0.0.1 Dosen Pengampu : Prof. Dr. Suhartono, M.Kom

0.0.2 Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

0.0.3 Jurusan : Teknik Informatika

0.0.4 Fakultas : Sains dan Teknologi

1 Pengertian Inflow-Outflow Uang Kartal

Inflows adalah uang yang masuk ke Bank Indonesia melalui kegiatan penyetoran, dan Outflows adalah uang yang keluar dari Bank Indonesia melalui kegiatan penarikan. Setiap daerah memiliki prediksi data inflow-outflow uang kartal yang berbeda-beda. Berikut komparasi visualisasi prediksi data inflow-outflow uang kartal di Sumatera dan Sekitarnya menggunakan bahasa pemrograman R pada Rstudio.

1.1 Data Inflow-OutFlow Pertahun untuk Daerah Sumatra dan Sekitarnya

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "C:/Users/shafira halmahera/Documents/LINEAR ALGEBRA/Data Inflow Sumatra.xlsx")
datainflowtahun <- datainflow[c(1:12),c(1:12)]
datainflowtahun
## # A tibble: 12 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  2  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  3  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  4  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  5  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  6  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  7  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  8  2019  133762.  7509.           47112.           14750. 10915.       6077.
##  9  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 10  2021   89270.  3702.           31840.           10748.  7769.       5009.
## 11    NA      NA     NA               NA               NA     NA          NA 
## 12    NA      NA     NA               NA               NA     NA          NA 
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path = "C:/Users/shafira halmahera/Documents/LINEAR ALGEBRA/Data Outflow Sumatra.xlsx")
dataoutflowtahun <- dataoutflow[c(1:12),c(1:12)]
dataoutflowtahun
## # A tibble: 12 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## 12    NA      NA     NA               NA               NA     NA          NA 
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>

2 Data Inflow-Outflow Perbulan untuk Daerah Sumatra dan Sekitarnya

library(readxl)
datainflowperbulan <- read_excel(path = 'C:/Users/shafira halmahera/Documents/LINEAR ALGEBRA/DataPerbulanInflow.xlsx')
datainflowperbulan
## # A tibble: 128 x 12
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan <- read_excel(path = 'C:/Users/shafira halmahera/Documents/LINEAR ALGEBRA/DataPerbulanOutflow.xlsx')
dataoutflowperbulan
## # A tibble: 128 x 12
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>

2.1 1. visualisasi dan prediksi data Inflow-Outflow di Kota Aceh

plot(datainflowtahun$Tahun, datainflowtahun$`Aceh`, type = "l", col = "red", main = 'Data Inflow-Outflow Uang Kartal di Aceh Setiap Tahun', xlab = 'Tahun Periode', ylab = 'Data Inflow-Outflow')
lines(dataoutflowtahun$Tahun, dataoutflowtahun$`Aceh`, col = 'Green' )
legend('top', c("Inflow","Outlow"),fill=c("red","purple") )

plot(datainflowperbulan$Bulan, datainflowperbulan$`Aceh`, type = "l", col = "steelblue", main = 'Data Inflow-Outflow Uang Kartal di Aceh Setiap Bulan', xlab = 'Bulan', ylab = 'Data Inflow-Outflow')
lines(dataoutflowperbulan$Bulan, dataoutflowperbulan$`Aceh`, col = 'purple')
legend('right',c('Inflow','Outflow'),fill = c('steelblue','purple'))

Acehtimeseries <- datainflowperbulan$`Aceh`
plot.ts(Acehtimeseries, type = "l", col = "red")

logAceh <- dataoutflowperbulan$`Aceh`
plot.ts(logAceh, type = "l", col = "blue")

library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
AcehSMA3 <- SMA(datainflowperbulan$`Aceh`, n = 3)
plot.ts(AcehSMA3)

library('TTR')
AcehSMA3 <- SMA(datainflowperbulan$`Aceh`, n = 8)
plot.ts(AcehSMA3)

Acehinflowts <- ts(datainflowperbulan$`Aceh`, frequency = 12, start = c(2011,1))
Acehinflowts
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  122.18349  122.75253  151.37534  107.22432  183.84525  605.62334
## 2012  139.33374  167.56600  119.32971  196.61835  420.06418  286.31394
## 2013 3775.08977 3705.38033 3449.77565 3456.32173 8516.17096  243.91990
## 2014  260.82180  168.17801  194.97802  173.99322 1306.11875  271.45458
## 2015  263.06848  256.64615  398.59527  977.94399  495.56495  179.23767
## 2016  218.98473  298.46423  450.32018 1374.47417  310.75050  538.99459
## 2017  240.71874  299.60563  194.84441 1149.75614  264.01934  627.70230
## 2018  262.95066  288.49282 1005.08498  784.64208  369.23511  426.04458
## 2019  342.84300  420.44274 1554.92585  473.28934  684.81679  405.51614
## 2020  281.42142  489.21304 1095.11262  257.81810  592.86464  410.39330
## 2021  308.33410  566.54102  502.60975  280.32142  424.17610           
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  157.64630  287.24653  176.19523  315.65341  292.57807  170.13069
## 2012  142.89984  288.58842   80.49051 5571.15653 3457.27812 3253.57336
## 2013  379.41362  322.99838  205.46842  779.00596  332.03457  248.89939
## 2014  454.45573  219.11177  157.53593  836.57498  376.45107  317.53476
## 2015  257.65850  227.20326  123.34945  883.11220  498.41373  242.45180
## 2016  432.31664  301.61184  225.04199 1120.37553  452.83734  347.32016
## 2017  365.36280  275.68807  175.99260 1279.35872  366.57150  278.86587
## 2018  344.08223  243.18631  150.59965 1293.88334  565.87121  397.27368
## 2019  467.20195  436.23339  466.53727 1641.95487  692.74998  297.06861
## 2020  273.60601  438.09977  170.52803  762.78539  487.91516  368.91965
## 2021
Acehoutflowts <- ts(dataoutflowperbulan$`Aceh`, frequency = 12, start = c(2011,1))
Acehoutflowts
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  349.57673  192.62487  230.35748  528.59007  523.47023  405.84701
## 2012  420.97459  217.70857  503.88607  600.25342  429.26734  606.25526
## 2013  758.75245 1850.82994 2442.65886 1618.83372 2777.13063 2209.74012
## 2014  288.10448  489.92887  504.83732  773.93194  485.84142  912.38357
## 2015  269.29171  255.71308  521.69449 1125.85624  564.44034 1011.07770
## 2016  307.32375  172.45727  730.75026  667.74179 1079.70825 2642.66616
## 2017  247.27680  344.01370  677.88709  850.88747 1157.54011 2346.78323
## 2018  120.03917  266.02669  996.17473  707.23188 1634.43230 1889.68997
## 2019   85.36298  400.92165  964.22663 1218.54729 3312.30047  122.91218
## 2020  182.38950  426.10026 1433.83382 1432.33902 1689.68700  436.00470
## 2021   56.98918   60.56520  591.41875 1789.00566 2112.99646  176.09492
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  957.58488 1046.09243  123.98156  634.45751  595.14381  750.32697
## 2012  600.85083  791.04331  303.81795  854.83456  207.40890  841.70726
## 2013 5383.25551 2570.21842  566.69494  895.80335  699.91951 1504.22825
## 2014 1538.16507  285.80192  611.06198  902.31059  586.60778 1250.89508
## 2015 1558.53777  301.57675 1040.79937  316.39942  824.14892 1847.02405
## 2016  692.69059  653.34617 1027.41562  515.70143  962.49370 1858.31057
## 2017  282.09425 1520.49864  354.31840  667.42332  766.85433 2544.67010
## 2018  278.98765 1155.80705  609.61619  549.33587  622.53291 2619.93560
## 2019  687.35821 1230.78590  600.44006  552.87679 1055.67352 2855.56524
## 2020 1768.67777  455.94178  829.58521 1174.85940  774.36491 2269.89617
## 2021  662.04381  320.71844
plot.ts(Acehinflowts, col = 'blue')
lines(Acehoutflowts, col = 'red')
legend('right', c('Inflow','Outflow'),fill = c('grey','red'))

