Dear Reader,

We are pleased to share our 5th weekly epidemiological bulletin for the year 2022.

This epidemiological bulletin serves to inform all stakeholders at district, national, and global levels on disease trends, public health surveillance and interventions undertaken in detecting, preventing and responding to public health events in Uganda on a weekly basis.

Data for this issue is from DHIS2

In this issue, we showcase the following updates:

  • Routine Surveillance

  • Reported suspected epidemic prone diseases

  • Reporting rates across the country -Public health emergencies in Uganda

  • Public health emergencies in neighboring countries

For comments please contact:

Dr. Allan Muruta,

Commissioner, Integrated Epidemiology, Surveillance and Public Health Emergencies - MoH;

P.O BOX 7272 Kampala, Tel: 080010066 (toll free); Email: links or


Routine Surveillance

Fig 1: Districts Reporting highest Malaria upsurge

## # A tibble: 7 x 8
##      yr average quant50 quant75 quant95 quant98 quant99      maxi
##   <int>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>     <dbl>
## 1  2016   3459.   1758    2907.   6142.  10556.  27414.    618102
## 2  2017   2972.   1582    2648    5843.   9258.  28277.   1366581
## 3  2018  24149.   1262.   2184.   4522.   9460.  31346. 151044503
## 4  2019   3619.   1876.   3365    7240.  11020.  15091.   2989975
## 5  2020   2346.   1788    3083.   5996    7955.   9353.    139209
## 6  2021   2262.   1818.   2872.   5810.   7555.   9167.    140507
## 7  2022   3568.   1631    2622.   5676.   7914.   9951.    428156





## OGR data source with driver: ESRI Shapefile 
## Source: "C:\Users\DSN\Documents\R\Assigment\shape", layer: "ds"
## with 128 features
## It has 13 fields
## Integer64 fields read as strings:  dc2017 Male Female PopnRtn TotalPopn Popn id
## OGR data source with driver: ESRI Shapefile 
## Source: "C:\Users\DSN\Documents\R\Assigment\shape", layer: "lk"
## with 86 features
## It has 5 fields

Tab 1: Suspected cases of epidemic prone diseases

Condition cases Deaths CFR
Acute_Flaccid_Paralysis_Cases2 319 1 0.00
AEFI_Cases2 416 3 0.01
Animal_bites_Suspected_rabies_Cases2 17665 32 0.00
Anthrax_Cases2 57 4 0.07
Bacterial_Meningitis_Cases2 208 15 0.07
Cholera_Cases2 84 6 0.07
Dysentery_Cases2 7242 269 0.04
Guinea_Worm_Cases2 44 3 0.07
Hepatitis_B_Cases2 6100 82 0.01
Influenza_like_illness_Cases2 1679 158 0.09
Leprosy_Cases2 134 9 0.07
Malaria_diagnosed_Cases2 9214323 26972 0.00
Measles_Cases2 2268 23 0.01
Other_VHF_Cases2 207 7 0.03
Plague_Cases2 66 4 0.06
RR_TBcases_Cases2 132 3 0.02
SARI_Cases2 14305 227 0.02
SARS_Cases2 2367 240 0.10
Typhoid_Fever_Cases2 84056 156 0.00
Yellow_Fever_Cases2 114 36942 324.05

AFP-Acute Flaccid Paralysis; AEFIs-Adverse Events Following Immunization; NNT-Neonatal Tetanus; VHFF-Viral Hemorrhagic Fever; SARI-Severe Acute Respiratory Illness; RR T.B-Rifampicin Resistant Tuberculosis

Table 2: Maternal and Perinatal Deaths

District Maternal Deaths District macerated Deaths District Fresh Still Birth District Early Neonetal Deaths
Arua 1 Kampala 23 Kampala 15 Kampala 35
Gulu 1 Lira 7 Gulu 7 Mbarara 7
Hoima 1 Isingiro 5 Ibanda 3 Hoima 6
Kampala 1 Fort 4 Kabale 3 Gulu 5
Kasese 1 Gulu 4 Kamuli 3 Kabale 4
Koboko 1 Buikwe 3 Kasese 3 Kasese 4
Luwero 1 Ibanda 3 Kikuube 3 Masaka 3
Nakaseke 1 Kamuli 3 Mayuge 3 Fort 2
Sembabule 1 Kasese 3 Mbarara 3 Iganga 2
Abim NA Kitgum 3 Buikwe 2 Kamwenge 2

We continue to register high maternal and perinatal deaths.

