Create a vector that represents the age of at least four different family members or friends. You can name it whatever you want.
friends_age <- c(25,26,21,32)
mean(friends_age)
## [1] 26
sum(friends_age[1:4])/4
## [1] 26
min(friends_age)
## [1] 21
max(friends_age)-min(friends_age)
## [1] 11
n <- c(friends_age>25)
length(n)
## [1] 4
friends_age[friends_age==32] <- 23
friends_age
## [1] 25 26 21 23
age_10yrs <- friends_age + 10
age_10yrs
## [1] 35 36 31 33
year_friends_age100 <- (100-friends_age)+2022
print(year_friends_age100)
## [1] 2097 2096 2101 2099
sample_age <- friends_age[sample(1:length(friends_age), size=3)]
mean(sample_age)
## [1] 24.66667
getwd()
## [1] "C:/Users/FieldCamp17/OneDrive - The University of Memphis/Desktop/Biogeography"
setwd('C:/Users/FieldCamp17/R_WD')
world <- read.csv("world-small.csv")
head(world)
## country region gdppcap08 polityIV
## 1 Albania C&E Europe 7715 17.8
## 2 Algeria Africa 8033 10.0
## 3 Angola Africa 5899 8.0
## 4 Argentina S. America 14333 18.0
## 5 Armenia C&E Europe 6070 15.0
## 6 Australia Asia-Pacific 35677 20.0
#county is the analysis unit in the dataset. In other words, country is the id variable in this dataset.
dim(world)
## [1] 145 4
#Total 145 observations are in the data set and it has 4 variables
world [world$country == "Algeria", ];
## country region gdppcap08 polityIV
## 2 Algeria Africa 8033 10
world [world$country == "United States", ]
## country region gdppcap08 polityIV
## 138 United States N. America 46716 20
world [world$country == "China", ]
## country region gdppcap08 polityIV
## 26 China Asia-Pacific 5962 3
world [world$country == "China" & world$polityIV,4 ]
## [1] 3
min(world$gdppcap08)
## [1] 188
world [world$gdppcap08== min(world$gdppcap08),1 ]
## [1] "Zimbabwe"
require (plyr)
require(dplyr)
world <- read.csv("world-small.csv")
europe <- world %>% filter(region == "C&E Europe" | region == "W. Europe" | region == "Scandinavia")
head (europe)
## country region gdppcap08 polityIV
## 1 Albania C&E Europe 7715 17.8
## 2 Armenia C&E Europe 6070 15.0
## 3 Austria W. Europe 38152 20.0
## 4 Azerbaijan C&E Europe 8765 3.0
## 5 Belarus C&E Europe 12261 3.0
## 6 Belgium W. Europe 34493 20.0
summary(europe)
## country region gdppcap08 polityIV
## Length:41 Length:41 Min. : 1906 Min. : 1.00
## Class :character Class :character 1st Qu.:10041 1st Qu.:16.00
## Mode :character Mode :character Median :19330 Median :19.00
## Mean :22007 Mean :16.41
## 3rd Qu.:34493 3rd Qu.:20.00
## Max. :58138 Max. :20.00
europe<- europe %>% mutate (polityIV_A = ifelse (polityIV<=10,1,2))
head(europe)
## country region gdppcap08 polityIV polityIV_A
## 1 Albania C&E Europe 7715 17.8 2
## 2 Armenia C&E Europe 6070 15.0 2
## 3 Austria W. Europe 38152 20.0 2
## 4 Azerbaijan C&E Europe 8765 3.0 1
## 5 Belarus C&E Europe 12261 3.0 1
## 6 Belgium W. Europe 34493 20.0 2
europe<- europe %>% mutate(status= ifelse(gdppcap08 > 25000, "rich", "poor"))
head(europe)
## country region gdppcap08 polityIV polityIV_A status
## 1 Albania C&E Europe 7715 17.8 2 poor
## 2 Armenia C&E Europe 6070 15.0 2 poor
## 3 Austria W. Europe 38152 20.0 2 rich
## 4 Azerbaijan C&E Europe 8765 3.0 1 poor
## 5 Belarus C&E Europe 12261 3.0 1 poor
## 6 Belgium W. Europe 34493 20.0 2 rich
europe %>% select(-region)
