rm(list = ls())
date()
## [1] "Sun Apr  3 21:17:39 2022"
sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## loaded via a namespace (and not attached):
##  [1] digest_0.6.29   R6_2.5.1        jsonlite_1.7.3  magrittr_2.0.1 
##  [5] evaluate_0.14   rlang_0.4.12    stringi_1.7.6   jquerylib_0.1.4
##  [9] bslib_0.3.1     rmarkdown_2.11  tools_4.1.2     stringr_1.4.0  
## [13] xfun_0.29       yaml_2.2.1      fastmap_1.1.0   compiler_4.1.2 
## [17] htmltools_0.5.2 knitr_1.37      sass_0.4.0

Библиотеки

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(reshape2)

Импорт

Data <- read.delim2("Data.CSV")

Data$Gender <- as.factor(Data$Gender)

Описательная статистика

Распределения идентичности

hist(Data$Identity)

Модель без учета пола.

# fit <- lm(Identity ~ Care + Fairness + Loyalty + Authority + Sanctity , data = Data)
# 
# summary(fit)

Gender

mData <- filter(Data, Gender == "male")
fData <- filter(Data, Gender == "female")
# ggplot(Data, aes(x = Identity)) +
#         geom_histogram(bins = 10) +
#         theme_classic()

Распеределение в зависимости от пола.

ggplot(Data, aes(x = Identity)) +
        geom_histogram(bins = 7) +
        facet_grid(rows = vars(Gender)) +
        theme_classic()

# Общий график

LabsEn <- c("Care", "Fairness", "Loyalty", "Authority", "Purity")
LabsRu <- c("Забота", "Справедливость", "Лояльность", "Уважение ", "Чистота")
DataRu <- Data
names(DataRu)[3:7] <- LabsRu
names(DataRu)[1] <- "Пол"
DataRu[1] <- factor(DataRu$Пол, labels = c("ж", "м"))

meltDataRu <- melt(DataRu
                 , id.vars = c("Пол", "Age", "Lie", "Identity")
                 , measure.vars = 3:7)
# head(meltData


ggplot(meltDataRu, aes(x = Identity, y = value, col = Пол)) +
         geom_point() +
         geom_smooth(method = 'lm') +
        facet_grid(cols = vars(variable)) +
        labs(x = "Идентификация с природой"
             , y = "Моральные основания")
## `geom_smooth()` using formula 'y ~ x'

ggplot(meltDataRu, aes(y = Identity, x = value, col = Пол)) +
         geom_point() +
         geom_smooth(method = 'lm') +
        facet_wrap(vars(variable)) +
        labs(y = "Идентификация с природой"
             , x = "Моральные основания")
## `geom_smooth()` using formula 'y ~ x'

# ggplot(Data, aes(x = Identity, y = Care, color = Gender)) + 
#   geom_point() + 
#   geom_smooth(method = 'lm')

Регрессионные модели

Моральные основания

lm(Identity ~ Care + Fairness + Loyalty + Authority + Sanctity , data = Data) %>% summary()
## 
## Call:
## lm(formula = Identity ~ Care + Fairness + Loyalty + Authority + 
##     Sanctity, data = Data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -31.978  -8.858  -0.083   8.199  26.950 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 47.24788   10.38300   4.551 5.11e-05 ***
## Care         1.44751    0.60998   2.373   0.0227 *  
## Fairness    -0.15810    0.52840  -0.299   0.7664    
## Loyalty      0.24777    0.70907   0.349   0.7286    
## Authority   -0.02815    0.54685  -0.051   0.9592    
## Sanctity    -0.20808    0.48326  -0.431   0.6691    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13 on 39 degrees of freedom
## Multiple R-squared:  0.1878, Adjusted R-squared:  0.08371 
## F-statistic: 1.804 on 5 and 39 DF,  p-value: 0.1348

Моральные основания + пол

lm(Identity ~ Gender + Care + Fairness + Loyalty + Authority + Sanctity , data = Data) %>% 
        summary()
## 
## Call:
## lm(formula = Identity ~ Gender + Care + Fairness + Loyalty + 
##     Authority + Sanctity, data = Data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.321  -8.320   0.277   7.726  26.536 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 49.498504  12.987970   3.811 0.000492 ***
## Gendermale  -1.381472   4.686611  -0.295 0.769774    
## Care         1.387478   0.649970   2.135 0.039297 *  
## Fairness    -0.177666   0.538795  -0.330 0.743403    
## Loyalty      0.191736   0.742279   0.258 0.797564    
## Authority   -0.005149   0.558843  -0.009 0.992698    
## Sanctity    -0.164609   0.510779  -0.322 0.749014    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.15 on 38 degrees of freedom
## Multiple R-squared:  0.1897, Adjusted R-squared:  0.06174 
## F-statistic: 1.483 on 6 and 38 DF,  p-value: 0.2103