Acehintscomponents <- decompose(Acehinflowts)
Acehintscomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  -95.49778  -62.42673  200.12086  240.50931  694.72915 -370.43198
## 2012  -95.49778  -62.42673  200.12086  240.50931  694.72915 -370.43198
## 2013  -95.49778  -62.42673  200.12086  240.50931  694.72915 -370.43198
## 2014  -95.49778  -62.42673  200.12086  240.50931  694.72915 -370.43198
## 2015  -95.49778  -62.42673  200.12086  240.50931  694.72915 -370.43198
## 2016  -95.49778  -62.42673  200.12086  240.50931  694.72915 -370.43198
## 2017  -95.49778  -62.42673  200.12086  240.50931  694.72915 -370.43198
## 2018  -95.49778  -62.42673  200.12086  240.50931  694.72915 -370.43198
## 2019  -95.49778  -62.42673  200.12086  240.50931  694.72915 -370.43198
## 2020  -95.49778  -62.42673  200.12086  240.50931  694.72915 -370.43198
## 2021  -95.49778  -62.42673  200.12086  240.50931  694.72915           
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011 -369.35764 -395.44997 -509.58543  743.44204   45.60340 -121.65522
## 2012 -369.35764 -395.44997 -509.58543  743.44204   45.60340 -121.65522
## 2013 -369.35764 -395.44997 -509.58543  743.44204   45.60340 -121.65522
## 2014 -369.35764 -395.44997 -509.58543  743.44204   45.60340 -121.65522
## 2015 -369.35764 -395.44997 -509.58543  743.44204   45.60340 -121.65522
## 2016 -369.35764 -395.44997 -509.58543  743.44204   45.60340 -121.65522
## 2017 -369.35764 -395.44997 -509.58543  743.44204   45.60340 -121.65522
## 2018 -369.35764 -395.44997 -509.58543  743.44204   45.60340 -121.65522
## 2019 -369.35764 -395.44997 -509.58543  743.44204   45.60340 -121.65522
## 2020 -369.35764 -395.44997 -509.58543  743.44204   45.60340 -121.65522
## 2021
Acehouttscomponents <- decompose(Acehoutflowts)
Acehouttscomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2012 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2013 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2014 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2015 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2016 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2017 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2018 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2019 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2020 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2021 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2012  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2013  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2014  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2015  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2016  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2017  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2018  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2019  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2020  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2021  414.184121   42.244469
plot(Acehintscomponents$seasonal, type = 'l', col = 'turquoise')
lines(Acehouttscomponents$seasonal, col = "orange")
legend("right",c("Inflow","Outflow"),fill=c("turquoise","red"))

plot(Acehintscomponents$trend, type = 'l', col = 'red')
lines(Acehouttscomponents$trend, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("red","green"))

plot(Acehintscomponents$random, type = 'l', col = 'Skyblue')
lines(Acehouttscomponents$random, col = 'purple')
legend('right', c("Inflow","Outflow"),fill=c("skyblue","purple"))

plot(Acehintscomponents$figure, type = 'l', col = 'blue')
lines(Acehouttscomponents$figure, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("blue","green"))

Acehintsseasonallyadjusted <- Acehtimeseries - Acehintscomponents$seasonal
plot(Acehintsseasonallyadjusted)

2.2 1. visualisasi dan prediksi data Inflow-Outflow di Sumatra

plot(datainflowtahun$Tahun, datainflowtahun$`Sumatera Utara`, type = "l", col = "blue", main = 'Data Inflow Uang Kartal di Sumatra Utara Setiap Tahun', xlab = 'Tahun Periode', ylab = 'Data Inflow-Outflow')
lines(dataoutflowtahun$Tahun, dataoutflowtahun$`Sumatera Utara`, col = 'green')
legend('top', c("Inflow","Outlow"),fill=c("blue","green"))

plot(datainflowperbulan$Bulan, datainflowperbulan$`Sumatera Utara`, type = "l", col = "steelblue", main = 'Data Inflow-Outflow Uang Kartal di Sumatera Utara Setiap Bulan', xlab = 'Bulan', ylab = 'Data Inflow-Outflow')
lines(dataoutflowperbulan$Bulan, dataoutflowperbulan$`Sumatera Utara`, col = 'purple')
legend('right',c('Inflow','Outflow'),fill = c('steelblue','yellow'))

