Exploring the Data

Organizing the Data

GLSS <- subset(game, game$original == 1) #original data
aksoy <- subset(game, game$original == 0) #paper data

#splitting data
GLSS.p0 <- subset(GLSS, GLSS$first_mover==1)#first
GLSS.p1 <- subset(GLSS, GLSS$first_mover==0)#second


aksoy.p0 <- subset(aksoy, aksoy$first_mover == 1)#first
aksoy.p1 <- subset(aksoy, aksoy$first_mover == 0)#second

Table2

For this table I am creating subsets than calculating the mean

First_mover_GLSS <- t.test(GLSS$amountsent_percentage)
First_mover_Aksoy <- t.test(aksoy$amountsent_percentage)
Return_Ratio_GLSS <- t.test(GLSS$returnratio)
Return_Ratio_Aksoy <- t.test(aksoy$returnratio) 
First_mover_GLSS
## 
##  One Sample t-test
## 
## data:  GLSS$amountsent_percentage
## t = 38.394, df = 185, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  0.7908526 0.8765309
## sample estimates:
## mean of x 
## 0.8336918
First_mover_Aksoy
## 
##  One Sample t-test
## 
## data:  aksoy$amountsent_percentage
## t = 18.51, df = 65, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  0.6406938 0.7956698
## sample estimates:
## mean of x 
## 0.7181818
Return_Ratio_GLSS
## 
##  One Sample t-test
## 
## data:  GLSS$returnratio
## t = 23.651, df = 178, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  0.4154105 0.4910443
## sample estimates:
## mean of x 
## 0.4532274
Return_Ratio_Aksoy
## 
##  One Sample t-test
## 
## data:  aksoy$returnratio
## t = 21.991, df = 65, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  0.500270 0.600211
## sample estimates:
## mean of x 
## 0.5502405
(cbind(rbind("%Sent (Firstr Mover)", GLSS=First_mover_GLSS[5],Aksoy=First_mover_Aksoy[5]), rbind("Return Ratio", Return_Ratio_GLSS[5],Return_Ratio_Aksoy[5])))
##       estimate               estimate      
##       "%Sent (Firstr Mover)" "Return Ratio"
## GLSS  0.8336918              0.4532274     
## Aksoy 0.7181818              0.5502405

Table 3

GLSS First Mover

fit.1 <- lm(amount_sent~different_sex+promise+male+white+freshmen+only_child+gss_trust, data = GLSS.p0) # First mover
summary(fit.1)
## 
## Call:
## lm(formula = amount_sent ~ different_sex + promise + male + white + 
##     freshmen + only_child + gss_trust, data = GLSS.p0)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.742  -1.781   2.087   2.607   4.500 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   13.26580    1.27780  10.382   <2e-16 ***
## different_sex -0.77710    1.10188  -0.705    0.483    
## promise        0.02709    1.00677   0.027    0.979    
## male          -0.07384    1.16649  -0.063    0.950    
## white         -0.45161    0.99957  -0.452    0.653    
## freshmen      -0.21787    1.10534  -0.197    0.844    
## only_child    -1.72370    1.50539  -1.145    0.255    
## gss_trust      0.14608    1.00309   0.146    0.885    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.705 on 87 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02511,    Adjusted R-squared:  -0.05333 
## F-statistic: 0.3201 on 7 and 87 DF,  p-value: 0.9431

GLSS First Mover

fit.2 <- lm(amount_sent~different_sex+promise+male+white+freshmen+only_child+trust_index,GLSS.p0)
summary(fit.2)
## 
## Call:
## lm(formula = amount_sent ~ different_sex + promise + male + white + 
##     freshmen + only_child + trust_index, data = GLSS.p0)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.451  -1.848   2.027   2.665   4.697 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    13.7911     1.2556  10.983   <2e-16 ***
## different_sex  -0.2306     1.0812  -0.213    0.832    
## promise        -0.1068     0.9966  -0.107    0.915    
## male           -0.5412     1.1424  -0.474    0.637    
## white          -0.7418     0.9956  -0.745    0.458    
## freshmen       -0.4785     1.0929  -0.438    0.663    
## only_child     -1.8019     1.4501  -1.243    0.217    
## trust_index    -0.1020     0.2178  -0.468    0.641    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.554 on 84 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.03699,    Adjusted R-squared:  -0.04326 
## F-statistic: 0.4609 on 7 and 84 DF,  p-value: 0.8601