We recommend strengthening and continuity of community health services. In addition, regular reviews should be conducted with a focus on identifying modifiable factors behind these deaths

Figure 2: Trends of maternal and perinatal deaths Wk 5

WEEKLY SURVEILLANCE REPORTING RATES

Figure 3: Regional Surveillance Reporting Rates

Red - On time Completeness | Blue - Completeness

Completeness and timeliness of reporting is better compared to epi week 4;

AFP Surveillance

A total of 15 AFP case was reported

from the districts of Budaka 1, Bududa 2,

Bugiri 1, Bukedea 1, Butebo 1,

Kaberamaido 1, Kampala 1,

Katakwi 1, Kibaale 1, Kyegegwa 1,

Kyenjojo 1, Luuka 1, Nakeseke 1

and Nebbi 1 .

The adequate samples collection rate is 91.97%

compared with 92.29% in 2020 The Non-polio AFP rate is 521/100,000 children

0 - 14 years compared with 1.86/100,000 children 0 -14 years in 2020 NPENT rate is 9.38% compared with NPENT rate of 12.64% in 2020

Figure 4: Non Polio AFP rates by districts, Epi week 49

Public health emergencies in Uganda

COVID-19 Response activities

  • Incident Management Team meetings chaired by the Incident Commander continue every Monday, Wednesday and Friday.

  • Regional Support Teams deployed in June 2021 continue to support the COVID19 response in the health regions, bas-ing on a technical support plan for all pillars. The teams host daily situation update meetings with the national public health emergency operations center.

  • There is an ongoing nation-wide Accelerated Mass COVID-19 Vaccination Campaigns (AMVC) throughout the country

    There are challenges that still need to be addressed:

  • Vaccination backlog data entry

  • Low reporting of alerts by the community

  • Non adherence to the COVID-19 SOPs

  • Inconsistent of reporting by districts on COVID19 situation through ODK

    Figure 5: Uganda COVID-19 % test positivity rates/trends

Recommendations and acknowledgement

Editorial team

Dr Rutayisire Meddy

Remember, your feedback is important to us.

COVID –19 prevention is an individual responsibility. Be in charge! Be responsible! Take action!

R Script

knitr::opts_chunk$set(echo = FALSE,message = FALSE,
    warning = FALSE)
library(readxl)
library(tidyverse)
library(ggplot2)
library(ggthemes)
library("tmap")
library("ggsci")
library("tmaptools")
library("sp")
library("rgdal")
library("here")
library(plotly)


old_16 <- read_excel("old_16.xls")
old_17 <- read_excel("old_17.xls")
old_18 <- read_excel("old_18.xls")
old_19 <- read_excel("old_19.xls")
new <- read_excel("dhis2_new.xls")

old <- rbind(old_16, old_17, old_18, old_19)

names(old) <- c("country",
                "region",
                "district",
                "district2",
                "period",
                "opd_new",
                "opd_tot",
                "measles_cases",
                "measles_dth",
                "mic_pos",
                "mic_test",
                "rdt_pos",
                "rdt_test",
                "fever",
                "mic_neg_t",
                "mic_pos_t",
                "not_test_t",
                "rdt_pos_t",
                "rdt_neg_t")

names(new) <- c("country",
                "region",
                "district",
                "district2",
                "period",
                "opd_new",
                "opd_tot",
                "mal_cases",
                "mal_dth",
                "fever",
                "rdt_test",
                "rdt_pos",
                "mic_test",
                "mic_pos",
                "not_test_t",
                "rdt_neg_t",
                "rdt_pos_t",
                "mic_neg_t",
                "mic_pos_t")