Sumutts <- datainflowperbulan$`Sumatera Utara`
plot.ts(Sumutts, type = "l", col = "yellow")

logsumut <- dataoutflowperbulan$`Sumatera Utara`
plot.ts(logsumut, type = "l", col = "steelblue")

library(TTR)
sumutSMA3 <- SMA(datainflowperbulan$`Sumatera Utara`, n = 3)
plot.ts(sumutSMA3)

library('TTR')
sumutSMA3 <- SMA(datainflowperbulan$`Sumatera Utara`, n = 8)
plot.ts(sumutSMA3)

sumutinflowts <- ts(datainflowperbulan$`Sumatera Utara`, frequency = 12, start = c(2011,1))
sumutinflowts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011 1429.1551 1539.2862 1636.5456 1791.1685 1255.7771 4171.7420 1940.8248
## 2012 1958.6650 2340.7850 1763.7063 2418.6288 3146.4553 2265.7190 1794.1134
## 2013 1005.6172  965.7285  915.6734 1064.5788 2923.1453 1883.2831 2061.2406
## 2014 2412.9589 2104.0928 2277.4757 1289.7373 6180.5783 2309.9967 2132.9841
## 2015 2118.8912 2064.3412 2195.4568 4316.3041 3070.8514 2205.2647 2172.2108
## 2016 2178.8535 2934.5122 1934.5506 6145.8753 2599.2919 2611.1014 2470.8154
## 2017 2445.6147 2868.9780 1696.6538 5829.4896 2961.9966 2729.2401 2687.0436
## 2018 3252.3518 2292.8486 5954.2310 4699.5902 3350.3244 3165.3554 3165.9388
## 2019 3839.8883 3018.5163 7840.8944 4193.3568 3573.5657 3295.2926 3680.2501
## 2020 2035.7135 2380.0784 4344.0487 3057.1278 2370.7092 2391.4783 1908.7555
## 2021 3669.9855 4948.0587 3752.2078 2368.1586 2461.1935                    
##            Aug       Sep       Oct       Nov       Dec
## 2011 1942.8641 1608.2825 2979.0495 2137.5356 2034.3183
## 2012 1956.5636 1185.1042 2011.8480 1284.0139  986.4736
## 2013 1888.7141 1129.7521 3915.7218 2518.0923 1977.0690
## 2014 1911.6489 1472.3948 4313.0187 1833.3080 2167.4386
## 2015 2272.4471 1524.0474 4181.4312 2940.6137 2494.2178
## 2016 2171.7520 1763.8555 4297.6567 2983.0020 2741.7477
## 2017 2706.0655 1669.2277 5434.8880 2756.8291 2766.0818
## 2018 3130.5635 1799.6573 5704.4344 3720.4500 3145.5627
## 2019 3329.0633 1771.0466 6476.7265 3659.4621 2723.3467
## 2020 2826.9792 2434.8872 7420.0889 3749.5795 3470.9778
## 2021
sumutoutflowts <- ts(dataoutflowperbulan$`Sumatera Utara`, frequency = 12, start = c(2011,1))
sumutoutflowts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  940.7270  990.2344 1208.7307 1652.7141 1464.7969 2167.0247 1695.1657
## 2012  984.0324 1216.1279 1787.1988 1807.6206 1874.7360 2688.0924 1964.9303
## 2013  385.7855  571.1485  981.3722  840.9738 1249.0038 1329.4347 3110.4414
## 2014 1386.2664 1401.1061 1758.2459 2054.0262 1829.6144 1703.7050 6389.1018
## 2015  572.9684 1763.7684 1389.7572 2303.6786 1510.8211 3233.5680 5255.8327
## 2016 1101.0264 1436.2692 1955.5644 2261.7604 2799.0006 7101.1630 1545.3956
## 2017 1381.2569 1585.6275 2219.8469 2436.9895 2995.6336 6666.8397  900.1986
## 2018  464.9380 2187.8200 2554.5897 2824.5938 4441.1976 6066.3074 2069.7335
## 2019 1254.4764 2323.8685 3046.6558 4576.5874 8856.8881  780.2976 3028.1933
## 2020 1456.3547 2150.2914 3244.4160 3371.2418 4147.5741 1473.5355 3525.8830
## 2021  767.5072 1758.2828 2249.6110 5490.0438 5183.1904 2210.7195 3486.2112
##            Aug       Sep       Oct       Nov       Dec
## 2011 4103.7915  824.0580 1392.1819 1597.5122 4139.5386
## 2012 3120.9933  821.0337 1242.4665 1443.9081 3543.4771
## 2013 1837.2198 1362.0435 1608.7270 1880.8227 4077.7257
## 2014  793.8406 1397.2762 1888.7593 1700.0491 4088.9477
## 2015  982.1728 1852.0552 1907.6366 2126.0199 4978.8323
## 2016 1765.1649 2518.4152 2080.3687 2207.2962 5187.3478
## 2017 2908.6280 2161.4140 2247.3297 3283.9796 6455.4113
## 2018 2934.9619 1924.2260 2159.8890 2921.3840 6358.6489
## 2019 3577.9976 2629.2801 2576.9991 3782.3821 7617.2698
## 2020 3053.7066 2141.8995 3856.8591 2151.2443 9184.5577
## 2021 2307.3456
plot.ts(sumutinflowts, col = 'blue')
lines(sumutoutflowts, col = 'red')
legend('right', c('Inflow','Outflow'),fill = c('blue','red'))

sumutintscomponents <- decompose(sumutinflowts)
sumutintscomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2012  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2013  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2014  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2015  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2016  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2017  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2018  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2019  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2020  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2021  -407.66532  -442.57366   433.15186   863.43108   520.09971            
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2012  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2013  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2014  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2015  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2016  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2017  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2018  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2019  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2020  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2021
sumutouttscomponents <- decompose(sumutoutflowts)
sumutouttscomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2012 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2013 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2014 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2015 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2016 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2017 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2018 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2019 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2020 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2021 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2012   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2013   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2014   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2015   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2016   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2017   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2018   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2019   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2020   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2021   389.85774   -53.26060
plot(sumutintscomponents$seasonal, type = 'l', col = 'turquoise')
lines(sumutouttscomponents$seasonal, col = "orange")
legend("right",c("Inflow","Outflow"),fill=c("turquoise","orange"))

plot(sumutintscomponents$trend, type = 'l', col = 'red')
lines(sumutouttscomponents$trend, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("red","black"))

plot(sumutintscomponents$random, type = 'l', col = 'Skyblue')
lines(sumutouttscomponents$random, col = 'purple')
legend('right', c("Inflow","Outflow"),fill=c("skyblue","purple"))

plot(sumutintscomponents$figure, type = 'l', col = 'blue')
lines(sumutouttscomponents$figure, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("blue","green"))

sumutintsseasonallyadjusted <- Sumutts - sumutintscomponents$seasonal
plot(sumutintsseasonallyadjusted)