Моральные основания во взаимодействии с полом

lm(Identity ~ Gender : (Care + Fairness + Loyalty + Authority + Sanctity) , data = Data) %>% 
        summary()
## 
## Call:
## lm(formula = Identity ~ Gender:(Care + Fairness + Loyalty + Authority + 
##     Sanctity), data = Data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -33.824  -8.935  -0.863   7.001  25.083 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             48.8818    11.8277   4.133 0.000221 ***
## Genderfemale:Care        2.5580     1.1575   2.210 0.033937 *  
## Gendermale:Care          0.9859     0.7453   1.323 0.194745    
## Genderfemale:Fairness   -0.9803     0.8773  -1.117 0.271633    
## Gendermale:Fairness      0.2886     0.7803   0.370 0.713794    
## Genderfemale:Loyalty    -0.4198     1.0606  -0.396 0.694689    
## Gendermale:Loyalty       0.5201     1.0535   0.494 0.624748    
## Genderfemale:Authority   1.4633     1.2818   1.142 0.261585    
## Gendermale:Authority    -0.4190     0.6883  -0.609 0.546770    
## Genderfemale:Sanctity   -1.0531     0.9796  -1.075 0.289919    
## Gendermale:Sanctity     -0.2820     0.7107  -0.397 0.693958    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.31 on 34 degrees of freedom
## Multiple R-squared:  0.2573, Adjusted R-squared:  0.03882 
## F-statistic: 1.178 on 10 and 34 DF,  p-value: 0.339

Забота

lm(Identity ~ Care, data = Data) %>% 
        summary()
## 
## Call:
## lm(formula = Identity ~ Care, data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -31.4048  -8.8446  -0.8446   7.9072  27.3470 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  46.6037     8.8863   5.244 4.53e-06 ***
## Care          1.3120     0.4269   3.073  0.00367 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.44 on 43 degrees of freedom
## Multiple R-squared:  0.1801, Adjusted R-squared:  0.161 
## F-statistic: 9.444 on 1 and 43 DF,  p-value: 0.00367

Забота + пол

lm(Identity ~ Care + Gender, data = Data) %>% 
        summary()
## 
## Call:
## lm(formula = Identity ~ Care + Gender, data = Data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.031  -8.124  -0.898   7.778  27.067 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  49.3944    11.1205   4.442 6.37e-05 ***
## Care          1.2255     0.4768   2.570   0.0138 *  
## Gendermale   -1.7804     4.1916  -0.425   0.6732    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.56 on 42 degrees of freedom
## Multiple R-squared:  0.1836, Adjusted R-squared:  0.1447 
## F-statistic: 4.722 on 2 and 42 DF,  p-value: 0.01413

Забота во взаимодействии с полом

lm(Identity ~  Gender : Care , data = Data) %>% 
        summary()
## 
## Call:
## lm(formula = Identity ~ Gender:Care, data = Data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.307  -7.977  -0.791   7.768  26.564 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        48.2504     9.5479   5.054 8.95e-06 ***
## Genderfemale:Care   1.2822     0.4348   2.949  0.00519 ** 
## Gendermale:Care     1.1863     0.4984   2.380  0.02192 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.54 on 42 degrees of freedom
## Multiple R-squared:  0.1849, Adjusted R-squared:  0.1461 
## F-statistic: 4.765 on 2 and 42 DF,  p-value: 0.01364

Забота и пол + их взаимодействие

lm(Identity ~ Gender * Care , data = Data) %>% 
summary()
## 
## Call:
## lm(formula = Identity ~ Gender * Care, data = Data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.953  -7.960  -0.867   7.409  24.656 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      41.0046    21.3200   1.923   0.0614 .
## Gendermale        9.1111    23.9072   0.381   0.7051  
## Care              1.5979     0.9376   1.704   0.0959 .
## Gendermale:Care  -0.5057     1.0926  -0.463   0.6459  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.67 on 41 degrees of freedom
## Multiple R-squared:  0.1878, Adjusted R-squared:  0.1284 
## F-statistic: 3.161 on 3 and 41 DF,  p-value: 0.03462

