Survey Data Source: National Household Education Surveys (NHES) Program 2019: Parent and Family Involvement in Education (PFI)

Research question

How do the factors of parent volunteerism, developmental delay, parent’s highest education level, and race/ethnicity affect whether a child enjoys school?

Predictor variables

Predictor 1: adult_volunteer; Item 60B: FSVOL “… has any adult in this child’s household … served as a volunteer in this child’s classroom or elsewhere in the school?”

Predictor 2: dev_delay; Item 76K: HDDELAYX “Has a health or education professional told you that this child has … a developmental delay?”

Predictor 3: parent_educ; PARGRADEX “Parent/guardian highest education”

Predictor 4: race_eth; RACEETH “Race and ethnicity of child”

Results

Present results from a model with sample weights and design effects, if your data allow for this. Present the results in tabular form, with Parameter estimates, odds ratios (if using the logit model) and confidence intervals for the odds ratios.

library(srvyr)

options(survey.lonely.psu = "adjust")

pfi19design <- svydesign(ids = ~PPSU, strata= ~PSTRATUM, weights = ~FPWT, data = pfi19, nest = TRUE)
pfi19design
## Stratified Independent Sampling design (with replacement)
## svydesign(ids = ~PPSU, strata = ~PSTRATUM, weights = ~FPWT, data = pfi19, 
##     nest = TRUE)
fit.logit <- svyglm(enjoy_school ~ adult_volunteer + dev_delay + parent_educ + race_eth, 
                    design = pfi19design, 
                    family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
summary(fit.logit)
## 
## Call:
## svyglm(formula = enjoy_school ~ adult_volunteer + dev_delay + 
##     parent_educ + race_eth, design = pfi19design, family = binomial)
## 
## Survey design:
## svydesign(ids = ~PPSU, strata = ~PSTRATUM, weights = ~FPWT, data = pfi19, 
##     nest = TRUE)
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.06369    0.20550  10.042  < 2e-16 ***
## adult_volunteerYes        0.69128    0.07698   8.980  < 2e-16 ***
## dev_delayYes             -0.91275    0.15752  -5.795 6.98e-09 ***
## parent_educ1HS Grad      -0.31477    0.21816  -1.443  0.14909    
## parent_educ2Some College -0.30100    0.20590  -1.462  0.14379    
## parent_educ3College Grad -0.25541    0.21493  -1.188  0.23472    
## parent_educ4Grad School  -0.04690    0.22242  -0.211  0.83301    
## race_ethHispanic          0.32252    0.10356   3.114  0.00185 ** 
## race_ethNH Asian          0.44188    0.27674   1.597  0.11034    
## race_ethNH Black          0.36178    0.13751   2.631  0.00852 ** 
## race_ethOther            -0.17170    0.13944  -1.231  0.21819    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9963352)
## 
## Number of Fisher Scoring iterations: 5
library(gtsummary)
fit.logit %>%
  tbl_regression(exponentiate=TRUE)
Characteristic OR1 95% CI1 p-value
adult_volunteer
No
Yes 2.00 1.72, 2.32 <0.001
dev_delay
No
Yes 0.40 0.29, 0.55 <0.001
parent_educ
0Less than HS
1HS Grad 0.73 0.48, 1.12 0.15
2Some College 0.74 0.49, 1.11 0.14
3College Grad 0.77 0.51, 1.18 0.2
4Grad School 0.95 0.62, 1.48 0.8
race_eth
NH White
Hispanic 1.38 1.13, 1.69 0.002
NH Asian 1.56 0.90, 2.68 0.11
NH Black 1.44 1.10, 1.88 0.009
Other 0.84 0.64, 1.11 0.2

1 OR = Odds Ratio, CI = Confidence Interval

library(sjPlot)
plot_model(fit.logit,
           axis.lim = c(.1, 10), 
           title = "Odds Ratios for Children Enjoying School")

Interesting cases

Generate predicted probabilities for some “interesting” cases from your analysis, to highlight the effects from the model and your stated research question.