new_old <- old%>%
  select(
    region, district, period, opd_tot, fever, 
    rdt_test, rdt_pos, mic_test, mic_pos, 
    not_test_t, rdt_neg_t, rdt_pos_t, mic_neg_t, mic_pos_t
  )
new_new <- new%>%
  select(
    region, district, period, opd_tot, fever, 
    rdt_test, rdt_pos, mic_test, mic_pos, 
    not_test_t, rdt_neg_t, rdt_pos_t, mic_neg_t, mic_pos_t
  )
data_malaria <- rbind(new_old, new_new)


# data_malaria %>% 
#   filter(district == "Abim District" & period == "W1 2016")

new_old$data_age <- 0
new_new$data_age <- 1

data_malaria <- rbind(new_old, new_new)

data_malaria%<>%
  separate(period, c("epi_week","year"),sep = " ",remove = FALSE)%>%
  filter(data_age == 1 & year %in% c("2020", "2021", "2022")
         |
           data_age == 0 & year %in% c("2016", "2017", "2018", "2019")
  )

data_c <- data_malaria%>%
  mutate(
    wk = as.integer(substring(epi_week,2)),
    yr = as.integer(year))%>%
  rowwise()%>%
  mutate(
    total_tested = sum(rdt_test,mic_test, na.rm = TRUE),
    total_positive = sum(rdt_pos, mic_pos, na.rm = TRUE),
    total_neg_treated = sum(mic_neg_t, rdt_neg_t, na.rm = TRUE),
    total_pos_treated = sum(mic_pos_t, rdt_pos_t, na.rm = TRUE),
    t_neg = total_positive-total_tested,
    positivity_rate = 100*total_positive/total_tested,
    dt = as.Date(paste(yr, wk, 1, sep = "-"), "%Y-%U-%u")
  )

data_c %>%
  group_by(yr) %>%
  summarize(
    average = mean(fever, na.rm=TRUE),
    quant50 = quantile(fever, probs = .5 , na.rm=TRUE), 
    quant75 = quantile(fever, probs = .75, na.rm=TRUE),
    quant95 = quantile(fever, probs = .95, na.rm=TRUE),
    quant98 = quantile(fever, probs = .98, na.rm=TRUE),
    quant99 = quantile(fever, probs = .99, na.rm=TRUE),
    maxi    = max(fever, na.rm = TRUE))

data_c$fever[ data_c$yr == 2018 & data_c$fever == 151044503 ] <- 31346

data_c$fever[data_c$yr == 2016 & data_c$fever > 10555] <- 10555
data_c$fever[data_c$yr == 2017 & data_c$fever > 9258] <- 9258
data_c$fever[data_c$yr == 2018 & data_c$fever > 9460] <- 9460
data_c$fever[data_c$yr == 2019 & data_c$fever > 11007] <- 11007
data_c$fever[data_c$yr == 2020 & data_c$fever > 9352] <- 9352
data_c$fever[data_c$yr == 2021 & data_c$fever > 9166] <- 9166
data_c$fever[data_c$yr == 2022 & data_c$fever > 9950] <- 9950


cData <- data_c %>% 
  select(district, wk, yr, total_positive) %>%
  spread(key = yr,value = total_positive)


names(cData)[3:9] <- paste("Y", names(cData)[3:9], sep="")

x <- cData %>% 
  filter(wk != 53) %>% 
  rowwise() %>% 
  mutate(
    UL_Mean = mean( c_across(Y2019:Y2021) ) + 2 * sd( c_across(Y2019:Y2021) ),
    LL_Mean = mean( c_across(Y2019:Y2021) ) - 2 * sd( c_across(Y2019:Y2021) ),
    UL_Medi = quantile( c_across(Y2019:Y2021), .75, na.rm=TRUE) ,
    LL_Medi = quantile( c_across(Y2019:Y2021), .25, na.rm=TRUE) 
  )