Подбор модели

без взаимодействия факторов.

lm(Identity ~ Gender + Care + Fairness + Loyalty + Authority + Sanctity, data = Data) %>% 
        step() %>% 
        summary()
## Start:  AIC=238.27
## Identity ~ Gender + Care + Fairness + Loyalty + Authority + Sanctity
## 
##             Df Sum of Sq    RSS    AIC
## - Authority  1      0.01 6571.4 236.27
## - Loyalty    1     11.54 6582.9 236.35
## - Gender     1     15.03 6586.4 236.38
## - Sanctity   1     17.96 6589.3 236.40
## - Fairness   1     18.80 6590.2 236.40
## <none>                   6571.4 238.27
## - Care       1    788.02 7359.4 241.37
## 
## Step:  AIC=236.27
## Identity ~ Gender + Care + Fairness + Loyalty + Sanctity
## 
##            Df Sum of Sq    RSS    AIC
## - Loyalty   1     13.41 6584.8 234.36
## - Gender    1     15.46 6586.9 234.38
## - Sanctity  1     18.40 6589.8 234.40
## - Fairness  1     18.80 6590.2 234.40
## <none>                  6571.4 236.27
## - Care      1    789.40 7360.8 239.38
## 
## Step:  AIC=234.36
## Identity ~ Gender + Care + Fairness + Sanctity
## 
##            Df Sum of Sq    RSS    AIC
## - Sanctity  1      7.55 6592.4 232.41
## - Fairness  1     19.18 6604.0 232.50
## - Gender    1     23.60 6608.4 232.53
## <none>                  6584.8 234.36
## - Care      1    829.83 7414.6 237.71
## 
## Step:  AIC=232.42
## Identity ~ Gender + Care + Fairness
## 
##            Df Sum of Sq    RSS    AIC
## - Fairness  1     28.51 6620.9 230.61
## - Gender    1     32.09 6624.4 230.63
## <none>                  6592.4 232.41
## - Care      1    867.87 7460.2 235.98
## 
## Step:  AIC=230.61
## Identity ~ Gender + Care
## 
##          Df Sum of Sq    RSS    AIC
## - Gender  1     28.44 6649.3 228.80
## <none>                6620.9 230.61
## - Care    1   1041.28 7662.2 235.18
## 
## Step:  AIC=228.8
## Identity ~ Care
## 
##        Df Sum of Sq    RSS    AIC
## <none>              6649.3 228.80
## - Care  1    1460.3 8109.6 235.74
## 
## Call:
## lm(formula = Identity ~ Care, data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -31.4048  -8.8446  -0.8446   7.9072  27.3470 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  46.6037     8.8863   5.244 4.53e-06 ***
## Care          1.3120     0.4269   3.073  0.00367 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.44 on 43 degrees of freedom
## Multiple R-squared:  0.1801, Adjusted R-squared:  0.161 
## F-statistic: 9.444 on 1 and 43 DF,  p-value: 0.00367

с взаимодействием факторов (пол:основания)

lm(Identity ~ Gender : (Care + Fairness + Loyalty + Authority + Sanctity) , data = Data) %>% 
        step() %>% 
        summary()
## Start:  AIC=242.35
## Identity ~ Gender:(Care + Fairness + Loyalty + Authority + Sanctity)
## 
##                    Df Sum of Sq    RSS    AIC
## - Gender:Loyalty    2     73.26 6096.5 238.90
## - Gender:Sanctity   2    232.33 6255.6 240.06
## - Gender:Fairness   2    247.40 6270.7 240.16
## - Gender:Authority  2    294.56 6317.9 240.50
## <none>                          6023.3 242.35
## - Gender:Care       2   1059.06 7082.4 245.64
## 
## Step:  AIC=238.9
## Identity ~ Gender:Care + Gender:Fairness + Gender:Authority + 
##     Gender:Sanctity
## 
##                    Df Sum of Sq    RSS    AIC
## - Gender:Authority  2    239.33 6335.9 236.63
## - Gender:Sanctity   2    255.55 6352.1 236.74
## - Gender:Fairness   2    261.80 6358.4 236.79
## <none>                          6096.5 238.90
## - Gender:Care       2   1063.99 7160.5 242.14
## 
## Step:  AIC=236.63
## Identity ~ Gender:Care + Gender:Fairness + Gender:Sanctity
## 
##                   Df Sum of Sq    RSS    AIC
## - Gender:Sanctity  2     67.01 6402.9 233.10
## - Gender:Fairness  2    241.48 6577.4 234.31
## <none>                         6335.9 236.63
## - Gender:Care      2   1105.26 7441.1 239.87
## 
## Step:  AIC=233.1
## Identity ~ Gender:Care + Gender:Fairness
## 
##                   Df Sum of Sq    RSS    AIC
## - Gender:Fairness  2    206.89 6609.8 230.53
## <none>                         6402.9 233.10
## - Gender:Care      2   1124.36 7527.3 236.38
## 
## Step:  AIC=230.53
## Identity ~ Gender:Care
## 
##               Df Sum of Sq    RSS    AIC
## <none>                     6609.8 230.53
## - Gender:Care  2    1499.9 8109.6 235.74
## 
## Call:
## lm(formula = Identity ~ Gender:Care, data = Data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.307  -7.977  -0.791   7.768  26.564 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        48.2504     9.5479   5.054 8.95e-06 ***
## Genderfemale:Care   1.2822     0.4348   2.949  0.00519 ** 
## Gendermale:Care     1.1863     0.4984   2.380  0.02192 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.54 on 42 degrees of freedom
## Multiple R-squared:  0.1849, Adjusted R-squared:  0.1461 
## F-statistic: 4.765 on 2 and 42 DF,  p-value: 0.01364