library(emmeans)
rg <- ref_grid(fit.logit)

marg_logit <- emmeans(object = rg,
              specs = c("adult_volunteer",  "dev_delay", "race_eth", "parent_educ"),
              type = "response")

knitr::kable(marg_logit, digits = 4)
adult_volunteer dev_delay race_eth parent_educ prob SE df asymp.LCL asymp.UCL
No No NH White 0Less than HS 0.8873 0.0205 Inf 0.8404 0.9218
Yes No NH White 0Less than HS 0.9402 0.0118 Inf 0.9125 0.9595
No Yes NH White 0Less than HS 0.7597 0.0469 Inf 0.6565 0.8394
Yes Yes NH White 0Less than HS 0.8632 0.0312 Inf 0.7898 0.9138
No No Hispanic 0Less than HS 0.9158 0.0144 Inf 0.8830 0.9400
Yes No Hispanic 0Less than HS 0.9560 0.0082 Inf 0.9367 0.9696
No Yes Hispanic 0Less than HS 0.8136 0.0383 Inf 0.7268 0.8774
Yes Yes Hispanic 0Less than HS 0.8970 0.0244 Inf 0.8385 0.9360
No No NH Asian 0Less than HS 0.9245 0.0297 Inf 0.8419 0.9657
Yes No NH Asian 0Less than HS 0.9607 0.0160 Inf 0.9140 0.9825
No Yes NH Asian 0Less than HS 0.8310 0.0629 Inf 0.6714 0.9221
Yes Yes NH Asian 0Less than HS 0.9076 0.0378 Inf 0.8023 0.9596
No No NH Black 0Less than HS 0.9187 0.0167 Inf 0.8793 0.9461
Yes No NH Black 0Less than HS 0.9576 0.0092 Inf 0.9353 0.9724
No Yes NH Black 0Less than HS 0.8195 0.0396 Inf 0.7287 0.8847
Yes Yes NH Black 0Less than HS 0.9006 0.0246 Inf 0.8410 0.9395
No No Other 0Less than HS 0.8690 0.0262 Inf 0.8086 0.9124
Yes No Other 0Less than HS 0.9298 0.0153 Inf 0.8931 0.9545
No Yes Other 0Less than HS 0.7270 0.0553 Inf 0.6067 0.8213
Yes Yes Other 0Less than HS 0.8416 0.0382 Inf 0.7519 0.9031
No No NH White 1HS Grad 0.8518 0.0139 Inf 0.8224 0.8771
Yes No NH White 1HS Grad 0.9198 0.0089 Inf 0.9007 0.9356
No Yes NH White 1HS Grad 0.6977 0.0373 Inf 0.6199 0.7655
Yes Yes NH White 1HS Grad 0.8216 0.0278 Inf 0.7606 0.8698
No No Hispanic 1HS Grad 0.8881 0.0122 Inf 0.8618 0.9099
Yes No Hispanic 1HS Grad 0.9406 0.0078 Inf 0.9234 0.9542
No Yes Hispanic 1HS Grad 0.7611 0.0362 Inf 0.6831 0.8248
Yes Yes Hispanic 1HS Grad 0.8641 0.0253 Inf 0.8066 0.9065
No No NH Asian 1HS Grad 0.8994 0.0266 Inf 0.8340 0.9409
Yes No NH Asian 1HS Grad 0.9470 0.0148 Inf 0.9091 0.9696
No Yes NH Asian 1HS Grad 0.7821 0.0544 Inf 0.6575 0.8703
Yes Yes NH Asian 1HS Grad 0.8775 0.0348 Inf 0.7915 0.9312
No No NH Black 1HS Grad 0.8919 0.0151 Inf 0.8585 0.9182
Yes No NH Black 1HS Grad 0.9428 0.0088 Inf 0.9229 0.9578
No Yes NH Black 1HS Grad 0.7682 0.0362 Inf 0.6898 0.8316
Yes Yes NH Black 1HS Grad 0.8687 0.0244 Inf 0.8131 0.9096
No No Other 1HS Grad 0.8288 0.0233 Inf 0.7782 0.8698
Yes No Other 1HS Grad 0.9062 0.0147 Inf 0.8732 0.9313
No Yes Other 1HS Grad 0.6603 0.0487 Inf 0.5594 0.7484
Yes Yes Other 1HS Grad 0.7951 0.0373 Inf 0.7125 0.8586
No No NH White 2Some College 0.8535 0.0096 Inf 0.8338 0.8713
Yes No NH White 2Some College 0.9209 0.0067 Inf 0.9067 0.9330
No Yes NH White 2Some College 0.7006 0.0328 Inf 0.6325 0.7607
Yes Yes NH White 2Some College 0.8236 0.0249 Inf 0.7694 0.8673
No No Hispanic 2Some College 0.8895 0.0099 Inf 0.8685 0.9074
Yes No Hispanic 2Some College 0.9414 0.0067 Inf 0.9268 0.9532
No Yes Hispanic 2Some College 0.7636 0.0334 Inf 0.6921 0.8227
Yes Yes Hispanic 2Some College 0.8657 0.0236 Inf 0.8125 0.9056