## country gdppcap08 polityIV polityIV_A status
## 1 Albania 7715 17.800000 2 poor
## 2 Armenia 6070 15.000000 2 poor
## 3 Austria 38152 20.000000 2 rich
## 4 Azerbaijan 8765 3.000000 1 poor
## 5 Belarus 12261 3.000000 1 poor
## 6 Belgium 34493 20.000000 2 rich
## 7 Bulgaria 12393 19.000000 2 poor
## 8 Croatia 19084 18.400000 2 poor
## 9 Czech Republic 24712 20.000000 2 poor
## 10 Denmark 36607 20.000000 2 rich
## 11 Estonia 20662 16.000000 2 poor
## 12 Finland 35427 20.000000 2 rich
## 13 France 34045 19.000000 2 rich
## 14 Georgia 4896 15.666667 2 poor
## 15 Germany 35613 20.000000 2 rich
## 16 Greece 29361 20.000000 2 rich
## 17 Hungary 19330 20.000000 2 poor
## 18 Ireland 44200 20.000000 2 rich
## 19 Italy 30756 20.000000 2 rich
## 20 Kazakhstan 11315 4.000000 1 poor
## 21 Kyrgyzstan 2188 7.000000 1 poor
## 22 Latvia 17100 18.000000 2 poor
## 23 Lithuania 18824 20.000000 2 poor
## 24 Macedonia 10041 19.000000 2 poor
## 25 Moldova 2925 18.000000 2 poor
## 26 Netherlands 40849 20.000000 2 rich
## 27 Norway 58138 20.000000 2 rich
## 28 Poland 17625 20.000000 2 poor
## 29 Portugal 23074 20.000000 2 poor
## 30 Romania 14065 18.333333 2 poor
## 31 Russia 16139 17.000000 2 poor
## 32 Slovakia 22081 19.000000 2 poor
## 33 Slovenia 27605 20.000000 2 rich
## 34 Spain 31954 20.000000 2 rich
## 35 Sweden 37383 20.000000 2 rich
## 36 Switzerland 42536 20.000000 2 rich
## 37 Tajikistan 1906 7.666667 1 poor
## 38 Turkmenistan 6641 1.000000 1 poor
## 39 Ukraine 7271 16.000000 2 poor
## 40 United Kingdom 35445 20.000000 2 rich
## 41 Uzbekistan 2656 1.000000 1 poor
europe %>% arrange(polityIV)
## country region gdppcap08 polityIV polityIV_A status
## 1 Turkmenistan C&E Europe 6641 1.000000 1 poor
## 2 Uzbekistan C&E Europe 2656 1.000000 1 poor
## 3 Azerbaijan C&E Europe 8765 3.000000 1 poor
## 4 Belarus C&E Europe 12261 3.000000 1 poor
## 5 Kazakhstan C&E Europe 11315 4.000000 1 poor
## 6 Kyrgyzstan C&E Europe 2188 7.000000 1 poor
## 7 Tajikistan C&E Europe 1906 7.666667 1 poor
## 8 Armenia C&E Europe 6070 15.000000 2 poor
## 9 Georgia C&E Europe 4896 15.666667 2 poor
## 10 Estonia C&E Europe 20662 16.000000 2 poor
## 11 Ukraine C&E Europe 7271 16.000000 2 poor
## 12 Russia C&E Europe 16139 17.000000 2 poor
## 13 Albania C&E Europe 7715 17.800000 2 poor
## 14 Latvia C&E Europe 17100 18.000000 2 poor
## 15 Moldova C&E Europe 2925 18.000000 2 poor
## 16 Romania C&E Europe 14065 18.333333 2 poor
## 17 Croatia C&E Europe 19084 18.400000 2 poor
## 18 Bulgaria C&E Europe 12393 19.000000 2 poor
## 19 France W. Europe 34045 19.000000 2 rich
## 20 Macedonia C&E Europe 10041 19.000000 2 poor
## 21 Slovakia C&E Europe 22081 19.000000 2 poor
## 22 Austria W. Europe 38152 20.000000 2 rich
## 23 Belgium W. Europe 34493 20.000000 2 rich
## 24 Czech Republic C&E Europe 24712 20.000000 2 poor
## 25 Denmark Scandinavia 36607 20.000000 2 rich
## 26 Finland Scandinavia 35427 20.000000 2 rich
## 27 Germany W. Europe 35613 20.000000 2 rich
## 28 Greece W. Europe 29361 20.000000 2 rich
## 29 Hungary C&E Europe 19330 20.000000 2 poor
## 30 Ireland W. Europe 44200 20.000000 2 rich
## 31 Italy W. Europe 30756 20.000000 2 rich
## 32 Lithuania C&E Europe 18824 20.000000 2 poor
## 33 Netherlands W. Europe 40849 20.000000 2 rich
## 34 Norway Scandinavia 58138 20.000000 2 rich
## 35 Poland C&E Europe 17625 20.000000 2 poor
## 36 Portugal W. Europe 23074 20.000000 2 poor
## 37 Slovenia C&E Europe 27605 20.000000 2 rich
## 38 Spain W. Europe 31954 20.000000 2 rich
## 39 Sweden Scandinavia 37383 20.000000 2 rich
## 40 Switzerland W. Europe 42536 20.000000 2 rich
## 41 United Kingdom W. Europe 35445 20.000000 2 rich
europe <- world %>%