все факторы с их взаимодействием

Взаимодействия второго уровня

lm(Identity ~ (Gender + Care + Fairness + Loyalty + Authority + Sanctity)^2 , data = Data) %>% 
        step(steps = 10000) %>% 
        summary()
## Start:  AIC=241.95
## Identity ~ (Gender + Care + Fairness + Loyalty + Authority + 
##     Sanctity)^2
## 
##                      Df Sum of Sq    RSS    AIC
## - Loyalty:Authority   1      9.79 3671.1 240.07
## - Gender:Loyalty      1     12.86 3674.2 240.11
## - Care:Authority      1     13.50 3674.9 240.12
## - Care:Loyalty        1     45.99 3707.4 240.51
## - Gender:Fairness     1     57.86 3719.2 240.66
## - Gender:Authority    1     62.71 3724.1 240.72
## - Care:Sanctity       1    148.90 3810.3 241.75
## - Fairness:Authority  1    162.77 3824.1 241.91
## <none>                            3661.4 241.95
## - Gender:Sanctity     1    168.69 3830.1 241.98
## - Care:Fairness       1    267.71 3929.1 243.13
## - Loyalty:Sanctity    1    314.98 3976.3 243.66
## - Fairness:Loyalty    1    479.01 4140.4 245.49
## - Gender:Care         1    605.37 4266.7 246.84
## - Fairness:Sanctity   1    721.68 4383.0 248.05
## - Authority:Sanctity  1    852.33 4513.7 249.37
## 
## Step:  AIC=240.07
## Identity ~ Gender + Care + Fairness + Loyalty + Authority + Sanctity + 
##     Gender:Care + Gender:Fairness + Gender:Loyalty + Gender:Authority + 
##     Gender:Sanctity + Care:Fairness + Care:Loyalty + Care:Authority + 
##     Care:Sanctity + Fairness:Loyalty + Fairness:Authority + Fairness:Sanctity + 
##     Loyalty:Sanctity + Authority:Sanctity
## 
##                      Df Sum of Sq    RSS    AIC
## - Care:Authority      1      8.56 3679.7 238.18
## - Gender:Loyalty      1     34.21 3705.4 238.49
## - Gender:Fairness     1     49.25 3720.4 238.67
## - Gender:Authority    1     56.30 3727.4 238.76
## - Care:Loyalty        1     57.54 3728.7 238.77
## <none>                            3671.1 240.07
## - Fairness:Authority  1    194.04 3865.2 240.39
## - Gender:Sanctity     1    194.36 3865.5 240.39
## - Care:Sanctity       1    280.68 3951.8 241.39
## - Care:Fairness       1    306.10 3977.2 241.68
## - Fairness:Loyalty    1    478.23 4149.4 243.58
## - Gender:Care         1    600.57 4271.7 244.89
## - Loyalty:Sanctity    1    635.06 4306.2 245.25
## - Fairness:Sanctity   1    833.79 4504.9 247.28
## - Authority:Sanctity  1   1042.71 4713.9 249.32
## 
## Step:  AIC=238.18
## Identity ~ Gender + Care + Fairness + Loyalty + Authority + Sanctity + 
##     Gender:Care + Gender:Fairness + Gender:Loyalty + Gender:Authority + 
##     Gender:Sanctity + Care:Fairness + Care:Loyalty + Care:Sanctity + 
##     Fairness:Loyalty + Fairness:Authority + Fairness:Sanctity + 
##     Loyalty:Sanctity + Authority:Sanctity
## 
##                      Df Sum of Sq    RSS    AIC
## - Gender:Loyalty      1     29.50 3709.2 236.54
## - Gender:Fairness     1     41.37 3721.1 236.68
## - Care:Loyalty        1     49.77 3729.5 236.78
## - Gender:Authority    1     92.38 3772.1 237.29
## <none>                            3679.7 238.18
## - Fairness:Authority  1    192.45 3872.2 238.47
## - Gender:Sanctity     1    219.31 3899.0 238.78
## - Care:Sanctity       1    275.83 3955.5 239.43
## - Care:Fairness       1    359.76 4039.5 240.37