No No NH Asian 2Some College 0.9007 0.0255 Inf 0.8384 0.9406
Yes No NH Asian 2Some College 0.9476 0.0142 Inf 0.9117 0.9695
No Yes NH Asian 2Some College 0.7845 0.0524 Inf 0.6647 0.8698
Yes Yes NH Asian 2Some College 0.8790 0.0335 Inf 0.7965 0.9309
No No NH Black 2Some College 0.8933 0.0132 Inf 0.8644 0.9166
Yes No NH Black 2Some College 0.9435 0.0078 Inf 0.9261 0.9570
No Yes NH Black 2Some College 0.7706 0.0333 Inf 0.6989 0.8294
Yes Yes NH Black 2Some College 0.8702 0.0226 Inf 0.8191 0.9085
No No Other 2Some College 0.8308 0.0197 Inf 0.7887 0.8659
Yes No Other 2Some College 0.9074 0.0127 Inf 0.8794 0.9294
No Yes Other 2Some College 0.6633 0.0442 Inf 0.5721 0.7439
Yes Yes Other 2Some College 0.7973 0.0341 Inf 0.7222 0.8561
No No NH White 3College Grad 0.8592 0.0094 Inf 0.8397 0.8766
Yes No NH White 3College Grad 0.9241 0.0055 Inf 0.9125 0.9343
No Yes NH White 3College Grad 0.7100 0.0335 Inf 0.6402 0.7711
Yes Yes NH White 3College Grad 0.8302 0.0240 Inf 0.7778 0.8722
No No Hispanic 3College Grad 0.8939 0.0107 Inf 0.8710 0.9131
Yes No Hispanic 3College Grad 0.9439 0.0065 Inf 0.9297 0.9553
No Yes Hispanic 3College Grad 0.7717 0.0346 Inf 0.6970 0.8325
Yes Yes Hispanic 3College Grad 0.8709 0.0233 Inf 0.8180 0.9102
No No NH Asian 3College Grad 0.9047 0.0237 Inf 0.8470 0.9421
Yes No NH Asian 3College Grad 0.9499 0.0130 Inf 0.9174 0.9700
No Yes NH Asian 3College Grad 0.7921 0.0501 Inf 0.6773 0.8736
Yes Yes NH Asian 3College Grad 0.8838 0.0314 Inf 0.8068 0.9326
No No NH Black 3College Grad 0.8975 0.0140 Inf 0.8666 0.9220
Yes No NH Black 3College Grad 0.9459 0.0078 Inf 0.9284 0.9593
No Yes NH Black 3College Grad 0.7786 0.0351 Inf 0.7024 0.8397
Yes Yes NH Black 3College Grad 0.8753 0.0228 Inf 0.8234 0.9136
No No Other 3College Grad 0.8371 0.0198 Inf 0.7945 0.8722
Yes No Other 3College Grad 0.9112 0.0119 Inf 0.8848 0.9319
No Yes Other 3College Grad 0.6734 0.0453 Inf 0.5793 0.7554
Yes Yes Other 3College Grad 0.8046 0.0335 Inf 0.7305 0.8621
No No NH White 4Grad School 0.8825 0.0086 Inf 0.8645 0.8985
Yes No NH White 4Grad School 0.9375 0.0050 Inf 0.9269 0.9467
No Yes NH White 4Grad School 0.7510 0.0316 Inf 0.6842 0.8077
Yes Yes NH White 4Grad School 0.8576 0.0216 Inf 0.8098 0.8949
No No Hispanic 4Grad School 0.9121 0.0098 Inf 0.8909 0.9295
Yes No Hispanic 4Grad School 0.9539 0.0058 Inf 0.9412 0.9640
No Yes Hispanic 4Grad School 0.8064 0.0319 Inf 0.7361 0.8615
Yes Yes Hispanic 4Grad School 0.8926 0.0207 Inf 0.8449 0.9269
No No NH Asian 4Grad School 0.9212 0.0194 Inf 0.8738 0.9518
Yes No NH Asian 4Grad School 0.9589 0.0104 Inf 0.9328 0.9751
No Yes NH Asian 4Grad School 0.8243 0.0433 Inf 0.7231 0.8940
Yes Yes NH Asian 4Grad School 0.9035 0.0262 Inf 0.8385 0.9441
No No NH Black 4Grad School 0.9152 0.0118 Inf 0.8890 0.9356
Yes No NH Black 4Grad School 0.9556 0.0065 Inf 0.9411 0.9667
No Yes NH Black 4Grad School 0.8124 0.0313 Inf 0.7433 0.8663
Yes Yes NH Black 4Grad School 0.8963 0.0196 Inf 0.8510 0.9290
No No Other 4Grad School 0.8635 0.0185 Inf 0.8231 0.8959
Yes No Other 4Grad School 0.9267 0.0109 Inf 0.9023 0.9453
No Yes Other 4Grad School 0.7175 0.0440 Inf 0.6240 0.7954
Yes Yes Other 4Grad School 0.8353 0.0309 Inf 0.7656 0.8873
comps <- as.data.frame(marg_logit)