x[ x$Y2022 == 0, c("Y2022") ] <- NA

 u <- x %>%
  filter(district == "Budaka District") %>%
  ggplot(aes(wk)) +
  geom_line( size=1,color="red" ,aes(y=UL_Medi)) +
  geom_line( size =1, color = "green", aes(y = LL_Medi) ) +
  geom_line( size=1,color="blue",aes(y=Y2022))+
  geom_text(aes(x = 40,y=1800,label="Upper Limit",colour= "#ff4000"))+
  geom_text(aes(x = 50,y=600,label="Lower Limit",colour= "black"))+
  geom_text(aes(6,2300,label="current",colour="#0040ff"))+
  theme_bw()+
  scale_color_lancet ()+
  theme(axis.text.y = element_text(size = 14, hjust = 1, family = "Fira Sans"),
        plot.margin = margin(rep(15, 4)))+
  labs(y="Malaria Cases",x="Epi Week",title = "Trend in Malaria Cases|Budaka")+
  theme(
    plot.title = element_text(color = "#294A5D", size = 25, face = "bold", hjust = 0.5))
  
  u


t <- x %>%
  filter(district == "Amolatar District") %>%
  ggplot(aes(wk)) +
  geom_line( size=1,color="red" ,aes(y=UL_Medi)) +
  geom_line( size =1, color = "green", aes(y = LL_Medi) ) +
  geom_line( size=1,color="blue",aes(y=Y2022))+
  geom_text(aes(x = 45,y=1200,label="Upper Limit",colour= "Upper Limit"))+
  geom_text(aes(x = 50,y=250,label="Lower Limit",colour= "Lower limit"))+
  geom_text(aes(3,1200,label="current",colour="Current"))+
  theme_bw()+
  scale_color_lancet ()+
  theme(axis.text.y = element_text(size = 14, hjust = 1, family = "Fira Sans"),
        plot.margin = margin(rep(15, 4)))+
  labs(y="Malaria Cases",x="Epi Week",title = "Trend in Malaria Cases|Amolatar")+
  theme(
    plot.title = element_text(color = "#294A5D", size = 25, face = "bold", hjust = 0.5))

t 


#importing data
malaria <- read_excel("malaria.xls")
weekly_idsr <- read_excel("weekly idsr.xlsx")
weekly_cases_deaths <- read_excel("weekly cases deaths.xlsx")
weekly_EMTCT_malaria_TB_Stock <- read_excel("weekly EMTCT,malaria,TB,Stock.xlsx")
Reporting_rates <- read_excel("Report_rates.xls")
ds <- readOGR( here("shape"), "ds" )
lk <- readOGR( here("shape"), "lk" )
covid19 <- read_excel("covid19_daily_situation_report_Feb22.xlsx")
#renaming the data frames
names(malaria) <- c("orgleve1",
                    "region",
                    "district",
                    "org_name",
                    "period",
                    "opd_new",
                    "total_opd",
                    "malaria_cases",
                    "malaria_deaths",
                    "susp_malaria",
                    "cases_RDT",
                    "RDT_post",
                    "mic_tested",
                    "mic_positive",
                    "treated_not_tested",
                    "RDT_neg_treated",
                    "RDT_pos_treated",
                    "mic_neg_treated",
                    "mic_pos_treated")