1. visualisasi dan prediksi data Inflow-Outflow di Sumatra Barat

plot(datainflowtahun$Tahun, datainflowtahun$`Sumatera Barat`,type = "l", col = "orange", main = 'Data Inflow Uang Kartal di Sumatra Barat Setiap Tahun', xlab = 'Tahun Periode', ylab = 'Data Inflow')
lines(dataoutflowtahun$Tahun, dataoutflowtahun$`Sumatera Barat`, col = 'purple')
legend('top', c("Inflow","Outlow"),fill=c("orange","purple"))

plot(datainflowperbulan$Bulan, datainflowperbulan$`Sumatera Barat`, type = "l", col = "steelblue", main = 'Data Inflow-Outflow Uang Kartal di Sumatera Utara Setiap Bulan', xlab = 'Bulan', ylab = 'Data Inflow-Outflow')
lines(dataoutflowperbulan$Bulan, dataoutflowperbulan$`Sumatera Barat`, col = 'purple')
legend('right',c('Inflow','Outflow'),fill = c('steelblue','purple'))

Sumbarts <- datainflowperbulan$`Sumatera Barat`
plot.ts(Sumbarts, type = "l", col = "yellow")

logsumbar <- dataoutflowperbulan$`Sumatera Barat`
plot.ts(logsumbar, type = "l", col = "steelblue")

library(TTR)
sumbarSMA3 <- SMA(datainflowperbulan$`Sumatera Barat`, n = 3)
plot.ts(sumbarSMA3)

library('TTR')
sumbarSMA3 <- SMA(datainflowperbulan$`Sumatera Barat`, n = 8)
plot.ts(sumbarSMA3)

sumbarinflowts <- ts(datainflowperbulan$`Sumatera Barat`, frequency = 12, start = c(2011,1))
sumbarinflowts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  539.1026  691.9377  592.4192  799.5802  586.3581 2176.2413  787.3761
## 2012  704.9590  885.0385  641.2570 1038.4298 1339.7732 1507.8169  789.7558
## 2013  994.6862 1107.1890 1086.4650 1303.0975 2173.6578 1202.3046  933.7316
## 2014  993.2328  762.4694  866.8874  675.1555 3114.2115 1200.3284 1157.9625
## 2015  836.3249  855.4427 1045.4934 2161.9387 1729.1363  824.0283  995.3346
## 2016  737.9714  919.1321  720.4721 2928.9035 1145.6062 1048.3006 1050.2491
## 2017 1037.7823 1173.4844  683.3602 2902.9224 1503.0438 1122.1439 1047.2614
## 2018 1043.6172  956.1836 2214.6015 2449.9422 1185.0947 1199.5619 1008.1251
## 2019  986.2518  810.4107 3290.2635 1379.9442 1194.5156 1066.1918 1093.7082
## 2020  586.1949  460.8289 1752.8809  720.9419  934.1740  842.2214  604.4694
## 2021  924.2523 2033.1787 1301.2214  934.1477 1017.1201                    
##            Aug       Sep       Oct       Nov       Dec
## 2011  854.4358  513.2068 1130.4905  865.3519  854.9514
## 2012  883.7977  550.4838 1776.9203 1112.8960  940.8829
## 2013  875.4979  548.6130 1675.2029 1111.3808  924.0093
## 2014  931.1027  691.0219 1698.0899  904.5427  969.6610
## 2015  750.3287  538.4899 1751.8196  892.1499  904.6083
## 2016 1005.0248  973.9955 1850.5169 1143.2622 1287.3335
## 2017  883.3420  677.3816 2037.4366  957.8346  732.3303
## 2018  776.0709  497.4198 1890.0168  845.6557  917.9565
## 2019  771.6151  503.1632 1936.5593  867.9322  593.6931
## 2020  893.2831  502.3578 2463.1456 1078.7217  996.1128
## 2021
sumbaroutflowts <- ts(dataoutflowperbulan$`Sumatera Barat`, frequency = 12, start = c(2011,1))
sumbaroutflowts
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  306.70068  227.74199  347.23365  335.95990  327.77383  399.24039
## 2012  214.52616  252.76902  462.17950  577.54488  461.72280  623.94257
## 2013  245.10797  218.45108  398.34203  317.45463  461.02830  471.02622
## 2014  185.88126  273.86294  480.13567  452.26115  466.95347  548.54011
## 2015  124.28159  443.52843  443.34413  514.88579  503.17081  926.50648
## 2016  140.03323  351.99398  316.41743  604.36993  757.45169 2598.20471
## 2017  349.10531  710.49354  848.72339  860.68821  999.67421 3176.59985
## 2018   55.96053  302.53616  543.51806  570.24349 1461.73993 2601.75460
## 2019   75.55494  370.26231  613.28838  952.67623 3692.93346   50.39067
## 2020  102.48174  308.36325  782.28278  819.13541 2242.07887   34.07573
## 2021   86.54225  374.74081  559.24066 1554.62334 2167.68623  295.68386
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  448.56438 1376.25990  147.70279  298.57216  349.75474  734.22520
## 2012  543.65577 1260.36359  163.22296  437.83317  405.63471 1030.89819
## 2013 1130.65362  773.18744  411.62158  536.88884  421.89894 1125.35118
## 2014 2100.82357  115.32964  393.25698  416.17580  555.13227 1071.69548
## 2015 2153.22221  161.12169  337.86600  346.21304  452.70749 1063.81167
## 2016  636.60428  298.35824  592.36023  470.20911  815.03093 1616.78339
## 2017  151.96773  583.16929  372.26254  511.67734  738.88167 1451.21128
## 2018  113.42245  401.53968  287.98036  398.91845  512.61803 1196.57690
## 2019  445.31828  672.32642  403.02094  428.11685  511.72653 1249.35115
## 2020  651.14472  565.58335  343.19704  792.57966  483.75028 1638.08473
## 2021  684.83394  217.18849
plot.ts(sumbarinflowts, col = 'blue')
lines(sumbaroutflowts, col = 'red')
legend('right', c('Inflow','Outflow'),fill = c('blue','red'))