filter(region == "C&E Europe" | region == "W. Europe" | region == "Scandinavia") %>%
mutate (polityIV_A = ifelse (polityIV>=10,1,2)) %>%
mutate(status=ifelse(gdppcap08 >= 25000, "rich", "poor")) %>%
select(-region)%>%
arrange(polityIV)
europe
## country gdppcap08 polityIV polityIV_A status
## 1 Turkmenistan 6641 1.000000 2 poor
## 2 Uzbekistan 2656 1.000000 2 poor
## 3 Azerbaijan 8765 3.000000 2 poor
## 4 Belarus 12261 3.000000 2 poor
## 5 Kazakhstan 11315 4.000000 2 poor
## 6 Kyrgyzstan 2188 7.000000 2 poor
## 7 Tajikistan 1906 7.666667 2 poor
## 8 Armenia 6070 15.000000 1 poor
## 9 Georgia 4896 15.666667 1 poor
## 10 Estonia 20662 16.000000 1 poor
## 11 Ukraine 7271 16.000000 1 poor
## 12 Russia 16139 17.000000 1 poor
## 13 Albania 7715 17.800000 1 poor
## 14 Latvia 17100 18.000000 1 poor
## 15 Moldova 2925 18.000000 1 poor
## 16 Romania 14065 18.333333 1 poor
## 17 Croatia 19084 18.400000 1 poor
## 18 Bulgaria 12393 19.000000 1 poor
## 19 France 34045 19.000000 1 rich
## 20 Macedonia 10041 19.000000 1 poor
## 21 Slovakia 22081 19.000000 1 poor
## 22 Austria 38152 20.000000 1 rich
## 23 Belgium 34493 20.000000 1 rich
## 24 Czech Republic 24712 20.000000 1 poor
## 25 Denmark 36607 20.000000 1 rich
## 26 Finland 35427 20.000000 1 rich
## 27 Germany 35613 20.000000 1 rich
## 28 Greece 29361 20.000000 1 rich
## 29 Hungary 19330 20.000000 1 poor
## 30 Ireland 44200 20.000000 1 rich
## 31 Italy 30756 20.000000 1 rich
## 32 Lithuania 18824 20.000000 1 poor
## 33 Netherlands 40849 20.000000 1 rich
## 34 Norway 58138 20.000000 1 rich
## 35 Poland 17625 20.000000 1 poor
## 36 Portugal 23074 20.000000 1 poor
## 37 Slovenia 27605 20.000000 1 rich
## 38 Spain 31954 20.000000 1 rich
## 39 Sweden 37383 20.000000 1 rich
## 40 Switzerland 42536 20.000000 1 rich
## 41 United Kingdom 35445 20.000000 1 rich
world<- world%>% mutate(gdppcap08 =as.numeric (as.character(gdppcap08)))
world<- world%>% mutate(polityIV =as.numeric (as.character(polityIV)))
mean(world$gdppcap08)
## [1] 13251.99
mean(world$polityIV)
## [1] 13.40782
africa<- filter(world, region=="Africa")
mean(africa$gdppcap08)
## [1] 3613.095
mean(africa$polityIV)
## [1] 11.44921
Poorest in terms of lowest GDP per captia
world [world$gdppcap08== min(world$gdppcap08),1 ]
## [1] "Zimbabwe"
Richest in terms of highest GDP per captia
world [world$gdppcap08== max(world$gdppcap08),1 ]
## [1] "Qatar"
rich<- filter(europe, status=="rich")
count(rich)
## n
## 1 16
poor<- filter(europe, status=="poor")
count(poor)
## n
## 1 25
score_polityIV<-filter(europe, polityIV>18)
count(score_polityIV)
## n
## 1 26
##Chapter: Collapsing Data
1.Read the world-small.csv dataset (available here) into R. Get to know the structure of this dataset using functions like dim(), head(), and summary().