names (weekly_cases_deaths) <- c("periodname_24",
                                "orgunitlevel124",
                                "region42",
                                "district24",
                                "organisationunitname24",
                                "Malaria_diagnosed_Cases2",  
                                "Malaria_diagnosed_Deaths4",
                                "Dysentery_Cases2",
                                "Dysentery_Deaths4",
                                "SARI_Cases2",
                                "SARI_Deaths4",
                                "Acute_Flaccid_Paralysis_Cases2",          
                                "Acute_Flaccid_Paralysis_Deaths4",
                                "AEFI_Cases2",
                                "AEFI_Deaths4",                   
                                "Animal_bites_Suspected_rabies_Cases2",
                                "Animal_bites_Suspected_rabies_Deaths4",
                                "Bacterial_Meningitis_Cases2",           
                                "Bacterial_Meningitis_Deaths4",
                                "Cholera_Cases2",
                                "Cholera_Deaths4",
                                "Guinea_Worm_Cases2",
                                "Guinea_Worm_Deaths4",
                                "Measles_Cases2",
                                "Measles_Deaths4",
                                "Neonatal_tetanus_Cases",
                                "Neonatal_tetanus_Deaths",             
                                "Plague_Cases2", 
                                "Plague_Deaths4",
                                "Typhoid_Fever_Cases2",
                                "Typhoid_Fever_Deaths4",
                                "Typhoid_Fever_Cases_Tested",
                                "Typhoid_Fever_Cases_Positive",           
                                "Hepatitis_B_Cases2",
                                "Hepatitis_B_Deaths4",
                                "Hepatitis_B_Cases Tested",
                                "Hepatitis_B_Cases Positive",
                                "RR_TBcases_Cases2",
                                "RR_TB_Death4s",
                                "RR_TBcases_Cases Tested",
                                "RR_TB_cases_Cases Positive",
                                "Yellow_Fever_Cases2",
                                "Yellow_Fever_Deaths4",
                                "Yellow_Fever_Cases_Tested",
                                "Yellow_Fever_Cases_Positive",           
                                "Other_VHF_Cases2",          
                                "Other_VHF_Deaths4",
                                "Other_VHF_Cases Tested",
                                "Other_VHF_Cases_Positive",
                                "Leprosy_Cases2",
                                "Leprosy_Deaths4",
                                "Leprosy_Tested_Cases",
                                "Leprosy_Positive_Cases",
                                "Anthrax_Cases2",                  
                                "Anthrax_Deaths4",
                                "Anthrax_Tested_Cases",
                                "Anthrax_Positive_Cases",              
                                "Maternal_death_Deaths",
                                "Macerated_Still_births_Deaths",
                                "Fresh_Still_Birth_Deaths",            
                                "Early_Neonatal_deaths",
                                "Other_Cases__Positive",
                                "Other_Cases_3_Total",              
                                "Other_Cases_3_Deaths",              
                                "Other_Cases_3_Tested",
                                "Other_Cases_3_Positive",            
                                "Anthrax_human_Cases",
                                "Anthrax_human_Deaths",
                                "Lepros6y_Cases",                 
                                "Lepros6y_Deaths",
                                "Chikungunya_Cases",
                                "Chikungunya_Deaths",               
                                "Dengue_Cases",
                                "Dengue_Deaths",
                                "Influenza_like_illness_Cases2",          
                                "Influenza_like_illness_Deaths4",
                                "Acute_viral_hepatitis_Cases",
                                "Acute_viral_hepatitis_Deaths",          
                                "Diarrhoea_with_dehydration_less_than_5_Cases",
                                "Diarrhoea_with_dehydration_less_than_5_deaths",
                                "Severe_pneumonia_less_than_5_Cases",          
                                "Severe_pneumonia_less_than_5_Deaths",
                                "Human_African_Trypanosomiasis_Cases", 
                                "Human_African_Trypanosomiasis_Deaths",      
                                "Trachoma_Cases",
                                "Trachoma_Deaths",
                                "Schistosomiasis_Cases",             
                                "Schistosomiasis_Deaths",
                                "Diphtheria_Cases",
                                "Diphtheria_Deaths",               
                                "Pertussis_Whooping cough_Cases",
                                "Pertussis_Whooping cough_Deaths",
                                "Brucellosis_Cases",               
                                "Brucellosis_Deaths",
                                "Kala_azar_Cases",
                                "Kala_azar_Deaths",                
                                "Nodding_Syndrome_Cases",
                                "Nodding_Syndrome_Deaths",
                                "Adverse_Drug_Reactions_ADR_Cases",       
                                "Adverse_Drug_Reactions_ADR_Deaths",
                                "Dracunculiasis_Cases",
                                "Dracunculiasis_Deaths",             
                                "Onchocerciasis_Cases",
                                "Onchocerciasis_Deaths",
                                "Buruli_ulcer_Cases",               
                                "Buruli_ulcer_Deaths",
                                "Lymphatic_Filariasis_Cases",
                                "Lymphatic_Filariasis_Deaths",          
                                "Noma_Cases",
                                "Noma_Deaths",
                                "Human_influenza_due_to_a_new_subtype_Cases",   
                                "Human_influenza_due_to_a_new_subtype_Deaths",
                                "SARS_Cases2",
                                "SARS_Deaths4",
                                "Smallpox_Cases",
                                "Smallpox_Deaths"          
 )