sumbarintscomponents <- decompose(sumutinflowts)
sumbarintscomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2012  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2013  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2014  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2015  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2016  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2017  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2018  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2019  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2020  -407.66532  -442.57366   433.15186   863.43108   520.09971  -307.36877
## 2021  -407.66532  -442.57366   433.15186   863.43108   520.09971            
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2012  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2013  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2014  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2015  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2016  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2017  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2018  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2019  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2020  -380.38906  -391.68067 -1192.53974  1833.90171   -88.72274  -439.64441
## 2021
sumbarouttscomponents <- decompose(sumutoutflowts)
sumbarouttscomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2012 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2013 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2014 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2015 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2016 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2017 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2018 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2019 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2020 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2021 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2012   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2013   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2014   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2015   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2016   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2017   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2018   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2019   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2020   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2021   389.85774   -53.26060
plot(sumbarintscomponents$seasonal, type = 'l', col = 'turquoise')
lines(sumbarouttscomponents$seasonal, col = "orange")
legend("right",c("Inflow","Outflow"),fill=c("turquoise","orange"))

plot(sumbarintscomponents$seasonal, type = 'l', col = 'turquoise')
lines(sumbarouttscomponents$seasonal, col = "orange")
legend("right",c("Inflow","Outflow"),fill=c("turquoise","orange"))

plot(sumbarintscomponents$random, type = 'l', col = 'Skyblue')
lines(sumbarouttscomponents$random, col = 'purple')
legend('right', c("Inflow","Outflow"),fill=c("skyblue","purple"))

plot(sumbarintscomponents$figure, type = 'l', col = 'blue')
lines(sumbarouttscomponents$figure, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("blue","green"))

sumbarintsseasonallyadjusted <- Sumbarts - sumbarintscomponents$seasonal
plot(sumbarintsseasonallyadjusted)

2.3 1. visualisasi dan prediksi data Inflow-Outflow di Wilayah Sumatra

plot(dataoutflowtahun$Tahun, dataoutflowtahun$`Sumatera`, type = "l", col = "blue", main = 'Data Inflow dan Outflow Uang Kartal di Sumatera Setiap Tahun', xlab = 'Tahun Periode', ylab = 'Data Inflow dan Outflow')
lines(datainflowtahun$Tahun, datainflowtahun$`Sumatera`, col = 'red')
legend('top', c("Outlow","Inflow"),fill=c("blue","red"))

plot(datainflowperbulan$Bulan, datainflowperbulan$`Sumatera`, type = "l", col = "steelblue", main = 'Data Inflow-Outflow Uang Kartal di Sumatera Setiap Bulan', xlab = 'Bulan', ylab = 'Data Inflow-Outflow')
lines(dataoutflowperbulan$Bulan, dataoutflowperbulan$`Sumatera`, col = 'purple')
legend('right',c('Inflow','Outflow'),fill = c('steelblue','purple'))

Sumaterats <- datainflowperbulan$`Sumatera`
plot.ts(Sumaterats, type = "l", col = "yellow")

logsumatera <- dataoutflowperbulan$`Sumatera`
plot.ts(logsumatera, type = "l", col = "orange")

library(TTR)
sumateraSMA3 <- SMA(datainflowperbulan$`Sumatera`, n = 3)
plot.ts(sumateraSMA3)

library('TTR')
sumateraSMA3 <- SMA(datainflowperbulan$`Sumatera`, n = 8)
plot.ts(sumateraSMA3)

sumaterainflowts <- ts(datainflowperbulan$`Sumatera`, frequency = 12, start = c(2011,1))
sumaterainflowts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  3156.548  3821.275  3686.394  4369.643  3668.498 12874.594  4776.883
## 2012  4102.575  5321.981  4064.952  5489.699  9422.659  6813.338  4563.922
## 2013  8267.947  7623.367  6961.815  7552.290 19523.108  5265.619  6181.279
## 2014  5988.730  4921.418  5591.202  3440.204 19746.407  6305.927  6798.485
## 2015  4954.255  5358.552  5936.657 15050.224  8915.131  5710.106  6763.497
## 2016  5254.795  6761.434  5066.314 20548.504  6548.412  7498.570  6952.295
## 2017  6638.224  7317.874  4071.240 21208.720  8722.990  8250.898  7610.729
## 2018  7628.992  5973.344 19402.076 14326.890  9119.047  8886.660  8429.308
## 2019  9406.456  7523.072 26667.739 11014.410 10707.883  9462.332 10195.256
## 2020  6536.998  7788.132 14946.781  8278.451  8012.437  7559.106  5735.149
## 2021  9095.626 16275.454 10211.629  6787.420  7085.136                    
##            Aug       Sep       Oct       Nov       Dec
## 2011  5669.993  3496.335  7371.435  5443.242  5022.248
## 2012  5452.494  2842.029 13436.780  8035.017  7017.142
## 2013  5347.888  3157.046 11612.677  6964.701  5238.644
## 2014  5515.775  3899.380 12838.000  5173.687  5600.472
## 2015  6087.162  4161.556 13692.690  7760.507  6313.597
## 2016  6098.330  5268.100 12734.711  7752.686  7568.883
## 2017  7122.755  4748.106 16240.858  7668.179  7130.231
## 2018  8078.990  4610.368 17413.907  9281.546  8215.984
## 2019  8492.726  5380.872 19330.620 10365.349  7128.873
## 2020  8462.623  5200.062 21182.291  9983.745  8648.731
## 2021
sumateraoutflowts <- ts(dataoutflowperbulan$`Sumatera`, frequency = 12, start = c(2011,1))
sumateraoutflowts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  3441.614  3989.113  4228.628  6721.276  5787.181  7394.536  7154.223
## 2012  3200.178  4100.054  6605.179  6665.551  7147.179  8560.319  7711.993
## 2013  2221.436  4621.158  8219.574  4613.748  8423.251  7790.216 17485.108
## 2014  4289.908  4820.657  7088.166  8015.452  7757.313  8157.185 24722.650
## 2015  2036.392  5682.352  6300.508 10051.597  7592.788 12421.852 22934.645
## 2016  2804.053  4909.740  6985.628  8649.278 10859.812 28813.953  6455.632
## 2017  4855.706  6495.905  9234.822  9234.883 11638.176 29889.710  3252.637
## 2018  2424.451  7487.879 10455.312  9952.146 19165.027 25439.136  6324.910
## 2019  3735.569  7719.811 11089.472 15127.060 37664.505  2465.417 10575.813
## 2020  4693.754  6958.705 12667.832 11775.906 19644.928  3971.849 12710.177
## 2021  1990.678  6099.024  9638.351 19930.265 22004.413  7748.386 11650.666
##            Aug       Sep       Oct       Nov       Dec
## 2011 16042.967  1914.778  5173.616  5609.913 12634.335
## 2012 13610.489  3180.756  6273.015  5018.851 13161.070
## 2013 10207.967  6806.163  8014.259  8355.285 16529.555
## 2014  2377.454  6171.922  7655.389  7005.319 14276.798
## 2015  4668.410  6733.060  5783.016  8056.207 16924.980
## 2016  7937.744 10071.108  7571.519  9563.416 17369.845
## 2017 11015.435  6693.301  8559.331 12083.466 20652.339
## 2018 10042.081  7060.453  8155.825  9944.104 19225.025
## 2019 11780.050  8535.685  8868.257 12462.606 23460.023
## 2020  9744.450  9247.241 14431.727  9435.013 25307.224
## 2021  7565.509
plot.ts(sumaterainflowts, col = 'blue')
lines(sumateraoutflowts, col = 'red')
legend('right', c('Inflow','Outflow'),fill = c('black','red'))

