cmlzdF9pbWFnZXMgPC0gdHJlbmR5KGMoInBzeWNob2xvZ2lzdCIsICJwc3ljaGlhdHJpc3QiKSwgZ2VvID0gIlVTIiwgZ3Byb3AgPSAiaW1hZ2VzIikNCmBgYA0KDQoNClRoZW4sIHVzaW5nIHRoZSBjb2RlIGJlbG93IEkgY3JlYXRlZCBhIGxpbmUgZ3JhcGggb2YgdGhlIGRhdGEgc2V0IGNyZWF0ZWQgYWJvdmUuDQoNCmBgYHtyfQ0KcHN5Y2hvbG9naXN0X3BzeWNoaWF0cmlzdF9pbWFnZXMgJT4lDQogIGdldF9pbnRlcmVzdCgpICU+JQ0KICBnZ3Bsb3QoYWVzKHggPSBkYXRlLCB5ID0gaGl0cywgY29sb3IgPSBrZXl3b3JkKSkgKw0KICBnZW9tX2xpbmUoKSArDQogIHRoZW1lX21pbmltYWwoKSArDQpsYWJzKHRpdGxlID0gIlNlYXJjaGVzIGluIEdvb2dsZSBJbWFnZXMgZm9yICdwc3ljaGlhdHJpc3QnICYgJ3BzeWNob2xvZ2lzdCcgb3ZlciB0aW1lIikNCmBgYA0KDQpBcyBzaG93biBvbiB0aGUgZmlndXJlIGNyZWF0ZWQgYWJvdmUsIHRoZSB0ZXJtICdwc3ljaG9sb2dpc3QnIHdhcyBnZW5lcmFsbHkgbW9yZSBzZWFyY2hlZCBmb3IgdGhhbiAncHN5Y2hpYXRyaXN0Jywgb3ZlciB0aW1lIG9uIEdvb2dsZSBJbWFnZXMuDQoNCg0KDQoNCg0KDQo=