Aksoy First Mover

fit.3 <- lm(amount_sent~different_sex+promise+male+white+freshmen+only_child+gss_trust, data = aksoy.p0) # First mover
summary(fit.3)
## 
## Call:
## lm(formula = amount_sent ~ different_sex + promise + male + white + 
##     freshmen + only_child + gss_trust, data = aksoy.p0)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4417 -2.2264  0.5389  1.7906  4.0093 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    4.46109    1.38253   3.227  0.00348 **
## different_sex  3.49516    1.02726   3.402  0.00225 **
## promise       -0.02852    1.03888  -0.027  0.97832   
## male           0.51395    0.96854   0.531  0.60035   
## white         -0.72014    1.06244  -0.678  0.50411   
## freshmen      -2.04101    1.55877  -1.309  0.20231   
## only_child     0.28164    1.03102   0.273  0.78697   
## gss_trust      2.71114    1.10432   2.455  0.02139 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.693 on 25 degrees of freedom
## Multiple R-squared:  0.4386, Adjusted R-squared:  0.2814 
## F-statistic:  2.79 on 7 and 25 DF,  p-value: 0.02732

Aksoy Second Mover

fit.4 <- lm(amount_sent~different_sex+promise+male+white+freshmen+only_child+trust_index, data= aksoy.p0)
summary(fit.4)
## 
## Call:
## lm(formula = amount_sent ~ different_sex + promise + male + white + 
##     freshmen + only_child + trust_index, data = aksoy.p0)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.8125 -1.8468  0.5269  2.0264  4.3967 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     5.9032     1.2884   4.582  0.00011 ***
## different_sex   3.1710     1.0501   3.020  0.00576 ** 
## promise        -0.4530     1.0615  -0.427  0.67318    
## male            0.3912     1.0079   0.388  0.70122    
## white          -0.3580     1.0823  -0.331  0.74359    
## freshmen       -2.1396     1.6255  -1.316  0.20002    
## only_child     -0.2638     1.0691  -0.247  0.80708    
## trust_index    -0.4497     0.2404  -1.870  0.07323 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.81 on 25 degrees of freedom
## Multiple R-squared:  0.3888, Adjusted R-squared:  0.2176 
## F-statistic: 2.272 on 7 and 25 DF,  p-value: 0.06179

Show the results

stargazer(fit.1, fit.2,fit.3,fit.4, title="Regression Results: GLSS and Aksoy", type="text", df=FALSE, digits=4, column.labels = c("fit1", "fit2","fit3", "fit4"))
## 
## Regression Results: GLSS and Aksoy
## =============================================================
##                                Dependent variable:           
##                     -----------------------------------------
##                                    amount_sent               
##                        fit1       fit2      fit3      fit4   
##                        (1)        (2)        (3)       (4)   
## -------------------------------------------------------------
## different_sex        -0.7771    -0.2306   3.4952*** 3.1710***
##                      (1.1019)   (1.0812)  (1.0273)  (1.0501) 
##                                                              
## promise               0.0271    -0.1068    -0.0285   -0.4530 
##                      (1.0068)   (0.9966)  (1.0389)  (1.0615) 
##                                                              
## male                 -0.0738    -0.5412    0.5140    0.3912  
##                      (1.1665)   (1.1424)  (0.9685)  (1.0079) 
##                                                              
## white                -0.4516    -0.7418    -0.7201   -0.3580 
##                      (0.9996)   (0.9956)  (1.0624)  (1.0823) 
##                                                              
## freshmen             -0.2179    -0.4785    -2.0410   -2.1396 
##                      (1.1053)   (1.0929)  (1.5588)  (1.6255) 
##                                                              
## only_child           -1.7237    -1.8019    0.2816    -0.2638 
##                      (1.5054)   (1.4501)  (1.0310)  (1.0691) 
##                                                              
## gss_trust             0.1461              2.7111**           
##                      (1.0031)             (1.1043)           
##                                                              
## trust_index                     -0.1020             -0.4497* 
##                                 (0.2178)            (0.2404) 
##                                                              
## Constant            13.2658*** 13.7911*** 4.4611*** 5.9032***
##                      (1.2778)   (1.2556)  (1.3825)  (1.2884) 
##                                                              
## -------------------------------------------------------------
## Observations            95         92        33        33    
## R2                    0.0251     0.0370    0.4386    0.3888  
## Adjusted R2          -0.0533    -0.0433    0.2814    0.2176  
## Residual Std. Error   4.7054     4.5535    2.6928    2.8098  
## F Statistic           0.3201     0.4609   2.7904**   2.2717* 
## =============================================================
## Note:                             *p<0.1; **p<0.05; ***p<0.01