world <- read.csv("world-small.csv")
dim(world)
## [1] 145 4
head(world)
## country region gdppcap08 polityIV
## 1 Albania C&E Europe 7715 17.8
## 2 Algeria Africa 8033 10.0
## 3 Angola Africa 5899 8.0
## 4 Argentina S. America 14333 18.0
## 5 Armenia C&E Europe 6070 15.0
## 6 Australia Asia-Pacific 35677 20.0
summary(world)
## country region gdppcap08 polityIV
## Length:145 Length:145 Min. : 188 Min. : 0.000
## Class :character Class :character 1st Qu.: 2153 1st Qu.: 7.667
## Mode :character Mode :character Median : 7271 Median :16.000
## Mean :13252 Mean :13.408
## 3rd Qu.:19330 3rd Qu.:19.000
## Max. :85868 Max. :20.000
region_summary<- world %>%
group_by(region) %>%
summarize (mean_gdppcap08= mean(gdppcap08),
median_gdppcap08= median(gdppcap08),
mean_polityIV= mean(polityIV),
median_polityIV = median(polityIV),
number_country= n())
region_summary
## # A tibble: 8 x 6
## region mean_gdppcap08 median_gdppcap08 mean_polityIV median_polityIV
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Africa 3613. 1408. 11.4 11
## 2 Asia-Pacific 11552. 4178. 13.6 16.3
## 3 C&E Europe 12571. 12261 14.2 17.8
## 4 Middle East 21450. 14661 5.69 3.5
## 5 N. America 32552. 36444 19.3 20
## 6 S. America 7862. 8009 16.6 18
## 7 Scandinavia 41889. 36995 20 20
## 8 W. Europe 35040. 34969 19.9 20
## # ... with 1 more variable: number_country <int>
world <- world %>% mutate(democracy_stat = ifelse(polityIV >= 15, "Democracy", "Autocracy"))
region_sum<- world %>%
group_by(region, democracy_stat) %>%
summarize (mean_gdppcap08_D= mean(gdppcap08),
median_gdppcap08_D= median(gdppcap08),
number_dem= n())
region_sum
## # A tibble: 13 x 5
## # Groups: region [8]
## region democracy_stat mean_gdppcap08_D median_gdppcap08_D number_dem
## <chr> <chr> <dbl> <dbl> <int>
## 1 Africa Autocracy 3908 1409 24
## 2 Africa Democracy 3220. 1404 18
## 3 Asia-Pacific Autocracy 8918. 3584. 10
## 4 Asia-Pacific Democracy 13433. 4268. 14
## 5 C&E Europe Autocracy 6533. 6641 7
## 6 C&E Europe Democracy 14919. 16620. 18
## 7 Middle East Autocracy 21553. 13534 14
## 8 Middle East Democracy 20734 20734 2
## 9 N. America Democracy 32552. 36444 3
## 10 S. America Autocracy 5338. 5338. 2
## 11 S. America Democracy 8159. 8009 17
## 12 Scandinavia Democracy 41889. 36995 4
## 13 W. Europe Democracy 35040. 34969 12
Note that the echo = FALSE
parameter was added to the code chunk to prevent printing of the R code that generated the plot.