## - Fairness:Loyalty    1    523.68 4203.4 242.16
## - Gender:Care         1    640.62 4320.3 243.40
## - Loyalty:Sanctity    1    652.27 4332.0 243.52
## - Fairness:Sanctity   1    866.46 4546.2 245.69
## - Authority:Sanctity  1   1141.15 4820.9 248.33
## 
## Step:  AIC=236.54
## Identity ~ Gender + Care + Fairness + Loyalty + Authority + Sanctity + 
##     Gender:Care + Gender:Fairness + Gender:Authority + Gender:Sanctity + 
##     Care:Fairness + Care:Loyalty + Care:Sanctity + Fairness:Loyalty + 
##     Fairness:Authority + Fairness:Sanctity + Loyalty:Sanctity + 
##     Authority:Sanctity
## 
##                      Df Sum of Sq    RSS    AIC
## - Care:Loyalty        1     34.30 3743.5 234.95
## - Gender:Fairness     1     40.46 3749.7 235.02
## <none>                            3709.2 236.54
## - Gender:Authority    1    185.83 3895.0 236.74
## - Gender:Sanctity     1    193.38 3902.6 236.82
## - Fairness:Authority  1    199.48 3908.7 236.89
## - Care:Sanctity       1    253.76 3963.0 237.51
## - Care:Fairness       1    369.01 4078.2 238.80
## - Fairness:Loyalty    1    495.75 4205.0 240.18
## - Loyalty:Sanctity    1    626.40 4335.6 241.56
## - Gender:Care         1    655.14 4364.4 241.85
## - Fairness:Sanctity   1    845.96 4555.2 243.78
## - Authority:Sanctity  1   1115.08 4824.3 246.36
## 
## Step:  AIC=234.95
## Identity ~ Gender + Care + Fairness + Loyalty + Authority + Sanctity + 
##     Gender:Care + Gender:Fairness + Gender:Authority + Gender:Sanctity + 
##     Care:Fairness + Care:Sanctity + Fairness:Loyalty + Fairness:Authority + 
##     Fairness:Sanctity + Loyalty:Sanctity + Authority:Sanctity
## 
##                      Df Sum of Sq    RSS    AIC
## - Gender:Fairness     1     38.42 3781.9 233.41
## - Gender:Authority    1    165.99 3909.5 234.90
## <none>                            3743.5 234.95
## - Fairness:Authority  1    220.39 3963.9 235.52
## - Gender:Sanctity     1    232.82 3976.3 235.66
## - Care:Sanctity       1    247.11 3990.6 235.83
## - Care:Fairness       1    372.20 4115.7 237.22
## - Gender:Care         1    652.72 4396.2 240.18
## - Loyalty:Sanctity    1    679.34 4422.9 240.46
## - Fairness:Loyalty    1    794.89 4538.4 241.62
## - Fairness:Sanctity   1   1095.26 4838.8 244.50
## - Authority:Sanctity  1   1196.52 4940.0 245.43
## 
## Step:  AIC=233.41
## Identity ~ Gender + Care + Fairness + Loyalty + Authority + Sanctity + 
##     Gender:Care + Gender:Authority + Gender:Sanctity + Care:Fairness + 
##     Care:Sanctity + Fairness:Loyalty + Fairness:Authority + Fairness:Sanctity + 
##     Loyalty:Sanctity + Authority:Sanctity
## 
##                      Df Sum of Sq    RSS    AIC
## - Gender:Authority    1    146.36 3928.3 233.12
## <none>                            3781.9 233.41
## - Fairness:Authority  1    206.23 3988.2 233.80
## - Care:Sanctity       1    297.47 4079.4 234.82
## - Gender:Sanctity     1    326.21 4108.1 235.13
## - Gender:Care         1    628.91 4410.8 238.33
## - Loyalty:Sanctity    1    687.41 4469.3 238.93
## - Fairness:Loyalty    1    959.91 4741.8 241.59
## - Care:Fairness       1   1016.51 4798.4 242.12
## - Fairness:Sanctity   1   1060.65 4842.6 242.53
## - Authority:Sanctity  1   1250.04 5032.0 244.26
## 
## Step:  AIC=233.12
## Identity ~ Gender + Care + Fairness + Loyalty + Authority + Sanctity + 
##     Gender:Care + Gender:Sanctity + Care:Fairness + Care:Sanctity + 
##     Fairness:Loyalty + Fairness:Authority + Fairness:Sanctity + 
##     Loyalty:Sanctity + Authority:Sanctity
## 
##                      Df Sum of Sq    RSS    AIC
## - Fairness:Authority  1    155.44 4083.7 232.87
## <none>                            3928.3 233.12
## - Gender:Sanctity     1    196.50 4124.8 233.31
## - Care:Sanctity       1    316.97 4245.3 234.61
## - Gender:Care         1    624.12 4552.4 237.75
## - Loyalty:Sanctity    1    662.37 4590.7 238.13
## - Fairness:Loyalty    1    938.64 4866.9 240.76
## - Care:Fairness       1    990.31 4918.6 241.24
## - Fairness:Sanctity   1   1040.35 4968.6 241.69
## - Authority:Sanctity  1   1186.58 5114.9 243.00
## 
## Step:  AIC=232.86
## Identity ~ Gender + Care + Fairness + Loyalty + Authority + Sanctity + 
##     Gender:Care + Gender:Sanctity + Care:Fairness + Care:Sanctity + 
##     Fairness:Loyalty + Fairness:Sanctity + Loyalty:Sanctity + 
##     Authority:Sanctity
## 
##                      Df Sum of Sq    RSS    AIC
## <none>                            4083.7 232.87
## - Gender:Sanctity     1    232.95 4316.7 233.36
## - Care:Sanctity       1    270.95 4354.7 233.76
## - Loyalty:Sanctity    1    534.03 4617.8 236.40
## - Gender:Care         1    653.37 4737.1 237.54
## - Fairness:Loyalty    1    811.19 4894.9 239.02
## - Fairness:Sanctity   1    950.35 5034.1 240.28
## - Care:Fairness       1    995.53 5079.3 240.68
## - Authority:Sanctity  1   1351.33 5435.1 243.73
## 
## Call:
## lm(formula = Identity ~ Gender + Care + Fairness + Loyalty + 
##     Authority + Sanctity + Gender:Care + Gender:Sanctity + Care:Fairness + 
##     Care:Sanctity + Fairness:Loyalty + Fairness:Sanctity + Loyalty:Sanctity + 
##     Authority:Sanctity, data = Data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -28.5742  -6.7531  -0.9228   5.9870  22.1438 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -60.1540    55.0719  -1.092 0.283404    
## Gendermale           55.3643    30.5707   1.811 0.080162 .  
## Care                  8.4652     3.7869   2.235 0.032984 *  
## Fairness              5.3647     2.7712   1.936 0.062356 .  
## Loyalty              13.4362     4.8837   2.751 0.009970 ** 
## Authority            -6.0851     2.0057  -3.034 0.004949 ** 
## Sanctity            -12.7805     3.3882  -3.772 0.000711 ***
## Gendermale:Care      -3.4512     1.5753  -2.191 0.036368 *  
## Gendermale:Sanctity   1.2503     0.9558   1.308 0.200750    
## Care:Fairness        -0.3337     0.1234  -2.704 0.011168 *  
## Care:Sanctity         0.1736     0.1230   1.411 0.168577    
## Fairness:Loyalty     -0.4325     0.1772  -2.441 0.020756 *  
## Fairness:Sanctity     0.4233     0.1602   2.642 0.012959 *  
## Loyalty:Sanctity     -0.2885     0.1456  -1.981 0.056861 .  
## Authority:Sanctity    0.3518     0.1117   3.151 0.003676 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.67 on 30 degrees of freedom
## Multiple R-squared:  0.4964, Adjusted R-squared:  0.2614 
## F-statistic: 2.113 on 14 and 30 DF,  p-value: 0.04202
  • это взаимодействи.
    это простое и взаимодействие This is the same as first + second + first:second.