Table A1.3.1: Return Ratio as a Function of Recipient Characteristics

GLSS Column 1

fit.1a <- lm(returnratio~amount_sent+different_sex+promise+male+white+freshmen+only_child+gss_trust, data = GLSS.p1) # Second mover
summary(fit.1a)
## 
## Call:
## lm(formula = returnratio ~ amount_sent + different_sex + promise + 
##     male + white + freshmen + only_child + gss_trust, data = GLSS.p1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.51476 -0.07475 -0.00879  0.08016  0.59326 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    0.137228   0.118820   1.155   0.2517   
## amount_sent    0.021603   0.006749   3.201   0.0020 **
## different_sex  0.014642   0.052468   0.279   0.7810   
## promise       -0.005965   0.051026  -0.117   0.9073   
## male          -0.002652   0.056821  -0.047   0.9629   
## white          0.053476   0.052117   1.026   0.3081   
## freshmen      -0.038780   0.053504  -0.725   0.4708   
## only_child    -0.190102   0.093924  -2.024   0.0465 * 
## gss_trust      0.092083   0.050394   1.827   0.0716 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2238 on 76 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.221,  Adjusted R-squared:  0.139 
## F-statistic: 2.695 on 8 and 76 DF,  p-value: 0.01152

GLSS Column 2

fit.1b <- lm(returnratio~amount_sent+different_sex+promise+male+white+freshmen+only_child+trust_index, data = GLSS.p1) # Second mover
summary(fit.1b)
## 
## Call:
## lm(formula = returnratio ~ amount_sent + different_sex + promise + 
##     male + white + freshmen + only_child + trust_index, data = GLSS.p1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.44411 -0.10688 -0.01959  0.10497  0.52733 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.153911   0.115165   1.336 0.185502    
## amount_sent    0.021462   0.006423   3.341 0.001309 ** 
## different_sex  0.002106   0.050357   0.042 0.966755    
## promise        0.033750   0.049982   0.675 0.501619    
## male          -0.024521   0.054808  -0.447 0.655887    
## white          0.050668   0.050120   1.011 0.315336    
## freshmen      -0.006235   0.052931  -0.118 0.906551    
## only_child    -0.218396   0.089233  -2.447 0.016758 *  
## trust_index    0.044018   0.011826   3.722 0.000383 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2123 on 74 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.3098, Adjusted R-squared:  0.2352 
## F-statistic: 4.152 on 8 and 74 DF,  p-value: 0.000387

Aksoy Column 1

fit.1c <- lm(returnratio~amount_sent+different_sex+promise+male+white+freshmen+only_child+gss_trust, data = aksoy.p1) # Second mover
summary(fit.1c)
## 
## Call:
## lm(formula = returnratio ~ amount_sent + different_sex + promise + 
##     male + white + freshmen + only_child + gss_trust, data = aksoy.p1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.42137 -0.11860 -0.00781  0.14291  0.30424 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.67567    0.14639   4.616  0.00011 ***
## amount_sent    0.01581    0.01412   1.119  0.27409    
## different_sex -0.13798    0.08284  -1.666  0.10879    
## promise       -0.01791    0.07229  -0.248  0.80643    
## male          -0.05925    0.07578  -0.782  0.44194    
## white         -0.06306    0.08048  -0.784  0.44100    
## freshmen       0.03174    0.11280   0.281  0.78086    
## only_child    -0.12011    0.07699  -1.560  0.13184    
## gss_trust     -0.10001    0.07555  -1.324  0.19806    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1986 on 24 degrees of freedom
## Multiple R-squared:  0.2953, Adjusted R-squared:  0.06037 
## F-statistic: 1.257 on 8 and 24 DF,  p-value: 0.3108