sumateraintscomponents <- decompose(sumaterainflowts)
sumateraintscomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038 -1213.0639
## 2012 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038 -1213.0639
## 2013 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038 -1213.0639
## 2014 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038 -1213.0639
## 2015 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038 -1213.0639
## 2016 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038 -1213.0639
## 2017 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038 -1213.0639
## 2018 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038 -1213.0639
## 2019 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038 -1213.0639
## 2020 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038 -1213.0639
## 2021 -1755.1280 -1793.5819  1976.6683  3482.6880  2709.8038           
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011 -1435.0086 -1679.4540 -4115.0231  6156.7258  -610.1152 -1724.5112
## 2012 -1435.0086 -1679.4540 -4115.0231  6156.7258  -610.1152 -1724.5112
## 2013 -1435.0086 -1679.4540 -4115.0231  6156.7258  -610.1152 -1724.5112
## 2014 -1435.0086 -1679.4540 -4115.0231  6156.7258  -610.1152 -1724.5112
## 2015 -1435.0086 -1679.4540 -4115.0231  6156.7258  -610.1152 -1724.5112
## 2016 -1435.0086 -1679.4540 -4115.0231  6156.7258  -610.1152 -1724.5112
## 2017 -1435.0086 -1679.4540 -4115.0231  6156.7258  -610.1152 -1724.5112
## 2018 -1435.0086 -1679.4540 -4115.0231  6156.7258  -610.1152 -1724.5112
## 2019 -1435.0086 -1679.4540 -4115.0231  6156.7258  -610.1152 -1724.5112
## 2020 -1435.0086 -1679.4540 -4115.0231  6156.7258  -610.1152 -1724.5112
## 2021
sumateraouttscomponents <- decompose(sumateraoutflowts)
sumateraouttscomponents$seasonal
##               Jan          Feb          Mar          Apr          May
## 2011 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2012 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2013 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2014 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2015 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2016 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2017 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2018 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2019 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2020 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2021 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
##               Jun          Jul          Aug          Sep          Oct
## 2011  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2012  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2013  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2014  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2015  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2016  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2017  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2018  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2019  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2020  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2021  4146.113221  2196.088359     3.268476                          
##               Nov          Dec
## 2011 -1217.537318  7914.117948
## 2012 -1217.537318  7914.117948
## 2013 -1217.537318  7914.117948
## 2014 -1217.537318  7914.117948
## 2015 -1217.537318  7914.117948
## 2016 -1217.537318  7914.117948
## 2017 -1217.537318  7914.117948
## 2018 -1217.537318  7914.117948
## 2019 -1217.537318  7914.117948
## 2020 -1217.537318  7914.117948
## 2021
plot(sumateraintscomponents$seasonal, type = 'l', col = 'turquoise')
lines(sumateraouttscomponents$seasonal, col = "orange")
legend("right",c("Inflow","Outflow"),fill=c("turquoise","orange"))

plot(sumateraintscomponents$trend, type = 'l', col = 'red')
lines(sumateraouttscomponents$trend, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("red","green"))

plot(sumateraintscomponents$random, type = 'l', col = 'Skyblue')
lines(sumateraouttscomponents$random, col = 'purple')
legend('right', c("Inflow","Outflow"),fill=c("skyblue","purple"))

plot(sumateraintscomponents$figure, type = 'l', col = 'blue')
lines(sumateraouttscomponents$figure, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("blue","green"))

sumateraintsseasonallyadjusted <- Sumaterats - sumateraintscomponents$seasonal
plot(sumateraintsseasonallyadjusted)