weekly_cases_deaths %<>%
  separate(periodname_24, c("epi_week","year"),sep = " ",remove = FALSE)%>%
  rowwise() %>% 
  mutate(wk = as.integer(substring(epi_week,2)),
    yr = as.integer(year),
    dt = as.Date(paste(yr, wk, 1, sep = "-"), "%Y-%U-%u"))

weekly_cases_deaths<- weekly_cases_deaths %>% separate(district24, c("district","b"),sep = " ",remove = TRUE)

weekly_cases<-  weekly_cases_deaths %>%
    select(contains("2"))

pp1 <- pivot_longer(data = weekly_cases, cols = Malaria_diagnosed_Cases2:SARS_Cases2, names_to = "Condition", values_to = "Cases") %>% 
  group_by(Condition) %>% 
  summarise(cases = sum(Cases, na.rm = TRUE))


weekly_deaths <-  weekly_cases_deaths %>%
    select(contains('4'))

pp2 <- pivot_longer(data = weekly_deaths, cols = Malaria_diagnosed_Deaths4:SARS_Deaths4, names_to = "Condition", values_to = "Deaths") %>% 
  group_by(Condition) %>% 
  summarise(value = sum(Deaths, na.rm = TRUE))

pp3 <- cbind(pp1,pp2)


pp1$Deaths <- pp2$value
pp1$CFR <- round(pp1$Deaths/pp1$cases,2)

maternal <- weekly_cases_deaths %>% select(
  c(1,6,61,62,63,64)) %>%
filter(periodname_24 == "W4 2022") %>%
group_by(district)

T1 <- maternal %>% select(c(2,3))%>%
arrange(desc(Maternal_death_Deaths))%>%
  head(10)

T2<- maternal %>% select(c(2,4))%>%
arrange(desc(Macerated_Still_births_Deaths))%>%
  head(10)
T3 <-  maternal %>% select(c(2,5))%>%
arrange(desc(Fresh_Still_Birth_Deaths))%>%
  head(10)     
T4 <-   maternal %>%  select(c(2,6))%>%
arrange(desc(Early_Neonatal_deaths))%>%
  head(10)

maternal_deaths <- cbind(T1,T2,T3,T4)



 
library (knitr)
kable(pp1,align = "lccrr")

kable(maternal_deaths,align = "lccrr", col.names = c("District","Maternal Deaths","District","macerated Deaths","District","Fresh Still Birth","District","Early Neonetal Deaths"))
maternal_graph <- weekly_cases_deaths %>% select(
  c(6,119,120,61,62,63,64)) %>% 
  mutate(
    perinatal = sum(Macerated_Still_births_Deaths,Fresh_Still_Birth_Deaths,Early_Neonatal_deaths)
  ) %>% 
  transform( perinatal = as.integer(perinatal), 
                       Maternal_death_Deaths = as.numeric(Maternal_death_Deaths))%>%
  group_by(wk) %>%
  summarise(en=sum(perinatal,na.rm = TRUE) , eng=sum(Maternal_death_Deaths,na.rm = TRUE)) %>%
  ggplot(aes(wk))+
  geom_line(aes(y = en,color = "perinatal"))+
  geom_line(aes(y=eng,color = "Maternal"))+
  theme_bw()+
  theme(axis.text.y = element_text(size = 14, hjust = 1, family = "Fira Sans"),
        plot.margin = margin(rep(15, 4)))+
  labs(y="Deaths",x="")+
   theme(
    plot.title = element_text(color = "#294A5D", size = 25, face = "bold", hjust = 0.5))+
  theme(legend.title = element_blank())+
  scale_fill_manual(values= c("Perinatal", "Maternal"))