Aksoy Column 2

fit.1d <- lm(returnratio~amount_sent+different_sex+promise+male+white+freshmen+only_child+trust_index, data = aksoy.p1) # Second mover
summary(fit.1d)
## 
## Call:
## lm(formula = returnratio ~ amount_sent + different_sex + promise + 
##     male + white + freshmen + only_child + trust_index, data = aksoy.p1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.3696 -0.1020  0.0012  0.1378  0.3511 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.5948919  0.1401147   4.246 0.000283 ***
## amount_sent    0.0193898  0.0144708   1.340 0.192818    
## different_sex -0.1464638  0.0855152  -1.713 0.099656 .  
## promise       -0.0008651  0.0760808  -0.011 0.991021    
## male          -0.0414877  0.0773400  -0.536 0.596597    
## white         -0.0677037  0.0841920  -0.804 0.429199    
## freshmen       0.0300685  0.1178582   0.255 0.800801    
## only_child    -0.1092021  0.0794215  -1.375 0.181842    
## trust_index    0.0026872  0.0177068   0.152 0.880644    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2056 on 24 degrees of freedom
## Multiple R-squared:  0.2445, Adjusted R-squared:  -0.007274 
## F-statistic: 0.9711 on 8 and 24 DF,  p-value: 0.4811

Table A1.3.1 Columns 1 and 2 and A1.3.2 Columns 1 and 2 (all in the same table)

stargazer(fit.1a, fit.1b,fit.1c,fit.1d, title="Regression Results: GLSS and Aksoy", type="text", df=FALSE, digits=5, column.labels = c("fit1", "fit2","fit3", "fit4"))
## 
## Regression Results: GLSS and Aksoy
## ===============================================================
##                                 Dependent variable:            
##                     -------------------------------------------
##                                     returnratio                
##                        fit1       fit2       fit3       fit4   
##                        (1)        (2)        (3)        (4)    
## ---------------------------------------------------------------
## amount_sent         0.02160*** 0.02146***  0.01581    0.01939  
##                     (0.00675)  (0.00642)  (0.01412)  (0.01447) 
##                                                                
## different_sex        0.01464    0.00211    -0.13798  -0.14646* 
##                     (0.05247)  (0.05036)  (0.08284)  (0.08552) 
##                                                                
## promise              -0.00596   0.03375    -0.01791   -0.00087 
##                     (0.05103)  (0.04998)  (0.07229)  (0.07608) 
##                                                                
## male                 -0.00265   -0.02452   -0.05925   -0.04149 
##                     (0.05682)  (0.05481)  (0.07578)  (0.07734) 
##                                                                
## white                0.05348    0.05067    -0.06306   -0.06770 
##                     (0.05212)  (0.05012)  (0.08048)  (0.08419) 
##                                                                
## freshmen             -0.03878   -0.00623   0.03174    0.03007  
##                     (0.05350)  (0.05293)  (0.11280)  (0.11786) 
##                                                                
## only_child          -0.19010** -0.21840**  -0.12011   -0.10920 
##                     (0.09392)  (0.08923)  (0.07699)  (0.07942) 
##                                                                
## gss_trust            0.09208*              -0.10001            
##                     (0.05039)             (0.07555)            
##                                                                
## trust_index                    0.04402***             0.00269  
##                                (0.01183)             (0.01771) 
##                                                                
## Constant             0.13723    0.15391   0.67567*** 0.59489***
##                     (0.11882)  (0.11517)  (0.14639)  (0.14011) 
##                                                                
## ---------------------------------------------------------------
## Observations            85         83         33         33    
## R2                   0.22097    0.30982    0.29527    0.24454  
## Adjusted R2          0.13897    0.23521    0.06037    -0.00727 
## Residual Std. Error  0.22380    0.21226    0.19857    0.20560  
## F Statistic         2.69470**  4.15237***  1.25697    0.97111  
## ===============================================================
## Note:                               *p<0.1; **p<0.05; ***p<0.01