sumaterasforecast <- HoltWinters(Sumaterats, beta=FALSE, gamma=FALSE)
sumaterasforecast
## Holt-Winters exponential smoothing without trend and without seasonal component.
## 
## Call:
## HoltWinters(x = Sumaterats, beta = FALSE, gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 0.07627218
##  beta : FALSE
##  gamma: FALSE
## 
## Coefficients:
##       [,1]
## a 9833.919
sumaterasforecast$fitted
## Time Series:
## Start = 2 
## End = 125 
## Frequency = 1 
##          xhat     level
##   2  3156.548  3156.548
##   3  3207.249  3207.249
##   4  3243.794  3243.794
##   5  3329.665  3329.665
##   6  3355.508  3355.508
##   7  4081.550  4081.550
##   8  4134.584  4134.584
##   9  4251.693  4251.693
##  10  4194.081  4194.081
##  11  4436.424  4436.424
##  12  4513.216  4513.216
##  13  4552.041  4552.041
##  14  4517.760  4517.760
##  15  4579.099  4579.099
##  16  4539.884  4539.884
##  17  4612.329  4612.329
##  18  4979.223  4979.223
##  19  5119.115  5119.115
##  20  5076.769  5076.769
##  21  5105.427  5105.427
##  22  4932.792  4932.792
##  23  5581.410  5581.410
##  24  5768.552  5768.552
##  25  5863.785  5863.785
##  26  6047.155  6047.155
##  27  6167.376  6167.376
##  28  6227.970  6227.970
##  29  6328.979  6328.979
##  30  7335.324  7335.324
##  31  7177.463  7177.463
##  32  7101.482  7101.482
##  33  6967.731  6967.731
##  34  6677.082  6677.082
##  35  7053.531  7053.531
##  36  7046.755  7046.755
##  37  6908.847  6908.847
##  38  6838.667  6838.667
##  39  6692.435  6692.435
##  40  6608.441  6608.441
##  41  6366.793  6366.793
##  42  7387.285  7387.285
##  43  7304.808  7304.808
##  44  7266.189  7266.189
##  45  7132.681  7132.681
##  46  6886.070  6886.070
##  47  7340.037  7340.037
##  48  7174.805  7174.805
##  49  7054.727  7054.727
##  50  6894.519  6894.519
##  51  6777.368  6777.368
##  52  6713.245  6713.245
##  53  7349.124  7349.124
##  54  7468.567  7468.567
##  55  7334.446  7334.446
##  56  7290.898  7290.898
##  57  7199.087  7199.087
##  58  6967.407  6967.407
##  59  7480.359  7480.359
##  60  7501.727  7501.727
##  61  7411.106  7411.106
##  62  7246.639  7246.639
##  63  7209.631  7209.631
##  64  7046.156  7046.156
##  65  8076.009  8076.009
##  66  7959.496  7959.496
##  67  7924.340  7924.340
##  68  7850.200  7850.200
##  69  7716.581  7716.581
##  70  7529.830  7529.830
##  71  7926.818  7926.818
##  72  7913.537  7913.537
##  73  7887.249  7887.249
##  74  7791.983  7791.983
##  75  7755.822  7755.822
##  76  7474.791  7474.791
##  77  8522.307  8522.307
##  78  8537.614  8537.614
##  79  8515.746  8515.746
##  80  8446.718  8446.718
##  81  8345.736  8345.736
##  82  8071.337  8071.337
##  83  8694.444  8694.444
##  84  8616.169  8616.169
##  85  8502.833  8502.833
##  86  8436.183  8436.183
##  87  8248.337  8248.337
##  88  9099.057  9099.057
##  89  9497.795  9497.795
##  90  9468.907  9468.907
##  91  9424.498  9424.498
##  92  9348.593  9348.593
##  93  9251.757  9251.757
##  94  8897.749  8897.749
##  95  9547.295  9547.295
##  96  9527.025  9527.025
##  97  9427.029  9427.029
##  98  9425.460  9425.460
##  99  9280.361  9280.361
## 100 10606.534 10606.534
## 101 10637.644 10637.644
## 102 10643.001 10643.001
## 103 10552.949 10552.949
## 104 10525.667 10525.667
## 105 10370.610 10370.610
## 106  9990.032  9990.032
## 107 10702.459 10702.459
## 108 10676.747 10676.747
## 109 10406.143 10406.143
## 110 10111.035 10111.035
## 111  9933.862  9933.862
## 112 10316.208 10316.208
## 113 10160.784 10160.784
## 114  9996.925  9996.925
## 115  9810.987  9810.987
## 116  9500.114  9500.114
## 117  9420.982  9420.982
## 118  9099.043  9099.043
## 119 10020.659 10020.659
## 120 10017.844 10017.844
## 121  9913.418  9913.418
## 122  9851.044  9851.044
## 123 10341.047 10341.047
## 124 10331.176 10331.176
## 125 10060.886 10060.886
plot(sumaterasforecast)