comps[comps$adult_volunteer == "Yes" & comps$dev_delay == "Yes", ]
comps[comps$dev_delay == "No" , ]

Interestingly, there were no significant effects based on parent/guardian education gradient or child race/ethnicity. Across those categories, parent volunteerism increased the likelihood of a child enjoying school and diagnosis of a developmental delay decreased the likelihood of a child enjoying school.

LS0tDQp0aXRsZTogIjcyODNfSFczIg0KYXV0aG9yOiAiUnlhbiBMYWJpbyINCmRhdGU6ICIyLzE0LzIwMjIiDQpvdXRwdXQ6DQogICBodG1sX2RvY3VtZW50Og0KICAgIGRmX3ByaW50OiBwYWdlZA0KICAgIGZpZ19oZWlnaHQ6IDcNCiAgICBmaWdfd2lkdGg6IDcNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogeWVzDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KLS0tDQoNClN1cnZleSBEYXRhIFNvdXJjZTogTmF0aW9uYWwgSG91c2Vob2xkIEVkdWNhdGlvbiBTdXJ2ZXlzIChOSEVTKSBQcm9ncmFtIDIwMTk6IFBhcmVudCBhbmQgRmFtaWx5IEludm9sdmVtZW50IGluIEVkdWNhdGlvbiAoUEZJKQ0KDQojIyBSZXNlYXJjaCBxdWVzdGlvbiANCg0KSG93IGRvIHRoZSBmYWN0b3JzIG9mIHBhcmVudCB2b2x1bnRlZXJpc20sIGRldmVsb3BtZW50YWwgZGVsYXksIHBhcmVudCdzIGhpZ2hlc3QgZWR1Y2F0aW9uIGxldmVsLCBhbmQgcmFjZS9ldGhuaWNpdHkgYWZmZWN0IHdoZXRoZXIgYSBjaGlsZCBlbmpveXMgc2Nob29sPw0KDQojIyBQcmVkaWN0b3IgdmFyaWFibGVzIA0KDQpQcmVkaWN0b3IgMTogYWR1bHRfdm9sdW50ZWVyOyBJdGVtIDYwQjogRlNWT0wgIi4uLiBoYXMgYW55IGFkdWx0IGluIHRoaXMgY2hpbGQncyBob3VzZWhvbGQgLi4uIHNlcnZlZCBhcyBhIHZvbHVudGVlciBpbiB0aGlzIGNoaWxkJ3MgY2xhc3Nyb29tIG9yIGVsc2V3aGVyZSBpbiB0aGUgc2Nob29sPyINCg0KUHJlZGljdG9yIDI6IGRldl9kZWxheTsgSXRlbSA3Nks6IEhEREVMQVlYICJIYXMgYSBoZWFsdGggb3IgZWR1Y2F0aW9uIHByb2Zlc3Npb25hbCB0b2xkIHlvdSB0aGF0IHRoaXMgY2hpbGQgaGFzIC4uLiBhIGRldmVsb3BtZW50YWwgZGVsYXk/Ig0KDQpQcmVkaWN0b3IgMzogcGFyZW50X2VkdWM7IFBBUkdSQURFWCAiUGFyZW50L2d1YXJkaWFuIGhpZ2hlc3QgZWR1Y2F0aW9uIg0KDQpQcmVkaWN0b3IgNDogcmFjZV9ldGg7IFJBQ0VFVEggIlJhY2UgYW5kIGV0aG5pY2l0eSBvZiBjaGlsZCINCg0KYGBge3IsIGVjaG89RkFMU0UsIHJlc3VsdHM9ImhpZGUiLCBtZXNzYWdlPUZBTFNFfQ0KDQpsaWJyYXJ5KGhhdmVuKQ0KbGlicmFyeShjYXIpDQpsaWJyYXJ5KHN0YXJnYXplcikNCmxpYnJhcnkoc3VydmV5KQ0KbGlicmFyeShxdWVzdGlvbnIpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShmb3JjYXRzKQ0KbGlicmFyeSh0YWJsZW9uZSkNCmxpYnJhcnkoc3J2eXIpDQoNCiMgUmVhZCBTdGF0YSBmaWxlDQoNCnBmaTE5ID0gcmVhZF9kdGEoZmlsZSA9ICJDOlxcVVRTQVxcT25lRHJpdmUgLSBVbml2ZXJzaXR5IG9mIFRleGFzIGF0IFNhbiBBbnRvbmlvXFwxX01fNzI4M19TdGF0c0lJXFxIb21ld29ya1xccGZpX3B1X3BlcnRfZGF0X2R0YS5kdGEiKQ0KDQojIFJlY29kZSB2YXJpYWJsZXMNCg0KcGZpMTkkZW5qb3lfc2Nob29sIDwtIFJlY29kZShwZmkxOSRTRUVOSk9ZLCByZWNvZGVzPSIxOjI9MTsgMzo0PTA7IGVsc2U9TkEiKQ0KDQpwZmkxOSRGU1ZPTCA8LSBhcy5udW1lcmljKHBmaTE5JEZTVk9MKQ0KDQpwZmkxOSRhZHVsdF92b2x1bnRlZXIgPC0gUmVjb2RlKHBmaTE5JEZTVk9MLCByZWNvZGVzPSIxPSdZZXMnOyAyPSdObyc7IGVsc2U9TkEiLCBhcy5mYWN0b3I9VCkNCg0KcGZpMTkkSERERUxBWVggPC0gYXMubnVtZXJpYyhwZmkxOSRIRERFTEFZWCkNCg0KcGZpMTkkZGV2X2RlbGF5IDwtIFJlY29kZShwZmkxOSRIRERFTEFZWCwgcmVjb2Rlcz0iMT0nWWVzJzsgMj0nTm8nOyBlbHNlPU5BIiwgYXMuZmFjdG9yPVQpDQoNCnBmaTE5JFBBUkdSQURFWCA8LSBhcy5udW1lcmljKHBmaTE5JFBBUkdSQURFWCkNCg0KcGZpMTkkcGFyZW50X2VkdWMgPC0gUmVjb2RlKHBmaTE5JFBBUkdSQURFWCwgcmVjb2Rlcz0iMT0nMExlc3MgdGhhbiBIUyc7DQogICAgICAgICAgICAgICAgICAgICAgICAgICAgMj0nMUhTIEdyYWQnOw0KICAgICAgICAgICAgICAgICAgICAgICAgICAgIDM9JzJTb21lIENvbGxlZ2UnOw0KICAgICAgICAgICAgICAgICAgICAgICAgICAgIDQ9JzNDb2xsZWdlIEdyYWQnOw0KICAgICAgICAgICAgICAgICAgICAgICAgICAgIDU9JzRHcmFkIFNjaG9vbCc7IGVsc2U9TkEiLCBhcy5mYWN0b3I9VCkNCg0KcGZpMTkkUkFDRUVUSCA8LSBhcy5udW1lcmljKHBmaTE5JFJBQ0VFVEgpDQoNCnBmaTE5JHJhY2VfZXRoIDwtIFJlY29kZShwZmkxOSRSQUNFRVRILCByZWNvZGVzPSIxPSdOSCBXaGl0ZSc7DQogICAgICAgICAgICAgICAgICAgICAgICAgICAgMj0nTkggQmxhY2snOw0KICAgICAgICAgICAgICAgICAgICAgICAgICAgIDM9J0hpc3BhbmljJzsNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICA0PSdOSCBBc2lhbic7DQogICAgICAgICAgICAgICAgICAgICAgICAgICAgNT0nT3RoZXInOyBlbHNlPU5BIiwgYXMuZmFjdG9yPVQpDQoNCnBmaTE5JHJhY2VfZXRoIDwtIHJlbGV2ZWwocGZpMTkkcmFjZV9ldGgsIHJlZj0nTkggV2hpdGUnKQ0KDQoNCiMgRmlsdGVyIGNhc2VzDQoNCnBmaTE5IDwtIHBmaTE5ICU+JQ0KICBmaWx0ZXIoaXMubmEoZW5qb3lfc2Nob29sKT09RiwNCiAgICAgICAgIGlzLm5hKGFkdWx0X3ZvbHVudGVlcik9PUYsDQogICAgICAgICBpcy5uYShkZXZfZGVsYXkpPT1GLA0KICAgICAgICAgaXMubmEocGFyZW50X2VkdWMpPT1GLA0KICAgICAgICAgaXMubmEocmFjZV9ldGgpPT1GKQ0KDQpgYGANCg0KIyMgUmVzdWx0cw0KDQpQcmVzZW50IHJlc3VsdHMgZnJvbSBhIG1vZGVsIHdpdGggc2FtcGxlIHdlaWdodHMgYW5kIGRlc2lnbiBlZmZlY3RzLCBpZiB5b3VyIGRhdGEgYWxsb3cgZm9yIHRoaXMuIFByZXNlbnQgdGhlIHJlc3VsdHMgaW4gdGFidWxhciBmb3JtLCB3aXRoIFBhcmFtZXRlciBlc3RpbWF0ZXMsIG9kZHMgcmF0aW9zIChpZiB1c2luZyB0aGUgbG9naXQgbW9kZWwpIGFuZCBjb25maWRlbmNlIGludGVydmFscyBmb3IgdGhlIG9kZHMgcmF0aW9zLg0KDQpgYGB7cn0NCg0KbGlicmFyeShzcnZ5cikNCg0Kb3B0aW9ucyhzdXJ2ZXkubG9uZWx5LnBzdSA9ICJhZGp1c3QiKQ0KDQpwZmkxOWRlc2lnbiA8LSBzdnlkZXNpZ24oaWRzID0gflBQU1UsIHN0cmF0YT0gflBTVFJBVFVNLCB3ZWlnaHRzID0gfkZQV1QsIGRhdGEgPSBwZmkxOSwgbmVzdCA9IFRSVUUpDQpwZmkxOWRlc2lnbg0KDQpmaXQubG9naXQgPC0gc3Z5Z2xtKGVuam95X3NjaG9vbCB+IGFkdWx0X3ZvbHVudGVlciArIGRldl9kZWxheSArIHBhcmVudF9lZHVjICsgcmFjZV9ldGgsIA0KICAgICAgICAgICAgICAgICAgICBkZXNpZ24gPSBwZmkxOWRlc2lnbiwgDQogICAgICAgICAgICAgICAgICAgIGZhbWlseSA9IGJpbm9taWFsKQ0KDQpzdW1tYXJ5KGZpdC5sb2dpdCkNCg0KbGlicmFyeShndHN1bW1hcnkpDQpmaXQubG9naXQgJT4lDQogIHRibF9yZWdyZXNzaW9uKGV4cG9uZW50aWF0ZT1UUlVFKQ0KDQpsaWJyYXJ5KHNqUGxvdCkNCnBsb3RfbW9kZWwoZml0LmxvZ2l0LA0KICAgICAgICAgICBheGlzLmxpbSA9IGMoLjEsIDEwKSwgDQogICAgICAgICAgIHRpdGxlID0gIk9kZHMgUmF0aW9zIGZvciBDaGlsZHJlbiBFbmpveWluZyBTY2hvb2wiKQ0KDQoNCmBgYA0KDQojIyBJbnRlcmVzdGluZyBjYXNlcw0KDQpHZW5lcmF0ZSBwcmVkaWN0ZWQgcHJvYmFiaWxpdGllcyBmb3Igc29tZSDigJxpbnRlcmVzdGluZ+KAnSBjYXNlcyBmcm9tIHlvdXIgYW5hbHlzaXMsIHRvIGhpZ2hsaWdodCB0aGUgZWZmZWN0cyBmcm9tIHRoZSBtb2RlbCBhbmQgeW91ciBzdGF0ZWQgcmVzZWFyY2ggcXVlc3Rpb24uDQoNCmBgYHtyfQ0KDQpsaWJyYXJ5KGVtbWVhbnMpDQpyZyA8LSByZWZfZ3JpZChmaXQubG9naXQpDQoNCm1hcmdfbG9naXQgPC0gZW1tZWFucyhvYmplY3QgPSByZywNCiAgICAgICAgICAgICAgc3BlY3MgPSBjKCJhZHVsdF92b2x1bnRlZXIiLCAgImRldl9kZWxheSIsICJyYWNlX2V0aCIsICJwYXJlbnRfZWR1YyIpLA0KICAgICAgICAgICAgICB0eXBlID0gInJlc3BvbnNlIikNCg0Ka25pdHI6OmthYmxlKG1hcmdfbG9naXQsIGRpZ2l0cyA9IDQpDQoNCmBgYA0KDQpgYGB7cn0NCg0KY29tcHMgPC0gYXMuZGF0YS5mcmFtZShtYXJnX2xvZ2l0KQ0KDQpjb21wc1tjb21wcyRhZHVsdF92b2x1bnRlZXIgPT0gIlllcyIgJiBjb21wcyRkZXZfZGVsYXkgPT0gIlllcyIsIF0NCg0KY29tcHNbY29tcHMkZGV2X2RlbGF5ID09ICJObyIgLCBdDQoNCmBgYA0KDQpJbnRlcmVzdGluZ2x5LCB0aGVyZSB3ZXJlIG5vIHNpZ25pZmljYW50IGVmZmVjdHMgYmFzZWQgb24gcGFyZW50L2d1YXJkaWFuIGVkdWNhdGlvbiBncmFkaWVudCBvciBjaGlsZCByYWNlL2V0aG5pY2l0eS4gQWNyb3NzIHRob3NlIGNhdGVnb3JpZXMsIHBhcmVudCB2b2x1bnRlZXJpc20gaW5jcmVhc2VkIHRoZSBsaWtlbGlob29kIG9mIGEgY2hpbGQgZW5qb3lpbmcgc2Nob29sIGFuZCBkaWFnbm9zaXMgb2YgYSBkZXZlbG9wbWVudGFsIGRlbGF5IGRlY3JlYXNlZCB0aGUgbGlrZWxpaG9vZCBvZiBhIGNoaWxkIGVuam95aW5nIHNjaG9vbC4=