maternal_graph <- ggplotly(maternal_graph)
maternal_graph
  
mal_data <- malaria %>% 
            select(region,
                   district,
                   period,
                   malaria_cases,
                   malaria_deaths,
                   mic_tested,
                   cases_RDT,
                   RDT_post,
                   mic_positive)
#final datasets

data_mal <- mal_data%>%
  separate(period, c("epi_week","year"),sep = " ",remove = FALSE)%>%
  rowwise() %>% 
  mutate(wk = as.integer(substring(epi_week,2)),
    yr = as.integer(year),
    total_positive = sum(RDT_post, mic_positive, na.rm = TRUE),
    dt = as.Date(paste(yr, wk, 1, sep = "-"), "%Y-%U-%u"))
names(Reporting_rates) <- c("region","week","completness","on_time")
Reporting_rates_c <- Reporting_rates %>%
  separate(week, c("epi_week","year"),sep = " ",remove = FALSE)%>%
  rowwise() %>% 
  mutate(wk = as.integer(substring(epi_week,2)),
    yr = as.integer(year),
    dt = as.Date(paste(yr, wk, 1, sep = "-"), "%Y-%U-%u"),
    completness = round(completness,0),
    on_time = round(on_time,0))%>%
  filter(wk == 5)
Reporting_rates_c$region2 <- reorder(Reporting_rates_c$region,Reporting_rates_c$completness)

reporting_maps <- Reporting_rates_c%>% ggplot(aes(region2))+
    geom_bar(aes(y=completness), stat="identity", width=0.9, binwidth=0,fill="#009999")+
  geom_bar(aes(y=on_time), stat="identity", width=0.9, binwidth=0,fill="red")+
  geom_hline(yintercept = 80,color="yellow")+
  geom_text(aes(x = "Bunyoro",y=90,label="Target"))+
  coord_flip()+
  theme_bw()+
  theme(axis.text.y = element_text(size = 14, hjust = 1, family = "Fira Sans"),
        plot.margin = margin(rep(15, 4)))+
  labs(y="Reporting Rate",x="")+
   theme(
    plot.title = element_text(color = "#294A5D", size = 25, face = "bold", hjust = 0.5))+
  theme(legend.position = "bottom")
reporting_maps <- ggplotly(reporting_maps)
reporting_maps
pm <- tm_shape(ds) + tm_borders()
pm <- pm + tm_shape(lk) + 
  tm_polygons("#a6cee3" ) +
  tm_borders("#a6cee3")
pm
covid192 <- covid19 %>% select(c(2,3,4,7,18,19,20,17,16,18,19,15))

names(covid192) <- c("date","region","district","alert_inv","alerts_pos","health","pcr","contact_pos","traveller_col","contact_col")



covid192$contact_col[covid192$contact_col == "n/a"] <- NA
covid192$pcr[covid192$pcr == "n/a"] <- NA



covid192 %<>% mutate(
  cont_col = as.numeric(contact_col))%>%
  mutate(
  alert_pos_rate = round(alerts_pos/alert_inv,1),
  cont_pos_rate = round(contact_pos/cont_col,1)
  )

g <- covid192 %>%
  group_by(date) %>%
  summarise(en = sum(alert_pos_rate,na.rm =TRUE))%>%
  ggplot(aes(date))+
  geom_line(aes(y=en))+
    theme_bw()+
  scale_fill_aaas()+
  theme(axis.text.y = element_text(size = 14, hjust = 1, family = "Fira Sans"),
        plot.margin = margin(rep(15, 4)))+
  labs(y="Positivity Rate",x="")
g