sumaterasforecast$SSE
## [1] 2371546657
sumaterasforecast <- HoltWinters(sumateraintscomponents$seasonal, beta = FALSE, gamma = FALSE)
sumaterasforecast
## Holt-Winters exponential smoothing without trend and without seasonal component.
## 
## Call:
## HoltWinters(x = sumateraintscomponents$seasonal, beta = FALSE,     gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 0.04038928
##  beta : FALSE
##  gamma: FALSE
## 
## Coefficients:
##       [,1]
## a 165.2801
sumaterasforecast$fitted
##                  xhat        level
## Feb 2011 -1755.127976 -1755.127976
## Mar 2011 -1756.681102 -1756.681102
## Apr 2011 -1605.893818 -1605.893818
## May 2011 -1400.369680 -1400.369680
## Jun 2011 -1234.362745 -1234.362745
## Jul 2011 -1233.502501 -1233.502501
## Aug 2011 -1241.641188 -1241.641188
## Sep 2011 -1259.324130 -1259.324130
## Oct 2011 -1374.663747 -1374.663747
## Nov 2011 -1070.476371 -1070.476371
## Dec 2011 -1051.882719 -1051.882719
## Jan 2012 -1079.049697 -1079.049697
## Feb 2012 -1106.356009 -1106.356009
## Mar 2012 -1134.112565 -1134.112565
## Apr 2012 -1008.470375 -1008.470375
## May 2012  -827.075737  -827.075737
## Jun 2012  -684.223729  -684.223729
## Jul 2012  -705.583202  -705.583202
## Aug 2012  -735.044168  -735.044168
## Sep 2012  -773.188197  -773.188197
## Oct 2012  -908.162493  -908.162493
## Nov 2012  -622.816765  -622.816765
## Dec 2012  -622.303760  -622.303760
## Jan 2013  -666.821122  -666.821122
## Feb 2013  -710.777048  -710.777048
## Mar 2013  -754.510752  -754.510752
## Apr 2013  -644.200404  -644.200404
## May 2013  -477.518367  -477.518367
## Jun 2013  -348.784729  -348.784729
## Jul 2013  -383.692340  -383.692340
## Aug 2013  -426.154245  -426.154245
## Sep 2013  -476.774115  -476.774115
## Oct 2013  -623.720361  -623.720361
## Nov 2013  -349.863045  -349.863045
## Dec 2013  -360.374443  -360.374443
## Jan 2014  -415.470940  -415.470940
## Feb 2014  -469.578719  -469.578719
## Mar 2014  -523.054249  -523.054249
## Apr 2014  -422.092262  -422.092262
## May 2014  -264.381011  -264.381011
## Jun 2014  -144.255837  -144.255837
## Jul 2014  -187.424222  -187.424222
## Aug 2014  -237.813254  -237.813254
## Sep 2014  -296.040081  -296.040081
## Oct 2014  -450.286044  -450.286044
## Nov 2014  -183.433614  -183.433614
## Dec 2014  -200.666977  -200.666977
## Jan 2015  -262.213943  -262.213943
## Feb 2015  -322.511661  -322.511661
## Mar 2015  -381.927123  -381.927123
## Apr 2015  -286.665158  -286.665158
## May 2015  -134.423711  -134.423711
## Jun 2015   -19.547418   -19.547418
## Jul 2015   -67.752686   -67.752686
## Aug 2015  -122.975164  -122.975164
## Sep 2015  -185.840218  -185.840218
## Oct 2015  -344.537074  -344.537074
## Nov 2015   -81.955769   -81.955769
## Dec 2015  -103.287748  -103.287748
## Jan 2016  -168.767791  -168.767791
## Feb 2016  -232.839731  -232.839731
## Mar 2016  -295.876978  -295.876978
## Apr 2016  -204.090516  -204.090516
## May 2016   -55.184199   -55.184199
## Jun 2016    56.491668    56.491668
## Jul 2016     5.215236     5.215236
## Aug 2016   -52.954364   -52.954364
## Sep 2016  -118.647508  -118.647508
## Oct 2016  -280.058228  -280.058228
## Nov 2016   -20.081177   -20.081177
## Dec 2016   -43.912227   -43.912227
## Jan 2017  -111.790404  -111.790404
## Feb 2017  -178.163620  -178.163620
## Mar 2017  -243.409194  -243.409194
## Apr 2017  -153.741869  -153.741869
## May 2017    -6.869097    -6.869097
## Jun 2017   102.855358   102.855358
## Jul 2017    49.706330    49.706330
## Aug 2017   -10.260233   -10.260233
## Sep 2017   -77.677762   -77.677762
## Oct 2017  -240.743221  -240.743221
## Nov 2017    17.645925    17.645925
## Dec 2017    -7.708894    -7.708894
## Jan 2018   -77.049298   -77.049298
## Feb 2018  -144.825682  -144.825682
## Mar 2018  -211.417752  -211.417752
## Apr 2018  -123.042537  -123.042537
## May 2018    22.590311    22.590311
## Jun 2018   131.124921   131.124921
## Jul 2018    76.834106    76.834106
## Aug 2018    15.771872    15.771872
## Sep 2018   -52.697074   -52.697074
## Oct 2018  -216.771486  -216.771486
## Nov 2018    40.649460    40.649460
## Dec 2018    14.365544    14.365544
## Jan 2019   -55.866430   -55.866430
## Feb 2019  -124.498375  -124.498375
## Mar 2019  -191.911450  -191.911450
## Apr 2019  -104.324081  -104.324081
## May 2019    40.552742    40.552742
## Jun 2019   148.361863   148.361863
## Jul 2019    93.374861    93.374861
## Aug 2019    31.644557    31.644557
## Sep 2019   -37.465476   -37.465476
## Oct 2019  -202.155080  -202.155080
## Nov 2019    54.675519    54.675519
## Dec 2019    27.825101    27.825101
## Jan 2020   -42.950495   -42.950495
## Feb 2020  -112.104105  -112.104105
## Mar 2020  -180.017776  -180.017776
## Apr 2020   -92.910783   -92.910783
## May 2020    51.505065    51.505065
## Jun 2020   158.871829   158.871829
## Jul 2020   103.460337   103.460337
## Aug 2020    41.322688    41.322688
## Sep 2020   -28.178237   -28.178237
## Oct 2020  -193.242946  -193.242946
## Nov 2020    63.227698    63.227698
## Dec 2020    36.031864    36.031864
## Jan 2021   -35.075197   -35.075197
## Feb 2021  -104.546885  -104.546885
## Mar 2021  -172.765786  -172.765786
## Apr 2021   -85.951697   -85.951697
## May 2021    58.183079    58.183079
plot(sumaterasforecast)

sumaterasforecast$SSE
## [1] 1050129697
library(forecast)
dftimeseries.hw <- HoltWinters(Sumaterats, gamma = FALSE)
sumateratsforecasts2 <- forecast(dftimeseries.hw, h = 20)
sumateratsforecasts2
##     Point Forecast      Lo 80    Hi 80      Lo 95    Hi 95
## 126       8610.430  2865.0876 14355.77  -176.3132 17397.17
## 127       8521.318  2761.9865 14280.65  -286.8193 17329.45
## 128       8432.205  2650.6877 14213.72  -409.8629 17274.27
## 129       8343.093  2529.3936 14156.79  -548.1928 17234.38
## 130       8253.980  2396.3922 14111.57  -704.4276 17212.39
## 131       8164.868  2250.0852 14079.65  -881.0115 17210.75
## 132       8075.755  2089.0174 14062.49 -1080.1700 17231.68
## 133       7986.643  1911.9038 14061.38 -1303.8687 17277.15
## 134       7897.530  1717.6506 14077.41 -1553.7799 17348.84
## 135       7808.417  1505.3716 14111.46 -1831.2593 17448.09
## 136       7719.305  1274.3944 14164.22 -2137.3351 17575.94
## 137       7630.192  1024.2596 14236.13 -2472.7100 17733.09
## 138       7541.080   754.7108 14327.45 -2837.7760 17919.94
## 139       7451.967   465.6788 14438.26 -3232.6389 18136.57
## 140       7362.855   157.2596 14568.45 -3657.1519 18382.86
## 141       7273.742  -170.3100 14717.79 -4110.9531 18658.44
## 142       7184.630  -516.6786 14885.94 -4593.5049 18962.76
## 143       7095.517  -881.4056 15072.44 -5104.1334 19295.17
## 144       7006.404 -1263.9848 15276.79 -5642.0645 19654.87
## 145       6917.292 -1663.8658 15498.45 -6206.4562 20041.04
plot(sumateratsforecasts2)

sumateratsdiff1 <- diff(Sumaterats, differences = 1)
plot.ts(sumateratsdiff1)

acf(sumateratsdiff1, lag.max = 20)